summaryrefslogtreecommitdiffstats
path: root/presentation/KugelBSc.tex
diff options
context:
space:
mode:
Diffstat (limited to 'presentation/KugelBSc.tex')
-rw-r--r--presentation/KugelBSc.tex684
1 files changed, 684 insertions, 0 deletions
diff --git a/presentation/KugelBSc.tex b/presentation/KugelBSc.tex
new file mode 100644
index 0000000..7128908
--- /dev/null
+++ b/presentation/KugelBSc.tex
@@ -0,0 +1,684 @@
+\documentclass[xetex, onlymath]{beamer}
+\usefonttheme{serif}
+\usetheme{hsr}
+
+% use lmodern for math
+\usepackage{lmodern}
+
+% math packages
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{bm}
+
+\renewcommand{\vec}[1]{\mathbf{\bm{#1}}}
+
+% use plex font for monospaced, roboto for the rest
+\usepackage[T1]{fontenc}
+\usepackage{plex-otf} % monospaced
+% \usepackage{roboto} % other
+\renewcommand*\familydefault{\sfdefault}
+
+\usepackage{graphicx}
+\usepackage{booktabs}
+\usepackage{array}
+
+% biblopgraphy
+\usepackage[backend=bibtex, style=ieee]{biblatex}
+\addbibresource{KugelBSc.bib}
+
+% links
+\usepackage{hyperref}
+\hypersetup{
+ % Remove ugly boxes
+ hidelinks,
+ % Set colors
+ colorlinks = true,
+ anchorcolor = black,
+ citecolor = black,
+ filecolor = black,
+ linkcolor = black,
+ menucolor = black,
+ runcolor = black,
+ urlcolor = {black!50!blue},
+}
+
+% pretty drawings
+\usepackage{tikz}
+\usetikzlibrary{calc}
+\usepackage{xcolor}
+
+% source code
+\usepackage{listings}
+%% create a lstlisting style
+\lstdefinestyle{samplestyle}{
+ belowcaptionskip=\baselineskip,
+ breaklines=true,
+ frame=none,
+ inputencoding=utf8,
+ % margin
+ xleftmargin=\parindent,
+ % background
+ backgroundcolor=\color{hsr-lightgrey20},
+ % default language:
+ language=[LaTeX]TeX,
+ showstringspaces=false,
+ % font
+ basicstyle=\ttfamily\small,
+ identifierstyle=\color{hsr-black},
+ keywordstyle=\color{hsr-blue},
+ commentstyle=\color{hsr-black40},
+ stringstyle=\color{hsr-mauve80},
+}
+
+%% and set the chosen style
+\lstset{style=samplestyle, escapechar=`}
+
+% metadata
+\title{Spherical Harmonics}
+\author[NaoPross]{\texttt{Naoki Pross, Manuel Cattaneo}}
+\date{Spring Semester 2022}
+
+\institute[OST]{OST FHO Campus Rapperswil}
+% \logo{\includegraphics[width=3cm]{figs/hsr-logo}}
+
+\AtBeginSection[]
+{
+ \begin{frame}
+ \frametitle{Table of Contents}
+ \tableofcontents[currentsection]
+ \end{frame}
+}
+
+
+\begin{document}
+
+\frame{
+ \maketitle
+}
+
+\begin{frame}{Goals for Today}
+ \Large \uncover<1->{\textbf{Spherical Harmonics}} \uncover<2->{\,\textit{and}\, \textbf{Electron Orbitals}}
+ \begin{tikzpicture}
+ \uncover<1->{
+ \node (i1) {
+ \includegraphics[height=8cm, trim=200 100 50 50, clip]{figures/buchcover}
+ };
+ }
+
+ \uncover<2->{
+ \node (i2) at ($(i1) + (2cm, 0)$) {
+ \nocite{minutephysics_better_2021}
+ \includegraphics[height=65mm]{figures/orbitals-minutephysics}
+ };
+ }
+ \end{tikzpicture}
+\end{frame}
+
+\section{Fourier on \(\mathbb{R}^2\)}
+
+\begin{frame}{Nice Periodic Functions}
+ \begin{definition}
+ A function
+ \[
+ f : \mathbb{R}^2 \to \mathbb{C}
+ \]
+ is a ``nice periodic function'' when it is
+ \begin{itemize}
+ \item smooth,
+ \item differentiable,
+ \item \textcolor{gray}{(abs.)} integrable,
+ \item periodic on \([0, 1] \times [0, 1]\), i.e.
