diff options
Diffstat (limited to 'doc/thesis/chapters/implementation.tex')
-rw-r--r-- | doc/thesis/chapters/implementation.tex | 19 |
1 files changed, 13 insertions, 6 deletions
diff --git a/doc/thesis/chapters/implementation.tex b/doc/thesis/chapters/implementation.tex index 5e253de..05bb545 100644 --- a/doc/thesis/chapters/implementation.tex +++ b/doc/thesis/chapters/implementation.tex @@ -156,7 +156,7 @@ Thus the tagged stream is processed with a custom block, of which a simplified v \subsubsection{Performance of the implementation}\label{sec:preforming-implementation} The phase and frequency correction block was implemented with the design goal of being able to correct under ideal conditions a maximal frequency offsets of \(\hat{\epsilon} = 0.1\%\), which is sufficient to take into account small Doppler shifts at walking speed (\(v = \SI{2}{\meter\per\second}\)) with carrier at \(f_c = 2.4\) GHz. The USRP B210 devices have an internal clock frequency accuracy of \(\epsilon = 1\text{ ppm} = 10^{-6}\), which results in a total frequency offset of -\begin{equation} +\begin{equation}\label{eq:doppler} \Delta f = f_c \left( \frac{v}{c_0} + \epsilon \right) = \SI{2.4}{\giga\hertz} \left( \frac{\SI{2}{\meter\per\second}}{\SI{3e8}{\meter\per\second}} + 10^{-6} @@ -357,13 +357,20 @@ When nothing mentioned the number of how many FIR- filter taps are used is eight %TODO: Other Plots? \subsubsection{Real value example} -In order to obtain a realistic simulation the values for multi-path fading propagation condition for a Extended Typical Urban (ETU) model from the ETSI (European Telecommunication Standards Institute) where used. This +In order to obtain a realistic simulation the values for multipath fading propagation condition for a Extended Typical Urban (ETU) model, from the ETSI (European Telecommunication Standards Institute), where used\cite{ETSI}. For those values shown in \tabref{tab:etsi-tap-values} the maximum Doppler frequency possibilities are predefined. In the following examples \figref{fig:dynamic-exp-real} either \(\SI{5}{\hertz}\) or \(\SI{70}{\hertz}\) were used, as in \eqref{eq:doppler} \(\SI{16}{\hertz}\) calculated for a walking speed of \(\SI{2}{\meter\per\second}\). Those predefined values had a speed of +\begin{equation} + v = \frac{\Delta f}{f_c}\cdot c_0 = \frac{\SI{5}{\hertz}}{\SI{2.4}{\giga\hertz}}\cdot \SI{3e8}{\meter\per\second}= \SI{0.625}{\meter\per\second} +\end{equation} +and +\begin{equation} + v = \frac{\Delta f}{f_c}\cdot c_0 = \frac{\SI{70}{\hertz}}{\SI{2.4}{\giga\hertz}}\cdot \SI{3e8}{\meter\per\second}= \SI{8.75}{\meter\per\second} +\end{equation}. \skelpar[5]{ - Simulate an example from the skript + More simulation plots. } + \begin{table}[b] - \centering \begin{tabular}{rr} \toprule @@ -387,7 +394,7 @@ In order to obtain a realistic simulation the values for multi-path fading propa \centering \input{figures/tikz/qpsk-sim-constellations-dynamic-exp-NLOS-5} \caption{ - TODO + Constellation diagrams for a simulated link using QPSK and Rayleighan fading. With the ETU model and a Doppler frequency of \(\SI{5}{\hertz}\). } \label{fig:dynamic-exp-real} \end{figure} @@ -457,7 +464,7 @@ For generating the Byte error rate it is focus on byte-blocks of a specific leng \input{figures/tikz/qpsk-sim-constellations-static-symb-NLOS} \caption{ Constellation diagrams for a simulated link using QPSK with the discrete time model block. - The parameters are: delay of samples per symbol, amplitude of 0.2 and LOS. + The parameters are: delay of samples per symbol, amplitude of 0.2 and NLOS. } \label{fig:static-symb-special-case-NLOS} \end{figure} |