+ \[
+ f(\mu, \nu) = f(\mu + 1, \nu) = f(\mu, \nu + 1).
+ \]
+ \end{itemize}
+ \end{definition}
+\end{frame}
+
+\begin{frame}{Function Space}
+ \begin{block}{Basis Functions}
+ The space of nice periodic functions is spanned by the (also nice) functions
+ \[
+ B_{m, n}(\mu, \nu) = e^{i2\pi m\mu} e^{i2\pi n\nu}.
+ \]
+ \end{block}
+\end{frame}
+
+\begin{frame} \centering
+ \includegraphics[height=.9\paperheight]{figures/flat-basis-functions}
+\end{frame}
+
+\begin{frame}{Inner Product}
+ \begin{definition}<1->
+ Let \(f(\mu, \nu)\) and \(g(\mu, \nu)\) be nice periodic functions. Their inner product is
+ \[
+ \langle f, g \rangle = \iint_{[0, 1]^2} f g^* \, d\mu d\nu.
+ \]
+ \end{definition}
+
+ \begin{definition}<2->
+ For a nice periodic function \(f(\mu, \nu)\): the numbers
+ \[
+ c_{m, n} = \langle f, B_{m, n} \rangle
+ \]
+ are the \emph{Fourier coefficients} or \emph{spectrum} of \(f\).
+ \end{definition}
+\end{frame}
+
+\begin{frame}{Fourier Series}
+ \begin{theorem}
+ For nice periodic functions:
+ \[
+ f(\mu, \nu) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}
+ c_{m, n} B_{m, n} (\mu, \nu)
+ \]
+ where
+ \[
+ c_{m, n} = \langle f, B_{m, n} \rangle.
+ \]
+ \end{theorem}
+\end{frame}
+
+\begin{frame}{Why exponentials?}
+
+ \centering
+
+ {\huge\bfseries\itshape Why \(B_{m, n} = e^{i2\pi m\mu} e^{i2\pi n\nu}\)?}
+ \vspace{3em}
+
+ {\huge\bfseries\itshape Because
+ {\Huge \(\nabla^2\)}
+ }
+
+\end{frame}
+
+\begin{frame}{The Problem}
+ \begin{block}{Fourier's Problem}<1->
+ \[
+ \nabla^2 f(\mu, \nu)
+ = \frac{\partial^2 f}{\partial \mu^2} + \frac{\partial^2 f}{\partial \nu^2}
+ = \lambda f(\mu, \nu)
+ \]
+ \end{block}
+ \begin{alertblock}{Solution}<2->
+ Separation ansatz:
+ \[
+ f(\mu, \nu) = M(\mu) N(\nu)
+ \]
+ Resulting ODEs:
+ \begin{align*}
+ \frac{d^2 M}{d \mu^2} &= \kappa M(\mu), & \frac{d^2 N}{d \nu^2} &= (\lambda - \kappa) N(\nu)
+ \end{align*}
+ \end{alertblock}
+\end{frame}
+
+\section{The functions \(Y_{m, n}(\varphi, \vartheta)\)}
+
+\begin{frame}{Spherical Coordinates}
+ \begin{columns}
+ \begin{column}{.6\linewidth}
+ \includegraphics[width=\linewidth]{figures/spherical-coordinates}
+ \end{column}
+ \begin{column}{.4\linewidth}
+ \noindent
+ Variables
+ \begin{align*}
+ r &\in \mathbb{R}^+ \\
+ \vartheta &\in [0, \pi] \\
+ \varphi &\in [0, 2\pi)
+ \end{align*}
+ To cartesian
+ \begin{align*}
+ x &= r\cos\varphi \sin\vartheta \\
+ y &= r\sin\varphi\sin\vartheta \\
+ z &= r\cos\vartheta
+ \end{align*}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}{Spherical Laplacian}
+ \uncover<1->{
+ Cartesian Laplacian
+ \[
+ \nabla^2 \equiv \frac{\partial^2}{\partial \mu^2} + \frac{\partial^2}{\partial \nu^2}
+ \]
+ }
+
+ \uncover<2->{
+ Spherical Laplacian
+ \[
+ \nabla^2 \equiv
+ \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right)
+ + \frac{1}{r^2} \onslide<3-> \underbrace{ \onslide<2-> \left[
+ \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta}
+ \left( \sin\vartheta \frac{\partial}{\partial\vartheta} \right)
+ + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2}
+ \right]
+ \onslide<3-> }_{\text{Surface Spherical Laplacian}~ \nabla^2_s} \onslide<2->
+ \]
+ }
+
+ \uncover<4->{
+ Surface Spherical Laplacian
+ \[
+ \nabla^2_s \equiv r^2 \nabla^2
+ - \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right)
+ \]
+ }
+\end{frame}
+
+\bgroup
+\setbeamercolor{background canvas}{bg=black}
+\setbeamertemplate{navigation symbols}{}
+\begin{frame}{Geometrical Intuition}
+\end{frame}
+\egroup
+
+\begin{frame}{Where is \(\nabla^2_s\) useful?}
+ To do brain scans, apparently \cite{carvalhaes_surface_2015}
+ \only<1>{
+ \begin{figure}
+ \includegraphics[width=.8\linewidth, clip=100 0 0 0]{figures/eeg-photo}
+ \caption{Electroencephalogram (EEG). Image from Wikimedia \cite{baburov__2009}.}
+ \end{figure}
+ }
+ \only<2>{
+ \begin{figure} \centering
+ \includegraphics[width=\linewidth]{figures/surface-laplacian-eeg}
+ \caption{Surface Laplacian in EEG. Taken from \cite{ries_role_2013}.}
+ \end{figure}
+ }
+\end{frame}
+
+\begin{frame}{Brain Scans}
+ \begin{columns}
+ \begin{column}{.6\linewidth}
+ Electrodynamics
+ \begin{align*}
+ \nabla^2 \phi
+ &= \bm{\nabla \cdot} \bm{\nabla} \phi \qquad
+ \color{lightgray} \left( \phi = \int_\mathsf{A}^\mathsf{B} \vec{E} \bm{\cdot} d\vec{s} \right) \\
+ &= \bm{\nabla \cdot} \vec{E} \\
+ &\color{lightgray}= \int_{\Omega} (\bm{\nabla \cdot} \vec{E}) \bm{\cdot} d\vec{s}
+ = \oint_{\partial \Omega} \vec{E} \bm{\cdot} d\vec{s} \\
+ &= \frac{\rho}{\varepsilon}
+ \end{align*}
+ So over the scalp
+ \[
+ \nabla^2_s \phi
+ = \frac{\rho_s}{\varepsilon}
+ = \text{Current flow in the brain}
+ \]
+ \end{column}
+ \begin{column}{.4\linewidth}
+ \centering
+ \includegraphics[width=\linewidth]{figures/flux}
+ \nocite{maschen_divergence_2013}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}{New Hard Problem}
+ \begin{block}{The Problem}<1->
+ \only<1>{
+ \[
+ \nabla^2_s f(\varphi, \vartheta) = \lambda f(\varphi, \vartheta)
+ \]
+ }
+ \only<2->{
+ \[
+ \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta}
+ \left( \sin\vartheta \frac{\partial f}{\partial\vartheta} \right)
+ + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 f}{\partial\varphi^2}
+ = \lambda f(\varphi, \vartheta)
+ \]
+ }
+ \end{block}
+ \begin{alertblock}{Idea}<3->
+ Separation ansatz:
+ \[
+ f(\varphi, \vartheta) = \Phi(\varphi) \Theta(\vartheta)
+ \]
+ From the ``easy'' part:
+ \[
+ \frac{d^2\Phi}{d\varphi^2} = \kappa \Phi(\varphi)
+ \implies \Phi(\varphi) = e^{im\varphi},
+ \quad m \in \mathbb{Z}
+ \]
+ \end{alertblock}
+\end{frame}
+
+\begin{frame}{Associated Legendre Differential Equation}
+ \begin{alertblock}{Separation (cont.)}<1->
+ The hard part is the ODE for \(\Theta(\vartheta)\):
+ \[
+ \sin^2\vartheta \frac{d^2 \Theta}{d (\cos\vartheta)^2} - 2\cos\theta \frac{d \Theta}{d \cos\vartheta}
+ + \left[ n(n+1) - \frac{m^2}{\sin^2 \vartheta} \right] \Theta(\cos\vartheta) = 0
+ \]
+ \end{alertblock}
+
+ \uncover<2->{
+ Substituting \(x = \cos\vartheta\) and \(y = \Theta\):
+ }
+
+ \begin{definition}<2->[Associated Legendre Differential Equation]
+ \[
+ \left( 1 - x^2 \right) \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx}
+ + \left[ n(n+1) - \frac{m^2}{1 - x^2} \right] y(x) = 0
+ \]
+ \end{definition}
+\end{frame}
+
+\begin{frame}{Legendre Polynomials}
+ \begin{definition}[Legendre Polynomials]
+ The polynomials
+ \begin{align*}
+ P_n(x)
+ &= \sum_{k=0}^{\lfloor n/2 \rfloor}
+ \frac{(-1)^k (2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k} \\[1em]
+ &= {}_2F_1 \left( \begin{matrix}
+ n + 1, & -n \\ \multicolumn{2}{c}{1}
+ \end{matrix} ; \frac{1 - x}{2} \right) \\[1em]
+ &= \frac{1}{n!2^n}\frac{d^n}{dx^n}(x^2-1)^n
+ \end{align*}
+ are a solution to the associated Legendre differential equation when \(m = 0\).
+ \end{definition}
+\end{frame}
+
+\begin{frame}
+ \centering
+ \includegraphics[width=\linewidth]{figures/legendre-polynomials}
+\end{frame}
+
+\begin{frame}{Associated Legendre Polynomials}
+ \begin{lemma}
+ For \(x \in [-1, 1]\) the polynomials
+ \[
+ P_{m, n} (x) = \left( 1 - x^2 \right)^{m/2} \frac{d^{m}}{dx^{m}} P_n (x)
+ \]
+ solve the associated Legendre differential equation.
+ \end{lemma}
+
+ \begin{alertblock}{Observation}<2->
+ If \(m > n\) then \(P_{m, n}(x) = 0\) for all \(x\).
+ \end{alertblock}
+\end{frame}
+
+\begin{frame}
+ \centering
+ \includegraphics[width=\linewidth]{figures/associated-legendre-polynomials}
+\end{frame}
+
+
+\begin{frame}{Putting it back together}
+ \begin{block}{The Problem}
+ \[
+ \nabla^2_s f(\varphi, \vartheta) = \lambda f(\varphi, \vartheta)
+ \]
+ \end{block}
+ \begin{alertblock}{Current solution}
+ For \(m \in \mathbb{Z}\) and \(m < n\):
+ \[
+ \tilde{Y}_{m, n}(\varphi, \vartheta)
+ = \Phi(\varphi) \Theta(\vartheta)
+ = e^{im\varphi} P_{m, n}(\cos\vartheta)
+ \]
+ \end{alertblock}
+\end{frame}
+
+\bgroup
+\setbeamercolor{background canvas}{bg=black}
+\setbeamertemplate{navigation symbols}{}
+\begin{frame}{Intuition of conditions for \(m\) and \(n\)}
+\end{frame}
+\egroup
+
+\section{Fourier on \(S^2\)}
+
+\begin{frame}{Basis functions?}
+ The functions \(\tilde{Y}_{m, n}\) span the space of nice functions \(S^2 \to \mathbb{C}\).
+
+ \begin{definition}<2->
+ The inner product of nice functions \(f(\varphi, \vartheta)\) and \(g(\varphi, \vartheta)\) from \(S^2\) to \(\mathbb{C}\) is
+ \[
+ \langle f, g \rangle
+ = \iint_{S^2} f g^* \, d\Omega
+ \uncover<3->{
+ = \int\limits_0^{2\pi} \int\limits_0^{\pi}
+ f(\varphi, \vartheta) g^*(\varphi, \vartheta)
+ \sin\vartheta \, d\vartheta d\varphi
+ }
+ \]
+ \end{definition}
+\end{frame}
+
+\begin{frame}{Orthonormality}
+ \begin{definition}<1->
+ A set of basis functions are \emph{orthonormal} if
+ \[
+ \langle B_{m, n}, B_{m', n'} \rangle = \begin{cases}
+ 1 & m = m' \wedge n = n' \\
+ 0 & \text{else}
+ \end{cases}
+ \]
+ \end{definition}
+
+ \begin{alertblock}{Problem}<2->
+ \[
+ \langle \tilde{Y}_{m, n}, \tilde{Y}_{m', n'} \rangle = \begin{cases} \displaystyle
+ \frac{4 \pi}{2n+1} \frac{(n+m)!}{(n-m)!} & m = m' \wedge n = n' \\
+ 0 & \text{else}
+ \end{cases}
+ \]
+ \end{alertblock}
+\end{frame}
+
+\begin{frame}{Spherical Harmonics}
+ \begin{definition}<1->
+ The orthonormal spherical harmonics are
+ \[
+ Y_{m, n}(\varphi, \vartheta) = N_{m, n} e^{im\varphi} P_{m, n}(\cos\vartheta)
+ \]
+ where the normalisation constant
+ % FIXME: (-1)^m
+ \[
+ N_{m, n} = \sqrt{\frac{2n+1}{4 \pi} \frac{(n-m)!}{(n+m)!}}
+ \]
+ \end{definition}
+ \begin{alertblock}{Fixed}<1->
+ \[
+ \langle Y_{m, n}, Y_{m', n'} \rangle = \begin{cases}
+ 1 & m = m' \wedge n = n' \\
+ 0 & \text{else}
+ \end{cases}
+ \]
+ \end{alertblock}
+\end{frame}
+
+\begin{frame}{Fourier Series}
+ \begin{theorem}
+ For nice periodic functions on \(S^2\):
+ \[
+ f(\varphi, \vartheta) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}
+ c_{m, n} Y_{m, n} (\varphi, \vartheta)
+ \]
+ where
+ \[
+ c_{m, n} = \langle f, Y_{m, n} \rangle.
+ \]
+ \end{theorem}
+\end{frame}
+
+\section{Quantum Mechanics}
+
+\begin{frame}{Linear and Rotational Kinetic Energy}
+ \begin{columns}
+ \begin{column}{.5\linewidth}
+ \begin{block}{Momentum and KE}<1->
+ \[
+ \vec{p} = m \vec{v},
+ \quad
+ E_k = \frac{\vec{p}^2}{2m}
+ \]
+ \end{block}
+ \begin{alertblock}{QM Formulation}<3->
+ \[
+ \vec{\hat{p}} = -i\hbar \bm{\nabla},
+ \quad
+ \hat{E}_k = -\frac{\hbar^2}{2m} \nabla^2
+ \]
+ \end{alertblock}
+ \end{column}
+ \begin{column}{.5\linewidth}<2->
+ \begin{block}{Angular M. and KE}
+ \[
+ \vec{L} = \vec{r}\bm{\times}{\vec{p}},
+ \quad
+ E_{k, a} = \frac{\vec{L}^2}{2m r^2}
+ \]
+ \end{block}
+ \begin{alertblock}{QM Formulation}<4->
+ Pretty long derivation yields:
+ \begin{align*}
+ % \hat{L}_z &= -i \hbar \frac{\partial}{\partial \varphi}, \\[1em]
+ \hat{E}_{k, a} &= -\frac{\hbar^2}{2mr^2} \nabla^2_s
+ \end{align*}
+ \end{alertblock}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+
+\bgroup
+\setbeamercolor{background canvas}{bg=black}
+\setbeamertemplate{navigation symbols}{}
+\begin{frame}{Intuition for the Operators}
+\end{frame}
+\egroup
+
+\begin{frame}{Schrödinger Equation}
+ \begin{block}{Time independent SE}
+ \[
+ % hamiltonina
+ \only<1>{
+ \mathrm{\hat{\mathcal{H}}} | \Psi \rangle = E | \Psi \rangle
+ }
+ % KE + U
+ \only<2>{
+ \left(
+ \hat{E}_k + U
+ \right) | \Psi \rangle = E | \Psi \rangle
+ }
+ % KE with p
+ \only<3>{
+ \left(
+ \frac{\vec{\hat{p}}^2}{2m} + U
+ \right) | \Psi \rangle = E | \Psi \rangle
+ }
+ % KE with p as 1D derivative
+ \only<4>{
+ \text{Meili} \qquad
+ \left[
+ - \frac{\hbar^2}{2m} \frac{d^2}{d x^2} + U(x)
+ \right] \Psi(x) = E \Psi(x)
+ }
+ % KE with p as 3D derivative
+ \only<5>{
+ \text{3D} \qquad
+ \left[
+ - \frac{\hbar^2}{2m} \nabla^2 + U(\vec{x})
+ \right] \Psi(\vec{x}) = E \Psi(\vec{x})
+ }
+ % Decompose laplacian
+ \only<6>{
+ \left\{
+ - \frac{\hbar^2}{2m} \frac{1}{r^2} \left[
+ \nabla^2_s - \frac{\partial}{\partial r} \left(
+ r^2 \frac{\partial}{\partial r}
+ \right)
+ \right] + U(\vec{r})
+ \right\} \Psi(\vec{r}) = E \Psi(\vec{r})
+ }
+ % rewrite using L
+ \only<7>{
+ \left[
+ \frac{\vec{\hat{L}}^2}{2mr^2}
+ + \frac{1}{r^2} \frac{\partial}{\partial r} \left(
+ r^2 \frac{\partial}{\partial r}
+ \right)
+ + U(\vec{r})
+ \right] \Psi(\vec{r}) = E \Psi(\vec{r})
+ }
+ % rewrite using E_ka
+ \only<8>{
+ \left[
+ \hat{E}_{k,a}
+ + \frac{1}{r^2} \frac{\partial}{\partial r} \left(
+ r^2 \frac{\partial}{\partial r}
+ \right)
+ + U(\vec{r})
+ \right] \Psi(\vec{r}) = E \Psi(\vec{r})
+ }
+ % What is KE
+ \only<9>{
+ \Bigg[
+ \underbrace{\hat{E}_{k,a}
+ + \frac{1}{r^2} \frac{\partial}{\partial r} \left(
+ r^2 \frac{\partial}{\partial r}
+ \right)}_\text{Kinetic Energy}
+ + U(\vec{r})
+ \Bigg] \Psi(\vec{r}) = E \Psi(\vec{r})
+ }
+ % Introduce E_kr
+ \only<10>{
+ \Bigg[
+ \hat{E}_{k,a}
+ + \underbrace{\frac{1}{r^2} \frac{\partial}{\partial r} \left(
+ r^2 \frac{\partial}{\partial r}
+ \right)}_{\text{Radial KE } \hat{E}_{k, r}}
+ + U(\vec{r})
+ \Bigg] \Psi(\vec{r}) = E \Psi(\vec{r})
+ }
+ \only<11->{
+ \left\{
+ \hat{E}_{k,a} + \hat{E}_{k,r} + U(\vec{r})
+ \right\} \Psi(\vec{r}) = E \Psi(\vec{r})
+ }
+ \]
+ \end{block}
+ \begin{columns}
+ \begin{column}{.6\linewidth}
+ \Large
+ \uncover<11->{
+ \Large
+ \textit{But why?} \\[2em]
+ }
+
+ \uncover<12->{
+ \bfseries
+ Hydrogen atom has radial symmetry!
+ }
+ \end{column}
+ \begin{column}{.35\linewidth}
+ \uncover<11->{
+ \includegraphics[width=\linewidth]{figures/hydrogen}
+ \nocite{depiep_electron_2013}
+ }
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}{Electron Orbitals}
+\end{frame}
+
+% \section{Other applications}
+
+\begin{frame}{Bibliography}
+ \renewcommand*{\bibfont}{\tiny}
+ \printbibliography
+\end{frame}
+
+\end{document}
+
+% vim:et:ts=2:sw=2:wrap:nolinebreak: