aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJODBaer <JODBaer@github.com>2021-07-28 17:58:00 +0200
committerJODBaer <JODBaer@github.com>2021-07-28 17:58:00 +0200
commit1fbba28d226e3b08c9a13403bbdf11f3fc9ba0ca (patch)
tree50763e956858f49dfb840d16b62921d4d2c4a9c1
parentrewrite some texts (diff)
parentMerge pull request #53 from Lukaszogg/master (diff)
downloadSeminarMatrizen-1fbba28d226e3b08c9a13403bbdf11f3fc9ba0ca.tar.gz
SeminarMatrizen-1fbba28d226e3b08c9a13403bbdf11f3fc9ba0ca.zip
Merge remote-tracking branch 'upstream/master' into Baer
Diffstat (limited to '')
-rwxr-xr-x[-rw-r--r--]buch/chapters/10-vektorenmatrizen/linear.tex91
-rw-r--r--buch/papers/erdbeben/Gausskurve2.pdfbin26978 -> 14941 bytes
-rw-r--r--buch/papers/erdbeben/Gausskurve2.tex5
-rw-r--r--buch/papers/erdbeben/Gausskurve3.pdfbin27445 -> 15413 bytes
-rw-r--r--buch/papers/erdbeben/Gausskurve3.tex5
-rw-r--r--buch/papers/erdbeben/main.tex2
-rw-r--r--buch/papers/erdbeben/references.bib8
-rw-r--r--buch/papers/erdbeben/teil0.tex57
-rw-r--r--buch/papers/erdbeben/teil1.tex168
-rwxr-xr-x[-rw-r--r--]buch/papers/multiplikation/Makefile0
-rwxr-xr-x[-rw-r--r--]buch/papers/multiplikation/Makefile.inc7
-rwxr-xr-xbuch/papers/multiplikation/code/Figure_1.pngbin0 -> 144173 bytes
-rwxr-xr-xbuch/papers/multiplikation/code/MMbin0 -> 26848 bytes
-rwxr-xr-xbuch/papers/multiplikation/code/MM.c465
-rw-r--r--buch/papers/multiplikation/code/MM.py311
-rw-r--r--buch/papers/multiplikation/code/__pycache__/MM.cpython-38.pycbin0 -> 4160 bytes
-rw-r--r--buch/papers/multiplikation/code/c_matrix.h101
-rw-r--r--buch/papers/multiplikation/code/c_meas_1024.pdfbin0 -> 16748 bytes
-rw-r--r--buch/papers/multiplikation/code/c_meas_128.pdfbin0 -> 16454 bytes
-rw-r--r--buch/papers/multiplikation/code/c_meas_16.pdfbin0 -> 16376 bytes
-rw-r--r--buch/papers/multiplikation/code/c_meas_2048.pdfbin0 -> 16281 bytes
-rw-r--r--buch/papers/multiplikation/code/c_meas_256.pdfbin0 -> 15286 bytes
-rw-r--r--buch/papers/multiplikation/code/c_meas_32.pdfbin0 -> 15163 bytes
-rw-r--r--buch/papers/multiplikation/code/c_meas_4096.pdfbin0 -> 15865 bytes
-rw-r--r--buch/papers/multiplikation/code/c_meas_512.pdfbin0 -> 15472 bytes
-rw-r--r--buch/papers/multiplikation/code/c_meas_64.pdfbin0 -> 16358 bytes
-rw-r--r--buch/papers/multiplikation/code/c_meas_8.pdfbin0 -> 16766 bytes
-rwxr-xr-xbuch/papers/multiplikation/code/helper_class.py105
-rw-r--r--buch/papers/multiplikation/code/meas/MM.txt12
-rw-r--r--buch/papers/multiplikation/code/meas/MM_dc.txt12
-rw-r--r--buch/papers/multiplikation/code/meas/blas.txt12
-rw-r--r--buch/papers/multiplikation/code/meas/strassen.txt12
-rw-r--r--buch/papers/multiplikation/code/meas/test/4096/MM.txt12
-rw-r--r--buch/papers/multiplikation/code/meas/test/4096/strassen.txt12
-rw-r--r--buch/papers/multiplikation/code/meas/test/MM.txt14900
-rw-r--r--buch/papers/multiplikation/code/meas/test/blas.txt14900
-rw-r--r--buch/papers/multiplikation/code/meas/test/winograd.txt14900
-rw-r--r--buch/papers/multiplikation/code/meas/winograd.txt11
-rw-r--r--buch/papers/multiplikation/code/meas_1024.pdfbin0 -> 17660 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_1024.txt6
-rw-r--r--buch/papers/multiplikation/code/meas_128.pdfbin0 -> 17961 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_128.txt6
-rw-r--r--buch/papers/multiplikation/code/meas_16.pdfbin0 -> 17766 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_16.txt6
-rw-r--r--buch/papers/multiplikation/code/meas_256.pdfbin0 -> 18067 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_256.txt6
-rw-r--r--buch/papers/multiplikation/code/meas_32.pdfbin0 -> 17078 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_32.txt6
-rw-r--r--buch/papers/multiplikation/code/meas_512.pdfbin0 -> 18028 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_512.txt6
-rw-r--r--buch/papers/multiplikation/code/meas_64.pdfbin0 -> 17678 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_64.txt6
-rw-r--r--buch/papers/multiplikation/code/meas_8.pdfbin0 -> 18400 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_8.txt6
-rw-r--r--buch/papers/multiplikation/code/test.tex92
-rwxr-xr-xbuch/papers/multiplikation/einlteung.tex52
-rw-r--r--buch/papers/multiplikation/images/bigo.pdfbin0 -> 24288 bytes
-rw-r--r--buch/papers/multiplikation/images/bigo.tex107
-rw-r--r--buch/papers/multiplikation/images/mm_visualisation.pdfbin0 -> 21665 bytes
-rw-r--r--buch/papers/multiplikation/images/mm_visualisation.tex45
-rw-r--r--buch/papers/multiplikation/images/strassen.pdfbin0 -> 15850 bytes
-rw-r--r--buch/papers/multiplikation/images/strassen.tex140
-rwxr-xr-xbuch/papers/multiplikation/loesungsmethoden.tex309
-rwxr-xr-x[-rw-r--r--]buch/papers/multiplikation/main.tex34
-rwxr-xr-x[-rw-r--r--]buch/papers/multiplikation/packages.tex0
-rwxr-xr-xbuch/papers/multiplikation/papers/Strassen_GPU.pdfbin0 -> 254508 bytes
-rwxr-xr-xbuch/papers/multiplikation/papers/Strassen_original_1969.pdfbin0 -> 151265 bytes
-rwxr-xr-xbuch/papers/multiplikation/papers/assay_fast_MM.pdfbin0 -> 484352 bytes
-rwxr-xr-xbuch/papers/multiplikation/papers/strassen_video.txt1
-rwxr-xr-xbuch/papers/multiplikation/papers/winograd_original.pdfbin0 -> 533604 bytes
-rw-r--r--buch/papers/multiplikation/presentation/common.tex79
-rw-r--r--buch/papers/multiplikation/presentation/presentation.nav59
-rw-r--r--buch/papers/multiplikation/presentation/presentation.pdfbin0 -> 717544 bytes
-rw-r--r--buch/papers/multiplikation/presentation/presentation.snm0
-rw-r--r--buch/papers/multiplikation/presentation/presentation.tex12
-rw-r--r--buch/papers/multiplikation/presentation/slides/algo.tex111
-rw-r--r--buch/papers/multiplikation/presentation/slides/bigO.tex251
-rw-r--r--buch/papers/multiplikation/presentation/slides/blas.tex18
-rw-r--r--buch/papers/multiplikation/presentation/slides/conclusuion.tex0
-rw-r--r--buch/papers/multiplikation/presentation/slides/logo.pdfbin0 -> 8987 bytes
-rw-r--r--buch/papers/multiplikation/presentation/slides/meas.tex42
-rw-r--r--buch/papers/multiplikation/presentation/slides/nn.tex97
-rw-r--r--buch/papers/multiplikation/presentation/slides/parcomp.tex66
-rw-r--r--buch/papers/multiplikation/presentation/slides/slides.tex15
-rw-r--r--buch/papers/multiplikation/presentation/slides/strassen.tex429
-rw-r--r--buch/papers/multiplikation/presentation/tikz/algo.pdfbin0 -> 33396 bytes
-rw-r--r--buch/papers/multiplikation/presentation/tikz/algo.tex52
-rwxr-xr-xbuch/papers/multiplikation/problemstellung.tex104
-rwxr-xr-x[-rw-r--r--]buch/papers/multiplikation/references.bib30
-rw-r--r--buch/papers/multiplikation/teil0.tex22
-rw-r--r--buch/papers/multiplikation/teil1.tex55
-rw-r--r--buch/papers/multiplikation/teil2.tex40
-rw-r--r--buch/papers/multiplikation/teil3.tex40
-rw-r--r--buch/papers/multiplikation/tikz_formulas/algo.fdb_latexmk254
-rw-r--r--buch/papers/multiplikation/tikz_formulas/algo.fls438
-rw-r--r--buch/papers/multiplikation/tikz_formulas/algo.pdfbin0 -> 33785 bytes
-rwxr-xr-xbuch/papers/multiplikation/tikz_formulas/algo.tex131
-rw-r--r--buch/papers/multiplikation/tikz_formulas/algo_graph.fdb_latexmk245
-rw-r--r--buch/papers/multiplikation/tikz_formulas/algo_graph.fls485
-rwxr-xr-xbuch/papers/multiplikation/tikz_formulas/algo_graph.pdfbin0 -> 15850 bytes
-rwxr-xr-xbuch/papers/multiplikation/tikz_formulas/algo_graph.tex140
-rw-r--r--buch/papers/verkehr/main.tex3
-rw-r--r--buch/papers/verkehr/section1.tex124
-rw-r--r--buch/papers/verkehr/section2.tex22
-rw-r--r--buch/papers/verkehr/section3.tex7
105 files changed, 49870 insertions, 437 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/linear.tex b/buch/chapters/10-vektorenmatrizen/linear.tex
index e368364..3ad51f1 100644..100755
--- a/buch/chapters/10-vektorenmatrizen/linear.tex
+++ b/buch/chapters/10-vektorenmatrizen/linear.tex
@@ -33,7 +33,7 @@ aber mit Punkten kann man trotzdem noch nicht rechnen.
Ein Vektor fasst die Koordinaten eines Punktes in einem Objekt zusammen,
mit dem man auch rechnen und zum Beispiel Parallelverschiebungen
algebraisieren kann.
-Um auch Streckungen ausdrücken zu können, wird auch eine Menge von
+Um auch Streckungen ausdrücken zu können, wird auch eine Menge von
Streckungsfaktoren benötigt, mit denen alle Komponenten eines Vektors
multipliziert werden können.
Sie heissen auch {\em Skalare} und liegen in $\Bbbk$.
@@ -73,7 +73,7 @@ a+b
=
\begin{pmatrix}\lambda a_1\\\vdots\\\lambda a_n\end{pmatrix}.
\]
-Die üblichen Rechenregeln sind erfüllt, nämlich
+Die üblichen Rechenregeln sind erfüllt, nämlich
\begin{equation}
\begin{aligned}
&\text{Kommutativität:}
@@ -149,7 +149,7 @@ kann als (abstrakter) Vektor betrachtet werden.
\begin{definition}
Eine Menge $V$ von Objekten, auf der zwei Operationen definiert,
nämlich die Addition, geschrieben $a+b$ für $a,b\in V$ und die
-Multiplikation mit Skalaren, geschrieben $\lambda a$ für $a\in V$ und
+Multiplikation mit Skalaren, geschrieben $\lambda a$ für $a\in V$ und
$\lambda\in \Bbbk$, heisst ein {\em $\Bbbk$-Vektorraum} oder {\em Vektorraum
über $\Bbbk$} (oder
einfach nur {\em Vektorraum}, wenn $\Bbbk$ aus dem Kontext klar sind),
@@ -172,7 +172,7 @@ $\mathbb{C}$ ein Vektorraum über $\mathbb{R}$.
\end{beispiel}
\begin{beispiel}
-Die Menge $C([a,b])$ der stetigen Funktionen $[a,b]\to\mathbb{Re}$
+Die Menge $C([a,b])$ der stetigen Funktionen $[a,b]\to\mathbb{Re}$
bildet ein Vektorraum.
Funktionen können addiert und mit reellen Zahlen multipliziert werden:
\[
@@ -188,7 +188,7 @@ Die Vektorraum-Rechenregeln
\end{beispiel}
Die Beispiele zeigen, dass der Begriff des Vektorraums die algebraischen
-Eigenschaften eine grosse Zahl sehr verschiedenartiger mathematischer
+Eigenschaften eine grosse Zahl sehr verschiedenartiger mathematischer
Objekte beschreiben kann.
Alle Erkenntnisse, die man ausschliesslich aus Vekotorraumeigenschaften
gewonnen hat, sind auf alle diese Objekte übertragbar.
@@ -300,7 +300,7 @@ folgt, dass alle $\lambda_1,\dots,\lambda_n=0$ sind.
Lineare Abhängigkeit der Vektoren $a_1,\dots,a_n$ bedeutet auch, dass
man einzelne der Vektoren durch andere ausdrücken kann.
Hat man nämlich eine
-Linearkombination~\eqref{buch:vektoren-und-matrizen:eqn:linabhdef} und
+Linearkombination~\eqref{buch:vektoren-und-matrizen:eqn:linabhdef} und
ist der Koeffizient $\lambda_k\ne 0$, dann kann man nach $a_k$ auflösen:
\[
a_k = -\frac{1}{\lambda_k}(\lambda_1a_1+\dots+\widehat{\lambda_ka_k}+\dots+\lambda_na_n).
@@ -323,7 +323,7 @@ offenbar eine besondere Bedeutung.
Eine linear unabhängig Menge von Vektoren
$\mathcal{B}=\{a_1,\dots,a_n\}\subset V$
heisst {\em Basis} von $V$.
-Die maximale Anzahl linear unabhängiger Vektoren in $V$ heisst
+Die maximale Anzahl linear unabhängiger Vektoren in $V$ heisst
{\em Dimension} von $V$.
\end{definition}
@@ -331,7 +331,7 @@ Die Standardbasisvektoren bilden eine Basis von $V=\Bbbk^n$.
\subsubsection{Unterräume}
Die Mengen $\langle a_1,\dots,a_n\rangle$ sind Teilmengen
-von $V$, in denen die Addition von Vektoren und die Multiplikation mit
+von $V$, in denen die Addition von Vektoren und die Multiplikation mit
Skalaren immer noch möglich ist.
\begin{definition}
@@ -352,7 +352,7 @@ gilt.
%
\subsection{Matrizen
\label{buch:grundlagen:subsection:matrizen}}
-Die Koeffizienten eines linearen Gleichungssystems finden in einem
+Die Koeffizienten eines linearen Gleichungssystems finden in einem
Zeilen- oder Spaltenvektor nicht Platz.
Wir erweitern das Konzept daher in einer Art, dass Zeilen- und
Spaltenvektoren Spezialfälle sind.
@@ -378,14 +378,14 @@ M_{m\times n}(\Bbbk) = \{ A\;|\; \text{$A$ ist eine $m\times n$-Matrix}\}.
\]
Falls $m=n$ gilt, heisst die Matrix $A$ auch {\em quadratisch}
\index{quadratische Matrix}%
-Man kürzt die Menge der quadratischen Matrizen als
+Man kürzt die Menge der quadratischen Matrizen als
$M_n(\Bbbk) = M_{n\times n}(\Bbbk)$ ab.
\end{definition}
-Die $m$-dimensionalen Spaltenvektoren $v\in \Bbbk^m$ sind $m\times 1$-Matrizen
+Die $m$-dimensionalen Spaltenvektoren $v\in \Bbbk^m$ sind $m\times 1$-Matrizen
$v\in M_{n\times 1}(\Bbbk)$, die $n$-dimensionalen Zeilenvetoren $u\in\Bbbk^n$
sind $1\times n$-Matrizen $v\in M_{1\times n}(\Bbbk)$.
-Eine $m\times n$-Matrix $A$ mit den Koeffizienten $a_{ij}$ besteht aus
+Eine $m\times n$-Matrix $A$ mit den Koeffizienten $a_{ij}$ besteht aus
den $n$ Spaltenvektoren
\[
a_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix},\quad
@@ -435,7 +435,7 @@ werden kann.
\begin{definition}
Eine $m\times n$-Matrix $A\in M_{m\times n}(\Bbbk)$ und eine
$n\times l$-Matrix $B\in M_{n\times l}(\Bbbk)$ haben als Produkt
-eine $n\times l$-Matrix $C=AB\in M_{n\times l}(\Bbbk)$ mit den
+eine $m\times l$-Matrix $C=AB\in M_{m\times l}(\Bbbk)$ mit den
Koeffizienten
\begin{equation}
c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.
@@ -483,7 +483,7 @@ I
1 &0 &\dots &0 \\
0 &1 &\dots &0 \\[-2pt]
\vdots&\vdots&\ddots&\vdots\\
-0 &0 &\dots &1
+0 &0 &\dots &1
\end{pmatrix}.
\]
@@ -521,10 +521,10 @@ Ein Gleichungssystem mit $0$ auf der rechten Seite ist also bereits
ausreichend um zu entscheiden, ob die Lösung eindeutig ist.
Ein Gleichungssystem mit rechter Seite $0$ heisst {\em homogen}.
\index{homogenes Gleichungssystem}%
-Zu jedem {\em inhomogenen} Gleichungssystem $Ax=b$ mit $b\ne 0$
+Zu jedem {\em inhomogenen} Gleichungssystem $Ax=b$ mit $b\ne 0$
ist $Ax=0$ das zugehörige homogene Gleichungssystem.
-Ein homogenes Gleichungssytem $Ax=0$ hat immer mindestens die
+Ein homogenes Gleichungssytem $Ax=0$ hat immer mindestens die
Lösung $x=0$, man nennt sie auch die {\em triviale} Lösung.
Eine Lösung $x\ne 0$ heisst auch eine nichttriviale Lösung.
Die Lösungen eines inhomgenen Gleichungssystem $Ax=b$ ist also nur dann
@@ -535,7 +535,7 @@ Lösung hat.
Der Gauss-Algorithmus oder genauer Gausssche Eliminations-Algorithmus
löst ein lineare Gleichungssystem der
Form~\eqref{buch:vektoren-und-matrizen:eqn:vektorform}.
-Die Koeffizienten werden dazu in das Tableau
+Die Koeffizienten werden dazu in das Tableau
\[
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
@@ -552,7 +552,7 @@ Der Algorithmus is so gestaltet, dass er nicht mehr Speicher als
das Tableau benötigt, alle Schritte operieren direkt auf den Daten
des Tableaus.
-In jedem Schritt des Algorithmus wird zunächst eine Zeile $i$ und
+In jedem Schritt des Algorithmus wird zunächst eine Zeile $i$ und
Spalte $j$ ausgewählt, das Elemente $a_{ij}$ heisst das Pivotelement.
\index{Pivotelement}%
Die {\em Pivotdivision}
@@ -646,7 +646,7 @@ In der Phase der {\em Vorwärtsreduktion} werden Pivotelemente von links
nach rechts möglichst auf der Diagonale gewählt und mit Zeilensubtraktionen
die darunterliegenden Spalten freigeräumt.
\index{Vorwärtsreduktion}%
-Während des Rückwärtseinsetzens werden die gleichen Pivotelemente von
+Während des Rückwärtseinsetzens werden die gleichen Pivotelemente von
rechts nach links genutzt, um mit Zeilensubtraktionen auch die
Spalten über den Pivotelemnten frei zu räumen.
\index{Rückwärtseinsetzen}%
@@ -800,7 +800,7 @@ $x = b_1c_1+b_2c_2+\dots+b_nc_n$ konstruieren.
Tatsächlich gilt
\begin{align*}
Ax
-&=
+&=
A( b_1c_1+b_2c_2+\dots+b_nc_n)
\\
&=
@@ -851,10 +851,10 @@ für eine Gleichungssystem mit quadratischer Koeffizientenmatrix $A$
heisst die Determinante $\det(A)$ der Matrix $A$.
\end{definition}
-Aus den Regeln für die Durchführung des Gauss-Algorithmus kann man die
+Aus den Regeln für die Durchführung des Gauss-Algorithmus kann man die
folgenden Regeln für die Determinante ableiten.
Wir stellen die Eigenschaften hier nur zusammen, detaillierte Herleitungen
-kann man in jedem Kurs zur linearen Algebra finden, zum Beispiel im
+kann man in jedem Kurs zur linearen Algebra finden, zum Beispiel im
Kapitel~2 des Skripts \cite{buch:linalg}.
\begin{enumerate}
\item
@@ -877,11 +877,11 @@ wird auch der Wert der Determinanten mit $\lambda$ multipliziert.
\item
\label{buch:linear:determinante:asymetrisch}
Die Determinante ist eine lineare Funktion der Zeilen von $A$.
-Zusammen mit der Eigeschaft~\ref{buch:linear:determinante:vorzeichen}
+Zusammen mit der Eigeschaft~\ref{buch:linear:determinante:vorzeichen}
folgt, dass die Determinante eine antisymmetrische lineare Funktion
der Zeilen ist.
\item
-Die Determinante ist durch die Eigenschaften
+Die Determinante ist durch die Eigenschaften
\ref{buch:linear:determinante:einheitsmatrix}
und
\ref{buch:linear:determinante:asymetrisch}
@@ -895,7 +895,7 @@ Die Determinante der $n\times n$-Matrix $A$ kann mit der Formel
=
\sum_{i=1}^n (-1)^{i+j} a_{ij} \cdot \det(A_{ij})
\end{equation}
-wobei die $(n-1)\times(n-1)$-Matrix $A_{ij}$ die Matrix $A$ ist, aus der
+wobei die $(n-1)\times(n-1)$-Matrix $A_{ij}$ die Matrix $A$ ist, aus der
man Zeile $i$ und Spalte $j$ entfernt hat.
$A_{ij}$ heisst ein {\em Minor} der Matrix $A$.
\index{Minor einer Matrix}%
@@ -949,7 +949,7 @@ der rechten Seiten ersetzt worden ist.
\end{satz}
Die Cramersche Formel ist besonders nützlich, wenn die Abhängigkeit
-einer Lösungsvariablen von den Einträgen der Koeffizientenmatrix
+einer Lösungsvariablen von den Einträgen der Koeffizientenmatrix
untersucht werden soll.
Für die Details der Herleitung sei wieder auf \cite{buch:linalg}
verwiesen.
@@ -993,7 +993,7 @@ heisst die {\em Adjunkte} $\operatorname{adj}A$ von $A$.
\end{satz}
Der Satz~\ref{buch:linalg:inverse:adjoint} liefert eine algebraische
-Formel für die Elemente der inversen Matrix.
+Formel für die Elemente der inversen Matrix.
Für kleine Matrizen wie im nachfolgenden Beispiel ist die
Formel~\eqref{buch:linalg:inverse:formel} oft einfachter anzuwenden.
Besonders einfach wird die Formel für eine $2\times 2$-Matrix,
@@ -1035,7 +1035,7 @@ Die Adjunkte ist
\begin{pmatrix*}[r]
\det A_{11} & -\det A_{21} & \det A_{31} \\
-\det A_{12} & \det A_{22} & -\det A_{32} \\
- \det A_{13} & -\det A_{23} & \det A_{33}
+ \det A_{13} & -\det A_{23} & \det A_{33}
\end{pmatrix*}
\intertext{und damit ist die inverse Matrix}
A^{-1}
@@ -1084,7 +1084,7 @@ A^{-1}
\end{pmatrix}.
\label{buch:vektoren-und-matrizen:abeispiel:eqn2}
\end{equation}
-für die Inverse einer Matrix der Form
+für die Inverse einer Matrix der Form
\eqref{buch:vektoren-und-matrizen:abeispiel:eqn1}.
\end{beispiel}
@@ -1118,7 +1118,7 @@ Eine Abbildung $f\colon V\to U$ zwischen Vektorräumen $V$ und $U$
heisst linear, wenn
\[
\begin{aligned}
-f(v+w) &= f(v) + f(w)&&\forall v,w\in V
+f(v+w) &= f(v) + f(w)&&\forall v,w\in V
\\
f(\lambda v) &= \lambda f(v) &&\forall v\in V,\lambda \in \Bbbk
\end{aligned}
@@ -1129,16 +1129,16 @@ gilt.
Lineare Abbildungen sind in der Mathematik sehr verbreitet.
\begin{beispiel}
-Sie $V=C^1([a,b])$ die Menge der stetig differenzierbaren Funktionen
+Sie $V=C^1([a,b])$ die Menge der stetig differenzierbaren Funktionen
auf dem Intervall $[a,b]$ und $U=C([a,b])$ die Menge der
-stetigen Funktion aif $[a,b]$.
+stetigen Funktion aif $[a,b]$.
Die Ableitung $\frac{d}{dx}$ macht aus einer Funktion $f(x)$ die
Ableitung $f'(x)$.
-Die Rechenregeln für die Ableitung stellen sicher, dass
+Die Rechenregeln für die Ableitung stellen sicher, dass
\[
\frac{d}{dx}
\colon
-C^1([a,b]) \to C([a,b])
+C^1([a,b]) \to C([a,b])
:
f \mapsto f'
\]
@@ -1157,7 +1157,7 @@ eine lineare Abbildung.
\end{beispiel}
\subsubsection{Matrix}
-Um mit linearen Abbildungen rechnen zu können, ist eine Darstellung
+Um mit linearen Abbildungen rechnen zu können, ist eine Darstellung
mit Hilfe von Matrizen nötig.
Sei also $\mathcal{B}=\{b_1,\dots,b_n\}$ eine Basis von $V$ und
$\mathcal{C} = \{ c_1,\dots,c_m\}$ eine Basis von $U$.
@@ -1165,12 +1165,12 @@ Das Bild des Basisvektors $b_i$ kann als Linearkombination der
Vektoren $c_1,\dots,c_m$ dargestellt werden.
Wir verwenden die Bezeichnung
\[
-f(b_i)
+f(b_i)
=
a_{1i} c_1 + \dots + a_{mi} c_m.
\]
Die lineare Abbildung $f$ bildet den Vektor $x$ mit Koordinaten
-$x_1,\dots,x_n$ ab auf
+$x_1,\dots,x_n$ ab auf
\begin{align*}
f(x)
&=
@@ -1193,7 +1193,7 @@ x_n(a_{1n} c_1 + \dots + a_{mn} c_m)
+
( a_{m1} x_1 + \dots + a_{mn} x_n ) c_m
\end{align*}
-Die Koordinaten von $f(x)$ in der Basis $\mathcal{C}$ in $U$ sind
+Die Koordinaten von $f(x)$ in der Basis $\mathcal{C}$ in $U$ sind
also gegeben durch das Matrizenprodukt $Ax$, wenn $x$ der Spaltenvektor
aus den Koordinaten in der Basis $\mathcal{B}$ in $V$ ist.
@@ -1231,7 +1231,7 @@ b_{m1}x_1&+& \dots &+&b_{mn}x_n&=&b_{m1}'x_1'&+& \dots &+&b_{mn}'x_n'
\end{linsys}
\]
Dieses Gleichungssystem kann man mit Hilfe eines Gauss-Tableaus lösen.
-Wir schreiben die zugehörigen Variablen
+Wir schreiben die zugehörigen Variablen
\[
\renewcommand{\arraystretch}{1.1}
\begin{tabular}{|>{$}c<{$} >{$}c<{$} >{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
@@ -1277,7 +1277,7 @@ Für zwei Vektoren $u$ und $w$ in $U$ gibt es daher Vektoren $a=g(u)$
und $b=g(w)$ in $V$ derart, dass $f(a)=u$ und $f(b)=w$.
Weil $f$ linear ist, folgt daraus $f(a+b)=u+w$ und $f(\lambda a)=\lambda a$
für jedes $\lambda\in\Bbbk$.
-Damit kann man jetzt
+Damit kann man jetzt
\begin{align*}
g(u+w)&=g(f(a)+f(b)) = g(f(a+b)) = a+b = g(u)+g(w)
\\
@@ -1315,7 +1315,7 @@ Der Kern oder Nullraum der Matrix $A$ ist die Menge
\]
\end{definition}
-Der Kern ist ein Unterraum, denn für zwei Vektoren $u,w\in \ker f$
+Der Kern ist ein Unterraum, denn für zwei Vektoren $u,w\in \ker f$
\[
\begin{aligned}
f(u+v)&=f(u) + f(v) = 0+0 = 0 &&\Rightarrow& u+v&\in\ker f\\
@@ -1331,7 +1331,7 @@ Wir definieren daher das Bild einer linearen Abbildung oder Matrix.
\begin{definition}
Ist $f\colon V\to U$ eine lineare Abbildung dann ist das Bild von $f$
-der Unterraum
+der Unterraum
\[
\operatorname{im}f = \{ f(v)\;|\;v\in V\} \subset U
\]
@@ -1375,7 +1375,7 @@ $\operatorname{def}A=\dim\ker A$.
\end{definition}
Da der Kern mit Hilfe des Gauss-Algorithmus bestimmt werden kann,
-können Rang und Defekt aus dem Schlusstableau
+können Rang und Defekt aus dem Schlusstableau
eines homogenen Gleichungssystems mit $A$ als Koeffizientenmatrix
abgelesen werden.
@@ -1391,8 +1391,3 @@ n-\operatorname{def}A.
\subsubsection{Quotient}
TODO: $\operatorname{im} A \simeq \Bbbk^m/\ker A$
-
-
-
-
-
diff --git a/buch/papers/erdbeben/Gausskurve2.pdf b/buch/papers/erdbeben/Gausskurve2.pdf
index bee3bc0..5e4afdf 100644
--- a/buch/papers/erdbeben/Gausskurve2.pdf
+++ b/buch/papers/erdbeben/Gausskurve2.pdf
Binary files differ
diff --git a/buch/papers/erdbeben/Gausskurve2.tex b/buch/papers/erdbeben/Gausskurve2.tex
index 44319c3..2441766 100644
--- a/buch/papers/erdbeben/Gausskurve2.tex
+++ b/buch/papers/erdbeben/Gausskurve2.tex
@@ -1,13 +1,12 @@
\documentclass{standalone}
\usepackage{pgfplots}
-
+\usepackage{txfonts}
\pgfplotsset{compat = newest}
\begin{document}
-
-\begin{tikzpicture}
+\begin{tikzpicture}[>=latex,thick]
\begin{axis}[
diff --git a/buch/papers/erdbeben/Gausskurve3.pdf b/buch/papers/erdbeben/Gausskurve3.pdf
index e86a403..b86023f 100644
--- a/buch/papers/erdbeben/Gausskurve3.pdf
+++ b/buch/papers/erdbeben/Gausskurve3.pdf
Binary files differ
diff --git a/buch/papers/erdbeben/Gausskurve3.tex b/buch/papers/erdbeben/Gausskurve3.tex
index 85455ef..032d6de 100644
--- a/buch/papers/erdbeben/Gausskurve3.tex
+++ b/buch/papers/erdbeben/Gausskurve3.tex
@@ -1,13 +1,12 @@
\documentclass{standalone}
\usepackage{pgfplots}
-
+\usepackage{txfonts}
\pgfplotsset{compat = newest}
\begin{document}
-
-\begin{tikzpicture}
+\begin{tikzpicture}[>=latex,thick]
\begin{axis}[
diff --git a/buch/papers/erdbeben/main.tex b/buch/papers/erdbeben/main.tex
index 95f1f4b..4167475 100644
--- a/buch/papers/erdbeben/main.tex
+++ b/buch/papers/erdbeben/main.tex
@@ -4,7 +4,7 @@
% (c) 2020 Hochschule Rapperswil
%
\chapter{Erdbebenmessung\label{chapter:erdbeben}}
-\lhead{Thema}
+\lhead{Erdbeben}
\begin{refsection}
\chapterauthor{Lukas Zogg und
Fabio Veicelli}
diff --git a/buch/papers/erdbeben/references.bib b/buch/papers/erdbeben/references.bib
index 56ca24b..444c82d 100644
--- a/buch/papers/erdbeben/references.bib
+++ b/buch/papers/erdbeben/references.bib
@@ -1,22 +1,22 @@
%% This BibTeX bibliography file was created using BibDesk.
%% https://bibdesk.sourceforge.io/
-%% Created for lukas zogg at 2021-07-17 16:48:19 +0200
+%% Created for lukas zogg at 2021-07-27 17:56:45 +0200
%% Saved with string encoding Unicode (UTF-8)
-@article{aragher_understanding_2012,
+@article{erdbeben:aragher_understanding_2012,
author = {Faragher, Ramsey},
date-added = {2021-07-17 16:44:00 +0200},
date-modified = {2021-07-17 16:45:54 +0200},
- journal = { Signal Processing Magazine},
+ journal = {Signal Processing Magazine},
month = {09},
number = {5},
pages = {128--132},
- title = {Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation },
+ title = {Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation},
volume = {29},
year = {2012},
Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxByLi4vLi4vLi4vLi4vLi4vLi4vRG93bmxvYWRzL1VuZGVyc3RhbmRpbmcgdGhlIEJhc2lzIG9mIHRoZSBLYWxtYW4gRmlsdGVyIFZpYSBhIFNpbXBsZSBhbmQgSW50dWl0aXZlIERlcml2YXRpb24ucGRmTxECbgAAAAACbgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAAAAAAAEJEAAH/////H1VuZGVyc3RhbmRpbmcgdGhlICNGRkZGRkZGRi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP////8AAAAAAAAAAAAAAAAABgACAAAKIGN1AAAAAAAAAAAAAAAAAAlEb3dubG9hZHMAAAIAci86VXNlcnM6bHVrYXN6b2dnOkRvd25sb2FkczpVbmRlcnN0YW5kaW5nIHRoZSBCYXNpcyBvZiB0aGUgS2FsbWFuIEZpbHRlciBWaWEgYSBTaW1wbGUgYW5kIEludHVpdGl2ZSBEZXJpdmF0aW9uLnBkZgAOAK4AVgBVAG4AZABlAHIAcwB0AGEAbgBkAGkAbgBnACAAdABoAGUAIABCAGEAcwBpAHMAIABvAGYAIAB0AGgAZQAgAEsAYQBsAG0AYQBuACAARgBpAGwAdABlAHIAIABWAGkAYQAgAGEAIABTAGkAbQBwAGwAZQAgAGEAbgBkACAASQBuAHQAdQBpAHQAaQB2AGUAIABEAGUAcgBpAHYAYQB0AGkAbwBuAC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBwVXNlcnMvbHVrYXN6b2dnL0Rvd25sb2Fkcy9VbmRlcnN0YW5kaW5nIHRoZSBCYXNpcyBvZiB0aGUgS2FsbWFuIEZpbHRlciBWaWEgYSBTaW1wbGUgYW5kIEludHVpdGl2ZSBEZXJpdmF0aW9uLnBkZgATAAEvAAAVAAIAEP//AAAACAANABoAJACZAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAws=}}
diff --git a/buch/papers/erdbeben/teil0.tex b/buch/papers/erdbeben/teil0.tex
index 8ce8ff2..c099340 100644
--- a/buch/papers/erdbeben/teil0.tex
+++ b/buch/papers/erdbeben/teil0.tex
@@ -23,6 +23,7 @@ Die Masse schwing jedoch in seiner Eigendynamik weiter.
Relativbewegung des Bodens kann damit als Auslenkung im Zeitverlauf gemessen werden.
In modernen Seismographen wird die Bodenbewegung in alle Richtungen gemessen, sowohl Horizontal als auch Vertikal.
Wir konstruieren uns eine einfachere Version eines Seismographen mit eine Gehäuse, an dem zwei Federn und eine Masse befestigt sind.
+Der Seismograph ist in Abbildung ~\ref{erdbeben:Seismograph} ersichtlich.
Ein Sensor unter der Masse misst die Position, bzw. die Auslenkung der Feder und der Masse.
Dies bedeutet, unser Seismograph kann nur in eine Dimension Messwerte aufnehmen.
@@ -30,52 +31,52 @@ Dies bedeutet, unser Seismograph kann nur in eine Dimension Messwerte aufnehmen.
\begin{center}
\includegraphics[width=5cm]{papers/erdbeben/Apperatur}
\caption{Aufbau des Seismographen mit Gehäuse, Masse, Federn und Sensor}
+ \label{erdbeben:Seismograph}
\end{center}
\end{figure}
\subsection{Ziel}
Unser Seismograph misst nur die Position der Masse über die Zeit.
-Wir wollen jedoch die Beschleunigung $a(t)$ des Boden bzw. die Kraft $f(t)$ welche auf das Gehäuse wirkt bestimmten.
-Anhand dieser Beschleunigung bzw. der Krafteinwirkung durch die Bodenbewegung wird später das Bauwerk bemessen.
+Wir wollen jedoch die Beschleunigung $a(t)$ des Boden, bzw. die Kraft $f(t)$, welche auf das Gehäuse wirkt, bestimmten.
+Anhand dieser Beschleunigung, bzw. der Krafteinwirkung durch die Bodenbewegung, wird später das Bauwerk bemessen.
Dies bedeutet, die für uns interessante Grösse $f(t)$ wird nicht durch einen Sensor erfasst.
Jedoch können wir durch zweifaches ableiten der Positionsmessung $s(t)$ die Beschleunigung der Masse berechnen.
Das heisst: Die Messung ist zweifach Integriert die Kraft $f(t)$ inklusive der Eigendynamik der Masse.
-Um die Bewegung der Masse zu berechnen, müssen wir Gleichungen für unser System finden.
+Um die Krafteinwirkung der Masse zu berechnen, müssen wir Gleichungen für unser System finden.
\subsection{Systemgleichung}
-Im Fall unseres Seismographen, kann die Differentialgleichung zweiter Ordnung einer gedämpften Schwingung am harmonischen Oszillator verwendet werden.
-Diese lautet:
+Im Paper~\cite{erdbeben:mendezmueller} wurde das System gleich definiert und vorgegangen.
+Im Fall unseres Seismographen, handelt es sich um ein Feder-Masse-Pendel.
+Dieser kann durch die Differentialgleichung zweiter Ordnung einer gedämpften Schwingung am harmonischen Oszillator beschrieben werden.
+Die Gleichung lautet:
\begin{equation}
-m\ddot s + 2k \dot s + Ds = f
+m\ddot s + 2k \dot s + Ds = f.
\end{equation}
-mit den Konstanten $m$ = Masse, $k$ = Dämpfungskonstante und $D$ = Federkonstante.
-Da die DGL linear ist, kann sie in die kompaktere und einfachere Matrix-Form umgewandelt werden. Dazu wird die Differentialgleichung zweiter Ordnung substituiert:
-\[ {s_1}=s \qquad
-{s_2}=\dot s, \qquad\]
-Somit entstehen die Gleichungen für die Position $s(t)$ der Masse :
+wobei $m$ die Masse, $k$ die Dämpfungskonstante und $D$ die Federkonstante bezeichnet.
+Da die Differentialgleichung linear ist, kann sie in die kompaktere und einfachere Matrix-Form umgewandelt werden.
+Dazu verwenden wir die Subsitution:
+\[ s_1 = s \qquad \text{und} \qquad s_2 = \dot s . \]
+Somit entstehen die Gleichungen für die Position $ \dot s_1(t)$ der Masse :
\[ \dot {s_1} = {s_2}\]
und
-\[ \dot s_2 = -\frac{D}{m} {s_1} -\frac{2k}{m} {s_2} + \frac{f} {m} \] für die Beschleunigung $a(t)$ der Masse.
-
+\[ \dot s_2 = -\frac{D}{m} {s_1} -\frac{2k}{m} {s_2} + \frac{f} {m} \]
+für die Beschleunigung $\dot s_2(t)$ der Masse.
Diese können wir nun in der Form
-\[ {s_3}=-\frac{D}{m} {s_1} -\frac{2k}{m} {s_2} + \frac{f} {m} \]
+\[ f =-\frac{D}{m} {s_1} -\frac{2k}{m} {s_2} + \frac{f} {m} \]
auch als Matrix-Vektor-Gleichung darstellen.
Dafür wird die Gleichung in die Zustände aufgeteilt.
-Die für uns relevanten Zustände sind die Position der Masse, die Geschwindigkeit der Masse und die äussere Beschleunigung des ganzen System.
-Dabei muss unterschieden werden, um welche Beschleunigung es sich handelt.
-Das System beinhaltet sowohl eine Beschleunigung der Masse, innere Beschleunigung, als auch eine Beschleunigung der ganzen Apparatur, äussere Beschleunigung.
-In unserem Fall wird die äusseren Beschleunigung gesucht, da diese der Erdbebenanregung gleich kommt.
-\begin{equation}
-\frac{d}{dt} \left(\begin{array}{c} {s_1} \\ {s_2} \end{array}\right) = \left(
- \begin{array}{ccc}
-0 & 1& 0 \\
-- \frac{D}{m} &-\frac{2k}{m} & \frac{1} {m}\\
-\end{array}\right) \left(\begin{array}{c} {s_1} \\ {s_2} \\ {s_3} \end{array}\right).
-\end{equation}
-
-Durch Rücksubstituion ergibt sich:
+Die für uns relevanten Zustände sind die Position der Masse, die Geschwindigkeit der Masse und die äussere Beschleunigung des ganzen Systems.
+
+Dabei muss unterschieden werden, um welche Beschleunigung es sich handelt.
+Das System beinhaltet sowohl eine Beschleunigung der Masse (innere Beschleunigung) als auch eine Beschleunigung der ganzen Apparatur (äussere Beschleunigung).
+In unserem Fall wird die äusseren Beschleunigung gesucht, da diese der Erdbebenanregung gleich kommt.
+Dazu wird ein Zustandsvektor definiert:
+\[
+ \left(\begin{array}{c} {s_1} \\ {s_2} \\ {f} \end{array}\right).
+ \]
+Durch Rücksubstituion ergibt sich uns folgende Systemgleichung in Matrix schreibweise, , wobei $\sot {s_1}= v$ ist:
\begin{equation}
-\frac{d}{dt} \left(\begin{array}{c} s(t) \\ v(t) \end{array}\right) = \left(
+\frac{d}{dt} \left(\begin{array}{c} s(t) \\ v(t) \\ f(t) \end{array}\right) = \left(
\begin{array}{ccc}
0 & 1& 0 \\
- \frac{D}{m} &-\frac{2k}{m} & \frac{1} {m}\\
diff --git a/buch/papers/erdbeben/teil1.tex b/buch/papers/erdbeben/teil1.tex
index e07800f..6c334bf 100644
--- a/buch/papers/erdbeben/teil1.tex
+++ b/buch/papers/erdbeben/teil1.tex
@@ -14,6 +14,8 @@
\rhead{Kalman-Filter}
\section{Kalman-Filter}
+Interessante Grösse ist also Integral von Überlagerung zweier Kräfte.
+Wir brauchen also dir zweite Ableitung von der Messung , ohne deren Eigendynamik.
Da wir die äussere Kraft nicht direkt messen können, benötigen wir ein Werkzeug, welches aus der gemessenen Position, die Krafteinwirkung auf unsere System schätzt.
Dies ist eine typische Anwendung für das Kalman-Filter.
Unser Ziel ist es, anhand der Messung die eigentlich interessante Grösse $f$ zu bestimmen.
@@ -23,8 +25,8 @@ Die Idee dahinter ist, dass das Kalman-Filter die nicht-deterministische Grösse
Für mehrere Dimensionen (x,y,z) würde der Pythagoras für das System benötigt werden.
Da sich der Pythagoras bekanntlich nicht linear verhält, kann kein lineares Kalman-Filter implementiert werden.
Da das Kalman-Filter besonders effektiv und einfach für lineare Abläufe geeignet ist, würde eine zweidimensionale Betrachtung den Rahmen dieser Arbeit sprengen.
-Für ein nicht-lineares System werden Extended Kalman-Filter benötigt, bei denen die System-Matrix (A) durch die Jacobi-Matrix des System ersetzt wird.
Einfachheitshalber beschränken wir uns auf den linearen Fall, da dadurch die wesentlichen Punkte bereits aufgezeigt werden.
+Für ein nicht-lineares System werden Extended Kalman-Filter benötigt, bei denen die System-Matrix (A) durch die Jacobi-Matrix des System ersetzt wird.
\subsection{Geschichte}
Das Kalman-Filter wurde 1960 von Rudolf Emil Kalman entdeckt und direkt von der NASA für die Appollo Mission benutzt.
@@ -35,57 +37,60 @@ Das Filter schätzt den Zustand eines Systems anhand von Messungen und kann den
Das Kalman-Filter schätzt den wahrscheinlichsten Wert zwischen Normalverteilungen.
Dies bedeutet, das Filter schätzt nicht nur den Mittelwert, sondern auch die Standartabweichung.
Da Normalverteilungen dadurch vollständig definiert sind, schätzt ein Kalman-Filter die gesamte Verteilungsfunktion des Zustandes.
+In der Abbildung~\ref{erdbeben: Zwei Normalverteilungen} sind zwei Funktionen dargestellt.
Die eine Funktion zeigt die errechnete Vorhersage des Zustands, bzw. deren Normalverteilung.
Die andere Funktion zeigt die verrauschte Messung des nächsten Zustand, bzw. deren Normalverteilung.
-Wie man am Beispiel der Gauss-Verteilungen unten sehen kann, ist sowohl der geschätzte Zustand als auch der gemessene Zustand normalverteilt und haben dementsprechend unterschiedliche Standardabweichungen $\sigma$ und Erwartungswerte $\mu$.
-
+Wie man am Beispiel der Gauss-Verteilungen in Abblidung~\ref{erdbeben: Zwei Normalverteilungen} sehen kann, ist sowohl der geschätzte Zustand als auch der gemessene Zustand normalverteilt und haben dementsprechend unterschiedliche Standardabweichungen $\sigma$ und Erwartungswerte $\mu$. Dies wird in~\cite{erdbeben:aragher_understanding_2012}beschrieben.
\begin{figure}
\begin{center}
\includegraphics[width=5cm]{papers/erdbeben/Gausskurve2.pdf}
\caption{Zwei Normalerteilungen; Die eine Funktion zeigt die Vorhersage, die andere die Messung}
+ \label{erdbeben: Zwei Normalverteilungen}
\end{center}
\end{figure}
-
-
+Wir haben eine Vorhersage aus der Systemdynamik und eine Messung des Zustandes.
+Diese widersprechen sich im Allgemeinen.
+Jedoch wissen wir die Wahrscheinlichkeiten der beiden Aussagen.
Um eine genauere Schätzung des Zustandes zu machen, wird nun ein Wert zwischen den beiden Verteilungen berechnet.
Nun wird eine Eigenschaft der Normalverteilung ausgenutzt. Durch das Multiplizieren zweier Normalverteilungen entsteht eine neue Normalverteilung.
Wir haben eine Normalverteilung der Vorhersage:
-
-\[ {y_1}(x;{\mu_1},{\sigma_1})=\frac{1}{\sqrt{2\pi\sigma_1^2}}\quad e^{-\frac{(x-{\mu_1})^2}{2{\sigma_1}^2}} \]
+\[
+{y_1}(x;{\mu_1},{\sigma_1})=\frac{1}{\sqrt{2\pi\sigma_1^2}}\quad e^{-\frac{(x-{\mu_1})^2}{2{\sigma_1}^2}}
+\]
und der Messung:
-\[ {y_2}(x;{\mu_2},{\sigma_2})=\frac{1}{\sqrt{2\pi\sigma_2^2}}\quad e^{-\frac{(x-{\mu_2})^2}{2{\sigma_2}^2}}. \]
-
-
-
-Diesen werden nun Multipliziert und durch deren Fläche geteilt um sie wieder zu Normieren:
-\[
-{y_f}(x;{\mu_f},{\sigma_f})=\frac{ \frac{1}{\sqrt{2\pi\sigma_1^2}}e^{-\frac{(x-{\mu_1})^2}{2{\sigma_1}^2}} \cdot \frac{1}{\sqrt{2\pi\sigma_2^2}}e^{-\frac{(x-{\mu_2})^2}{2{\sigma_2}^2}}}{\int {y_1}\cdot{y_2} dx\,}
- \]
-
+\[
+{y_2}(x;{\mu_2},{\sigma_2})=\frac{1}{\sqrt{2\pi\sigma_2^2}}\quad e^{-\frac{(x-{\mu_2})^2}{2{\sigma_2}^2}}.
+\]
+Diesen werden nun multipliziert und durch deren Fläche geteilt um sie wieder zu normieren, $\odot$ beschreibt dabei die Multiplikation und die Normierung auf den Flächeninhalt eins :
+\begin{align*} {y_f}(x; {\mu_f}, {\sigma_f}) = {y_1}(x;{ \mu_1},{ \sigma_1}) \odot {y_2}(x; {\mu_2}, {\sigma_2})
+ &=
+ \frac{1}{\sqrt{2\pi\sigma_1^2}}\quad e^{-\frac{(x-{\mu_1})^2}{2{\sigma_1}^2}} \odot \frac{1}{\sqrt{2\pi\sigma_2^2}}\quad e^{-\frac{(x-{\mu_2})^2}{2{\sigma_2}^2}}
+ \\
+ &= \frac{ \frac{1}{\sqrt{2\pi\sigma_1^2}}e^{-\frac{(x-{\mu_1})^2}{2{\sigma_1}^2}} \cdot \frac{1}{\sqrt{2\pi\sigma_2^2}}e^{-\frac{(x-{\mu_2})^2}{2{\sigma_2}^2}}}{\int {y_1} {y_2} dx}. \end{align*}
Diese Kombination der beiden Verteilungen resultiert wiederum in einer Normalverteilung
-\[ {y_f}(x; {\mu_f}, {\sigma_f}) = {y_1}(x;{ \mu_1},{ \sigma_1}) {\cdot y_2}(x; {\mu_2}, {\sigma_2}), \]
mit Erwartungswert
\[ \mu_f = \frac{\mu_1\sigma_2^2 + \mu_2 \sigma_1^2}{\sigma_1^2 + \sigma_2^2} \]
und Varianz
-\[ \sigma_f^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}. \]
-
+\[
+\sigma_f^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}.
+\]
Dadurch gleicht sich die neue Kurve den anderen an. Interessant daran ist, dass die fusionierte Kurve sich der genauere Normal-Verteilung anpasst.
Ist ${\sigma_2}$ klein und ${\sigma_1}$ gross, so wird sich die fusionierte Kurve näher an ${y_2}(x;{\mu_2},{\sigma_2})$ begeben.
-Sie ist also gewichtet und die best mögliche Schätzung.
-
-
+Somit ist $\mu_f$ ist das gewichtete Mittel der beiden $\mu_{1,2}$, und die Varianzen sind die Gewichte!
+Die neue Funktion ist die best mögliche Schätzung für zwei Verteilungen, welche den selben Zustand beschreiben.
+Dies ist in der Abbildung~\ref{erdbeben:Gauss3} anhand der rote Funktion ersichtlich.
\begin{figure}
\begin{center}
\includegraphics[width=5cm]{papers/erdbeben/Gausskurve3.pdf}
\caption{Durch das Multiplizieren der blauen und der orangen Verteilung entsteht die die rote, optimale Funktion}
+ \label{erdbeben:Gauss3}
\end{center}
\end{figure}
-
-
Was in zwei Dimensionen erklärt wurde, funktioniert auch in mehreren Dimensionen.
Dieses Prinzip mach sich das Kalman Filter zu nutze, und wird von uns für die Erdbeben Berechnung genutzt.
\section{Filter-Matrizen}
+Da wir nun ein Werkzeug besitzen, dass die Beschleunigung, welche auf das Gehäuse wirkt, ermitteln kann, wird dieses nun Schritt für Schritt erklärt.
Um den Kalman Filter zu starten, müssen gewisse Bedingungen definiert werden.
In diesem Abschnitt werden die einzelnen Parameter und Matrizen erklärt und erläutert, wofür sie nützlich sind.
@@ -94,8 +99,6 @@ In diesem Abschnitt werden die einzelnen Parameter und Matrizen erklärt und erl
Das Filter benötigt eine Anfangsbedingung.
In unserem Fall ist es die Ruhelage, die Masse bewegt sich nicht.
Zudem erfährt die Apparatur keine äussere Kraft.
-
-
\[ {x_0 }= \left( \begin{array}{c} {s_0}\\ {v_0}\\{f_0}\end{array}\right) = \left( \begin{array}{c} 0\\ 0\\ 0\end{array}\right) \]
\subsubsection*{Anfangsfehler / Kovarianzmatrix $P$}
@@ -108,7 +111,6 @@ Kovarianz: Cov(x, y) und Varianz: Var(x) = Cov(x, x)
In unserem Fall ist der Anfangszustand gut bekannt.
Wir gehen davon aus, dass das System in Ruhe und in Abwesenheit eines Erdbeben startet, somit kann die Matrix mit Nullen bestückt werden.
Als Initialwert für die Kovarianzmatrix ergibt sich
-
\[
{P_0 }=
\left(
@@ -145,9 +147,9 @@ Die Matrix $\Phi$ beschreibt die Übergänge zwischen zeitlich aufeinanderfolgen
\subsubsection*{Prozessrauschkovarianzmatrix $Q$}
Die Prozessrauschmatrix teilt dem Filter mit, wie sich der Prozess verändert.
-Kalman-Filter berücksichtigen sowohl Unsicherheiten wie Messfehler und -rauschen.
-In der Matrix $Q$ geht es jedoch im die Unsicherheit die der Prozess mit sich bringt.
-Bei unserem Modell könnte das beispielsweise ein Windstoss an die Masse sein.
+Kalman-Filter berücksichtigen Unsicherheiten wie Messfehler und -rauschen.
+In der Matrix $Q$ geht es jedoch um die Unsicherheit, die der Prozess mit sich bringt.
+Bei unserem Modell könnte das beispielsweise ein Windstoss an die Masse sein oder auch die Ungenauigkeiten im Modell, wie die Annahme das dich die Kraft nicht ändert.
Für uns wäre dies:
\[
Q = \left(
@@ -157,7 +159,6 @@ Q = \left(
0 & 0& {\sigma_f }^2\\
\end{array}\right)
\]
-
Die Standabweichungen müssten statistisch ermittelt werden, da der Fehler nicht vom Sensor kommt und somit nicht vom Hersteller gegeben ist.
Das Bedeutet wiederum dass $Q$ die Unsicherheit des Prozesses beschreibt und nicht die der Messung.
@@ -165,13 +166,15 @@ Das Bedeutet wiederum dass $Q$ die Unsicherheit des Prozesses beschreibt und nic
Die Messmatrix gibt an, welche Parameter gemessen werden.
$H$ ist die Gleichung die für die Vorhersage der Messung.
In unserem Falle ist es die Position der Massen.
-
-\[ H = (1, 0, 0) \]
+\[
+H = (1, 0, 0)
+\]
\subsubsection*{Messrauschkovarianz $R$}
Die Messrauschkovarianzmatrix beinhaltet, wie der Name schon sagt, das Rauschen der Messung.
In unserem Fall wird nur die Position der Masse gemessen. Da wir keine anderen Sensoren haben ist $R$ lediglich:
-\[ R= ({\sigma_{sensor}}^2).
+\[
+R= ({\sigma_\mathrm{sensor}}^2).
\]
Diese Messrauchen wird meistens vom Sensorhersteller angegeben.
Für unsere theoretische Apparatur wird hier ein kleiner Fehler eingesetzt da heutige Sensoren sehr genau messen können.
@@ -182,19 +185,25 @@ Zuerst wird der nächste Zustand der Masse vorhergesagt, danach wird die Messung
Das Filter berechnet aufgrund der aktuellen Schätzung eine Vorhersage.
Diese wird, sobald verfügbar, mit der Messung verglichen.
Aus dieser Differenz und den Unsicherheiten des Prozesses ($Q$) und der Messung ($R$) wird der wahrscheinlichste, neue Zustand geschätzt.
+Dabei muss genau auf den Index geachtet werden. Nach dem Artikel~\cite{erdbeben:wikipedia} ist die Indexierung so genormt:
+Der Zeitschritt wird mit $k$ definiert, $k-1$ ist somit ein Zeitschritt vor $k$.
+Auf der linken Seite von | wird der aktuelle Zustand verlangt, bzw. ausgegeben, auf der rechten Seiten den bisherigen Zustand.
+Dies bedeutet, dass die Notation $x_{n|m}$ die Schätzung von $x$ zum Zeitpunkt $n$ bis und mit zur Zeitpunkt $m \leq \ n$ präsentiert.
\subsubsection*{Vorhersage}
Im Filterschritt Vorhersage wird der nächste Zustand anhand des Anfangszustand und der Systemmatrix berechnet.
Dies funktioniert mit dem Rechenschritt:
-\[
-{x_{k-1}}=\Phi \cdot {x_{k-1}}= \exp(A\Delta t)\cdot{x_{k-1}}.
- \]
-
-Die Kovarianz $P_{pred}$ wird ebenfalls neu berechnet. Da wir ein mehrdimensionales System haben, kommt noch die Prozessunsicherheit $Q$ dazu, so dass die Unsicherheit des Anfangsfehlers $P$ laufend verändert.
+\[
+{x_{k|k-1}}=\Phi{x_{k-1|k-1}}= \exp(A\Delta t){x_{k-1|k-1}}.
+\]
+Die Kovarianz $P_{k|k-1}$ wird ebenfalls neu berechnet. Zudem kommt noch die Prozessunsicherheit $Q$ dazu, so dass die Unsicherheit des Anfangsfehlers $P$ laufend verändert.
Dies funktioniert durch multiplizieren der Systemmatrix mit dem aktualisierten Anfangsfehler.
Dazu wird noch die Prozessunsicherheit addiert, somit entsteht die Gleichung
-\[ {P_{k-1}} = {\Phi_k} {P_{k-1}} {\Phi_k} ^T + {Q_{k-1}} .\]
-Es vergeht genau $t$ Zeit, und dieser Vorgang wird wiederholt.
+\[
+{P_{k|k-1}}=\Phi {P_{k-1|k-1}} {\Phi _{k}}^T + {Q_{k-1}}.
+\]
+Es vergeht genau $\Delta t$ Zeit, und dieser Vorgang wird wiederholt.
+Das hochgestellte T bezeichnet die transponierte Matrix.
Dabei wird in den späteren Schritten überprüft, wie genau die letzte Anpassung von $P$ zur Messung stimmt.
Ist der Unterschied klein, wird die Kovarianz $P$ kleiner, ist der Unterschied gross, wird auch die Kovarianz grösser.
Das Filter passt sich selber an und korrigiert sich bei grosser Abweichung.
@@ -202,74 +211,83 @@ Das Filter passt sich selber an und korrigiert sich bei grosser Abweichung.
\subsubsection*{Messen}
Der Sensor wurde noch nicht benutz, doch genau der liefert Werte für das Filter.
Die aktuellen Messwerte $z$ werden die Innovation $w$ mit dem Zustandsvektor $x$ und der Messmatrix $H$ zusammengerechnet.
-Hier bei wird lediglich die Messung mit dem Fehler behaftet, und die Messmatrix $H$ mit der Vorhersage multipliziert
-
-\[{w_{k}}={z_{k}}-{H}\cdot{x_{k-1}}.\]
-
+Hier bei wird lediglich die Messung mit dem Fehler behaftet, und die Messmatrix $H$ mit der Vorhersage multipliziert.
+\[
+{w_{k}}={z_{k}}-{H}{x_{k|k-1}}.
+\]
Die Innovation ist der Teil der Messung, die nicht durch die Systemdynamik erklärt werden kann.
Die Hilfsgröße Innovation beschreibt, wie genau die Vorhersage den aktuellen Messwert mittels der Systemmatrix $\Phi$ beschreiben kann.
Für eine schlechte Vorhersage wird die dazugehörige Innovation gross, für eine genaue Vorhersage dagegen klein sein.
Entsprechende Korrekturen müssen dann gross bzw. nur gering ausfallen.
-Innovation = Messung - Vorhersage. Dies ist intuitiv logisch, eine Innovation von 0 bedeutet, dass die Messung nichts Neues hervorbrachte.
+Innovation = Messung - Vorhersage. Dies leuchtet ein, eine Innovation von 0 bedeutet, dass die Messung nichts Neues hervorbrachte.
Im nächsten Schritt wir analysiert, mit welcher Kovarianz weiter gerechnet wird.
Hierbei wird die Unsicherheit $P$, die Messmatrix $H$ und die Messunsicherheit $R$ miteinander verrechnet.
\[
-{S_{k}}={H}{P_{k-1}}{H}^T+{R_{k}}
- \]
+{S_{k}}={H}{P_{k|k-1}}{H}^T+{R_{k}}
+\]
\subsubsection*{Aktualisieren}
Im nächsten Schritt kommt nun die Wahrscheinlichkeit dazu.
-\[
-{K_{k}}= {{P_{k-1}} \cdot {H_{k}^T}}\cdot {S_{k}}^{-1}
- \]
+\[{K_{k}}= {P_{k|k-1}} {H^T}{S_{k}^{-1}}\]
Dieser Vorgang wird Kalman-Gain genannt.
-Er sagt aus, welcher Kurve mehr Vertraut werden soll, dem Messwert oder der Systemdynamik.
-Das Kalman-Gain wird geringer, wenn der Messwert dem vorhergesagten Systemzustand entspricht.
-Sind die Messwerte komplett anders als die Vorhersage, werden die Elemente in der Matrix $K$ grösser.
-Anhand der Informationen aus dem Kalman-Gain $K$ wird das System aktualisiert.
+Das Kalman-Gain gibt dem Zustand die Gewichtung, bzw. wie die Vorhersage auf den Zustand passt.
+Vereinfacht gesagt: Es wird das das Verhältnis zwischen der Unsicherheit der Vorhersage $P_k$ zu der zugehörigen Messunsicherheit $R_k$ gebildet.
+In unserem Fall wird werden die Elemente der Kalman-Matrix vorweg berechnet, da das Kalman-Gain ohne Messungen auskommt.
-\[
-{x_{k|k}}={x_{k-1}}+({K_{k}}\cdot {w_{k}})
- \]
+Anhand der Informationen aus dem Kalman-Gain $K$ wird das System aktualisiert.
+\[
+{x_{k|k}}={x_{k|k-1}}+{K_{k}}{w_{k}}
+\]
+Dabei wird der Unterschied zwischen dem erwarteten, errechneten, Zustand und dem gemessenen Zustand berechnet.
Dazu kommt eine neue Kovarianz für den nächste Vorhersageschritt:
-
-\[
-{P_{k}}=(I-({K_{k}} \cdot {H})) \cdot {P_{k-1}}
- \]
-
+\[
+{P_{k|k}}=(I-{K_{k}}{H}){P_{k|k-1}}
+\]
Der ganze Algorithmus und beginnt wieder mit der Vorhersage
-
-\[
-{x_{k-1}}=\Phi \cdot {x_{k-1}}= \exp(A\Delta t)\cdot{x_{k-1}}.
- \]
-
+\[
+{x_{k|k-1}}=\Phi{x_{k-1|k-1}}= \exp(A\Delta t){x_{k|k-1}}.
+\]
\subsection{Zusammenfassung }
Zusammenfassend kann das Kalman-Filter in offizieller Typus dargestellt werden.
Dabei beginnt das Filter mit dem Anfangszustand für $k=0$
1. Nächster Zustand vorhersagen
-\[{x_{k-1}}={\Phi} \cdot {x_{k-1}}= \exp(A\Delta t)\cdot{x_{k-1}}.\]
+\[
+{x_{k|k-1}}=\Phi{x_{k-1|k-1}}= \exp(A\Delta t){x_{k-1|k-1}}.
+\]
2. Nächste Fehlerkovarianz vorhersagen
-\[{P_{k-1}}={\Phi} {P_{k-1}} {\Phi _{k}}^T + {Q_{k-1}}.\]
+\[
+{P_{k|k-1}}=\Phi {P_{k-1|k-1}} {\Phi _{k}}^T + {Q_{k-1}}.
+\]
3. Zustand wird gemessen
-\[{w_{k}}={z_{k}}-{H}\cdot{x_{k-1}}.\]
+\[
+{w_{k}}={z_{k}}-{H}{x_{k|k-1}}.
+\]
4. Innovation (= Messung - Vorhersage)
-\[ {S_{k}}={H}{P_{k-1}}{H}^T+{R_{k}}\]
+\[
+{S_{k}}={H}{P_{k|k-1}}{H}^T+{R_{k}}
+\]
5. Das Kalman Filter anwenden
-\[{K_{k}}= {P_{k-1}} \cdot {H^T}\cdot {S_{k}^{-1}}\]
+\[
+{K_{k}}= {P_{k|k-1}} {H^T}{S_{k}^{-1}}
+\]
6. Schätzung aktualisieren
-\[{x_{k}}={x_{k-1}}+({K_{k}}\cdot {w_{k}}) \]
+\[
+{x_{k|k}}={x_{k|k-1}}+{K_{k}}{w_{k}}
+\]
7. Fehlerkovarianz aktualisieren
-\[{P_{k}}=(I-({K_{k}}\cdot {H})) \cdot {P_{k-1}} \]
+\[
+{P_{k|k}}=(I-{K_{k}}{H}){P_{k|k-1}}
+\]
8. Die Outputs von $k$ werden die Inputs für ${k-1}$ und werden wieder im Schritt 1 verwendet
diff --git a/buch/papers/multiplikation/Makefile b/buch/papers/multiplikation/Makefile
index 8f04c2c..8f04c2c 100644..100755
--- a/buch/papers/multiplikation/Makefile
+++ b/buch/papers/multiplikation/Makefile
diff --git a/buch/papers/multiplikation/Makefile.inc b/buch/papers/multiplikation/Makefile.inc
index b78d67e..074020f 100644..100755
--- a/buch/papers/multiplikation/Makefile.inc
+++ b/buch/papers/multiplikation/Makefile.inc
@@ -7,8 +7,7 @@ dependencies-multiplikation = \
papers/multiplikation/packages.tex \
papers/multiplikation/main.tex \
papers/multiplikation/references.bib \
- papers/multiplikation/teil0.tex \
- papers/multiplikation/teil1.tex \
- papers/multiplikation/teil2.tex \
- papers/multiplikation/teil3.tex
+ papers/multiplikation/einlteung.tex \
+ papers/multiplikation/loesungsmethoden.tex \
+ papers/multiplikation/problemstellung.tex
diff --git a/buch/papers/multiplikation/code/Figure_1.png b/buch/papers/multiplikation/code/Figure_1.png
new file mode 100755
index 0000000..9def15a
--- /dev/null
+++ b/buch/papers/multiplikation/code/Figure_1.png
Binary files differ
diff --git a/buch/papers/multiplikation/code/MM b/buch/papers/multiplikation/code/MM
new file mode 100755
index 0000000..f07985f
--- /dev/null
+++ b/buch/papers/multiplikation/code/MM
Binary files differ
diff --git a/buch/papers/multiplikation/code/MM.c b/buch/papers/multiplikation/code/MM.c
new file mode 100755
index 0000000..04c4dab
--- /dev/null
+++ b/buch/papers/multiplikation/code/MM.c
@@ -0,0 +1,465 @@
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <time.h>
+#include <omp.h>
+#include "c_matrix.h"
+#include <gsl/gsl_cblas.h>
+#include <string.h>
+
+void MM(int *A, int *B, int *C, int n);
+void openMP_MM(int *A, int *B, int *C, int n);
+void winograd(int *A, int *B, int *C, int n);
+int winograd_inner(int *a, int *b, int n);
+void run_algo(void (*algo)(), char alog_name[], int print);
+void run_algo_cblas(int print);
+void MM_dc(int *A, int *B, int *C, int n);
+void strassen(int *A, int *B, int *C, int n);
+void printMatrix(int *C, int n);
+void printMatrix_double(double *C, int n);
+void split(int *in, int *out, int n, int col, int row);
+void join(int *in, int *out, int n, int col, int row);
+void add(int *A, int *B, int *C, int n);
+void sub(int *A, int *B, int *C, int n);
+void multiply(int *A, int *B, int *C, int n);
+
+int main() {
+ // omp_set_dynamic(0);
+ // omp_set_num_threads(4);
+// run_algo(openMP_MM, "openMP_MM",0);
+ run_algo(MM_dc, "MM_dc",0);
+ run_algo(strassen, "strassen",0);
+
+ run_algo(MM, "MM", 0);
+ // run_algo(winograd, "winograd", 0);
+ run_algo_cblas(0);
+
+ return 0;
+}
+
+void MM(int *A, int *B, int *C, int n) {
+ for (int i = 0; i < n; ++i) {
+ for (int j = 0; j < n; ++j) {
+ int sum = 0;
+ for (int k = 0; k < n; ++k) {
+ sum += (*((A + i * n) + k)) * (*((B + k * n) + j));
+ }
+ *((C + i * n) + j) = sum;
+ }
+ }
+}
+
+int winograd_inner(int *a, int *b, int n){
+ int ab = 0;
+ if(n%2==0)
+ {
+ int xi = 0;
+ int etha = 0;
+ for(int i = 0; i<n/2;++i)
+ {
+ xi += a[2*i]*a[2*i+1];
+ etha += b[2*i]*b[2*i+1];
+ ab += (a[2*i]+b[2*i+1])*(a[2*i+1]+b[2*i]);
+ }
+ ab = ab-etha-xi;
+ }
+ return ab;
+ }
+
+ void winograd(int *A, int *B, int *C, int n) {
+
+ int xi_array[n];
+ int etha_array[n];
+ int xi = 0;
+ int etha = 0;
+ int ab = 0;
+
+ for (int i = 0; i < n; ++i) {
+ xi = 0;
+ etha = 0;
+ for(int k = 0;k<n/2;++k)
+ {
+ xi += (*((A + i * n) + 2*k))*(*((A + i * n) + (2*k+1)));
+ etha += (*((B + 2*k * n) + i))*(*((B + (2*k+1) * n) + i));
+ }
+ xi_array[i] = xi;
+ etha_array[i] = etha;
+ }
+
+ for (int i = 0; i < n; ++i) {
+ for (int j = 0; j < n; ++j) {
+ ab = 0;
+ for(int k = 0;k<n/2;++k)
+ {
+ ab += ((*((A + i * n) + 2*k))+(*((B + (2*k+1) * n) + j)))*((*((A + i * n) + (2*k+1)))+(*((B + 2*k * n) + j)));
+ }
+ *((C + i * n) + j) = ab-etha_array[j]-xi_array[i];
+ }
+ }
+
+
+
+
+ // for (int i = 0; i < n; ++i) {
+ // int *a = (int*) malloc(n * sizeof(int));
+ // for(int k = 0; k<n; ++k)
+ // {
+ // a[k] = (*((A + i * n) + k));
+ // }
+ //
+ // for (int j = 0; j < n; ++j) {
+ // int *b = (int*) malloc(n * sizeof(int));
+ // for(int k = 0; k<n; ++k)
+ // {
+ // b[k] =(*((B + k * n) + j));
+ // }
+ // *((C + i * n) + j) = winograd_inner(a,b,n);
+ // }
+ // }
+ }
+
+
+void openMP_MM(int *A, int *B, int *C, int n) {
+
+ #pragma omp parallel for
+ for (int i = 0; i < n; ++i) {
+ for (int j = 0; j < n; ++j) {
+ int sum = 0;
+ for (int k = 0; k < n; ++k) {
+ sum += (*((A + i * n) + k)) * (*((B + k * n) + j));
+ }
+ *((C + i * n) + j) = sum;
+ }
+ }
+}
+
+void MM_dc(int *A, int *B, int *C, int n) {
+ if (n <= 2) {
+ MM((int*) A, (int*) B, (int*) C, n);
+ } else {
+ int *A11 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *A12 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *A21 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *A22 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *B11 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *B12 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *B21 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *B22 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+
+ split((int*) A, (int*) A11, n / 2, 0, 0);
+ split((int*) A, (int*) A12, n / 2, 0, n / 2);
+ split((int*) A, (int*) A21, n / 2, n / 2, 0);
+ split((int*) A, (int*) A22, n / 2, n / 2, n / 2);
+ split((int*) B, (int*) B11, n / 2, 0, 0);
+ split((int*) B, (int*) B12, n / 2, 0, n / 2);
+ split((int*) B, (int*) B21, n / 2, n / 2, 0);
+ split((int*) B, (int*) B22, n / 2, n / 2, n / 2);
+
+ int *tmp1 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *tmp2 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *tmp3 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *tmp4 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *tmp5 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *tmp6 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *tmp7 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *tmp8 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+
+ MM_dc((int*) A11, (int*) B11, (int*) tmp1, n / 2);
+ MM_dc((int*) A12, (int*) B21, (int*) tmp2, n / 2);
+ MM_dc((int*) A11, (int*) B12, (int*) tmp3, n / 2);
+ MM_dc((int*) A12, (int*) B22, (int*) tmp4, n / 2);
+ MM_dc((int*) A21, (int*) B11, (int*) tmp5, n / 2);
+ MM_dc((int*) A22, (int*) B21, (int*) tmp6, n / 2);
+ MM_dc((int*) A21, (int*) B12, (int*) tmp7, n / 2);
+ MM_dc((int*) A22, (int*) B22, (int*) tmp8, n / 2);
+
+ free(A11);
+ free(A12);
+ free(A21);
+ free(A22);
+ free(B11);
+ free(B12);
+ free(B21);
+ free(B22);
+
+ int *C11 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *C12 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *C21 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *C22 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+
+ add((int*) tmp1, (int*) tmp2, (int*) C11, n / 2);
+ add((int*) tmp3, (int*) tmp4, (int*) C12, n / 2);
+ add((int*) tmp5, (int*) tmp6, (int*) C21, n / 2);
+ add((int*) tmp7, (int*) tmp8, (int*) C22, n / 2);
+
+ free(tmp1);
+ free(tmp2);
+ free(tmp3);
+ free(tmp4);
+ free(tmp5);
+ free(tmp6);
+ free(tmp7);
+ free(tmp8);
+
+ join((int*) C11, (int*) C, n / 2, 0, 0);
+ join((int*) C12, (int*) C, n / 2, 0, n / 2);
+ join((int*) C21, (int*) C, n / 2, n / 2, 0);
+ join((int*) C22, (int*) C, n / 2, n / 2, n / 2);
+
+ free(C11);
+ free(C12);
+ free(C21);
+ free(C22);
+
+ }
+}
+
+void strassen(int *A, int *B, int *C, int n) {
+ if (n <= 2) {
+
+ int P, Q, R, S, T, U, V;
+ P = ((*((A + 0 * n) + 0)) + (*((A + 1 * n) + 1)))
+ * ((*((B + 0 * n) + 0)) + (*((B + 1 * n) + 1)));
+ Q = ((*((A + 1 * n) + 0)) + (*((A + 1 * n) + 1)))
+ * ((*((B + 0 * n) + 0)));
+ R = ((*((A + 0 * n) + 0)))
+ * ((*((B + 0 * n) + 1)) - (*((B + 1 * n) + 1)));
+ S = ((*((A + 1 * n) + 1)))
+ * ((*((B + 1 * n) + 0)) - (*((B + 0 * n) + 0)));
+ T = ((*((A + 0 * n) + 0)) + (*((A + 0 * n) + 1)))
+ * ((*((B + 1 * n) + 1)));
+ U = ((*((A + 1 * n) + 0)) - (*((A + 0 * n) + 0)))
+ * ((*((B + 0 * n) + 0)) + (*((B + 0 * n) + 1)));
+ V = ((*((A + 0 * n) + 1)) - (*((A + 1 * n) + 1)))
+ * ((*((B + 1 * n) + 0)) + (*((B + 1 * n) + 1)));
+ (*((C + 0 * n) + 0)) = P + S - T + V;
+ (*((C + 0 * n) + 1)) = R + T;
+ (*((C + 1 * n) + 0)) = Q + S;
+ (*((C + 1 * n) + 1)) = P + R - Q + U;
+
+ } else {
+ int *A11 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *A12 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *A21 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *A22 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *B11 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *B12 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *B21 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *B22 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+
+ split((int*) A, (int*) A11, n / 2, 0, 0);
+ split((int*) A, (int*) A12, n / 2, 0, n / 2);
+ split((int*) A, (int*) A21, n / 2, n / 2, 0);
+ split((int*) A, (int*) A22, n / 2, n / 2, n / 2);
+ split((int*) B, (int*) B11, n / 2, 0, 0);
+ split((int*) B, (int*) B12, n / 2, 0, n / 2);
+ split((int*) B, (int*) B21, n / 2, n / 2, 0);
+ split((int*) B, (int*) B22, n / 2, n / 2, n / 2);
+
+ int *P = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *Q = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *R = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *S = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *T = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *U = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *V = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+
+ int *addA = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *addB = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+
+ add((int*) A11, (int*) A22, (int*) addA, n / 2);
+ add((int*) B11, (int*) B22, (int*) addB, n / 2);
+ strassen((int*) addA, (int*) addB, (int*) P, n / 2);
+
+ add((int*) A21, (int*) A22, (int*) addA, n / 2);
+ strassen((int*) addA, (int*) B11, (int*) Q, n / 2);
+
+ sub((int*) B12, (int*) B22, (int*) addB, n / 2);
+ strassen((int*) A11, (int*) addB, (int*) R, n / 2);
+
+ sub((int*) B21, (int*) B11, (int*) addB, n / 2);
+ strassen((int*) A22, (int*) addB, (int*) S, n / 2);
+
+ add((int*) A11, (int*) A12, (int*) addA, n / 2);
+ strassen((int*) addA, (int*) B22, (int*) T, n / 2);
+
+ sub((int*) A21, (int*) A11, (int*) addA, n / 2);
+ add((int*) B11, (int*) B12, (int*) addB, n / 2);
+ strassen((int*) addA, (int*) addB, (int*) U, n / 2);
+
+ sub((int*) A12, (int*) A22, (int*) addA, n / 2);
+ add((int*) B21, (int*) B22, (int*) addB, n / 2);
+ strassen((int*) addA, (int*) addB, (int*) V, n / 2);
+
+ free(A11);
+ free(A12);
+ free(A21);
+ free(A22);
+ free(B11);
+ free(B12);
+ free(B21);
+ free(B22);
+ free(addA);
+ free(addB);
+
+ int *C11 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *C12 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *C21 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *C22 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+
+ int *resAdd1 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+ int *resAdd2 = (int*) malloc(n / 2 * n / 2 * sizeof(int));
+
+ add((int*) R, (int*) T, (int*) C12, n / 2);
+ add((int*) Q, (int*) S, (int*) C21, n / 2);
+
+ add((int*) P, (int*) S, (int*) resAdd1, n / 2);
+ add((int*) resAdd1, (int*) V, (int*) resAdd2, n / 2);
+ sub((int*) resAdd2, (int*) T, (int*) C11, n / 2);
+
+ add((int*) P, (int*) R, (int*) resAdd1, n / 2);
+ add((int*) resAdd1, (int*) U, (int*) resAdd2, n / 2);
+ sub((int*) resAdd2, (int*) Q, (int*) C22, n / 2);
+
+ free(P);
+ free(Q);
+ free(R);
+ free(S);
+ free(T);
+ free(U);
+ free(V);
+ free(resAdd1);
+ free(resAdd2);
+
+ join((int*) C11, (int*) C, n / 2, 0, 0);
+ join((int*) C12, (int*) C, n / 2, 0, n / 2);
+ join((int*) C21, (int*) C, n / 2, n / 2, 0);
+ join((int*) C22, (int*) C, n / 2, n / 2, n / 2);
+
+ free(C11);
+ free(C12);
+ free(C21);
+ free(C22);
+ }
+}
+
+void add(int *A, int *B, int *C, int n) {
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n; j++) {
+ *((C + i * n) + j) = *((A + i * n) + j) + *((B + i * n) + j);
+ }
+ }
+}
+
+void sub(int *A, int *B, int *C, int n) {
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n; j++) {
+ *((C + i * n) + j) = *((A + i * n) + j) - *((B + i * n) + j);
+ }
+ }
+}
+
+void multiply(int *A, int *B, int *C, int n) {
+ int mul;
+
+ for (int i = 0; i < n; ++i) {
+ for (int j = 0; j < n; ++j) {
+ mul = (*((A + i * n) + j)) * (*((B + i * n) + j));
+ *((C + i * n) + j) = mul;
+ }
+ }
+}
+
+void split(int *in, int *out, int n, int col, int row) {
+ for (int i1 = 0, i2 = col; i1 < n; i1++, i2++)
+ for (int j1 = 0, j2 = row; j1 < n; j1++, j2++) {
+ *((out + i1 * n) + j1) = *((in + i2 * n * 2) + j2);
+
+ }
+}
+
+void join(int *in, int *out, int n, int col, int row) {
+ for (int i1 = 0, i2 = col; i1 < n; i1++, i2++)
+ for (int j1 = 0, j2 = row; j1 < n; j1++, j2++)
+ *((out + i2 * n * 2) + j2) = *((in + i1 * n) + j1);
+}
+
+void printMatrix(int *C, int n) {
+ for (int i = 0; i < n; ++i) {
+ for (int j = 0; j < n; ++j) {
+ printf("%d ", *((C + i * n) + j));
+ }
+ printf("\n");
+ }
+}
+
+void printMatrix_double(double *C, int n) {
+ for (int i = 0; i < n; ++i) {
+ for (int j = 0; j < n; ++j) {
+ printf("%.0f ", *((C + i * n) + j));
+ }
+ printf("\n");
+ }
+}
+
+void run_algo(void (*algo)(), char alog_name[], int print)
+{
+ FILE *fptr;
+
+ char fileName[40] = "meas/";
+ strcat(fileName, alog_name);
+ strcat(fileName, ".txt");
+ fptr = fopen(fileName, "w");
+
+
+ for(int i=0; i<n_arrays; ++i)
+ {
+ for(int j = 0; j<1; ++j)
+ {
+ int *C = (int*) malloc(n[i] * n[i] * sizeof(int));
+ double dtime = omp_get_wtime();
+ algo(Ap[i], Bp[i], (int*) C, n[i]);
+ dtime = omp_get_wtime() - dtime;
+ // printf("The %s program took %f seconds to execute \n", alog_name, dtime);
+ fprintf(fptr, "%f,%d\n", dtime, n[i]);
+
+ if(print==1)
+ {
+ printMatrix((int*)C, n[i]);
+ }
+ free(C);
+ }
+ }
+ fclose(fptr);
+
+}
+
+void run_algo_cblas(int print)
+{
+
+ FILE *fptr;
+
+ fptr = fopen("meas/blas.txt", "w");
+ for(int i=0; i<n_arrays; ++i)
+ {
+ for(int j = 0; j<1; ++j)
+ {
+ double *dC = (double*) malloc(n[i] * n[i] * sizeof(double));
+ double dtime = omp_get_wtime();
+ cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, n[i], n[i], n[i], 1.0, dAp[i], n[i],
+ dBp[i], n[i], 0.0, dC, n[i]);
+ dtime = omp_get_wtime() - dtime;
+ // printf("The cblas program took %f seconds to execute \n", dtime);
+ fprintf(fptr, "%f,%d\n",dtime, n[i]);
+
+ if(print==1)
+ {
+ printMatrix_double( (double*)dC, n[i]);
+ }
+
+ free(dC);
+ }
+ }
+ fclose(fptr);
+
+}
diff --git a/buch/papers/multiplikation/code/MM.py b/buch/papers/multiplikation/code/MM.py
new file mode 100644
index 0000000..626b82d
--- /dev/null
+++ b/buch/papers/multiplikation/code/MM.py
@@ -0,0 +1,311 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 19 07:31:29 2021
+
+@author: nunigan
+"""
+import numpy as np
+import time
+import matplotlib.pyplot as plt
+from scipy.optimize import curve_fit
+import tikzplotlib
+def MM(A, B):
+ n = np.shape(A)[0]
+ C = np.zeros((n, n))
+ for i in range(n):
+ for j in range(n):
+ C[i, j] = 0
+ for k in range(n):
+ C[i, j] += A[i, k]*B[k, j]
+ return C
+
+
+def MM_dc(A, B):
+ n = np.shape(A)[0]
+ if(n <= 2):
+ C = np.zeros((n, n))
+ C[0, 0] = A[0, 0]*B[0, 0]+A[0, 1]*B[1, 0]
+ C[0, 1] = A[0, 0]*B[0, 1]+A[0, 1]*B[1, 1]
+ C[1, 0] = A[1, 0]*B[0, 0]+A[1, 1]*B[1, 0]
+ C[1, 1] = A[1, 0]*B[0, 1]+A[1, 1]*B[1, 1]
+ return C
+ else:
+ A11, A12, A21, A22 = A[:n//2, :n//2], A[:n//2, n//2:], A[n//2:, :n//2], A[n//2:, n//2:]
+ B11, B12, B21, B22 = B[:n//2, :n//2], B[:n//2, n//2:], B[n//2:, :n//2], B[n//2:, n//2:]
+ C11 = MM_dc(A11, B11) + MM_dc(A12, B21)
+ C12 = MM_dc(A11, B12) + MM_dc(A12, B22)
+ C21 = MM_dc(A21, B11) + MM_dc(A22, B21)
+ C22 = MM_dc(A21, B12) + MM_dc(A22, B22)
+ C = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
+ return C
+
+
+def strassen(A, B):
+ n = np.shape(A)[0]
+ if(n <= 2):
+ C = np.zeros((n, n))
+ P = (A[0, 0]+A[1, 1])*(B[0, 0]+B[1, 1])
+ Q = (A[1, 0]+A[1, 1])*B[0, 0]
+ R = A[0, 0]*(B[0, 1]-B[1, 1])
+ S = A[1, 1]*(B[1, 0]-B[0, 0])
+ T = (A[0, 0]+A[0, 1])*B[1, 1]
+ U = (A[1, 0]-A[0, 0])*(B[0, 0]+B[0, 1])
+ V = (A[0, 1]-A[1, 1])*(B[1, 0]+B[1, 1])
+ C[0, 0] = P+S-T+V
+ C[0, 1] = R+T
+ C[1, 0] = Q+S
+ C[1, 1] = P+R-Q+U
+ return C
+ else:
+ m = n//2
+ A11, A12, A21, A22 = A[:m, :m], A[:m, m:], A[m:, :m], A[m:, m:]
+ B11, B12, B21, B22 = B[:m, :m], B[:m, m:], B[m:, :m], B[m:, m:]
+ P = strassen((A11+A22),(B11+B22))
+ Q = strassen((A21+A22),B11)
+ R = strassen(A11,(B12-B22))
+ S = strassen(A22,(B21-B11))
+ T = strassen((A11+A12),B22)
+ U = strassen((A21-A11),(B11+B12))
+ V = strassen((A12-A22),(B21+B22))
+
+ C11 = P+S-T+V
+ C12 = R+T
+ C21 = Q+S
+ C22 = P+R-Q+U
+
+ C = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
+ return C
+
+def winograd_inner(a, b):
+ n = np.shape(a)[0]
+ if n%2 == 0:
+ xi = np.sum(a[::2]*a[1::2])
+ etha = np.sum(b[::2]*b[1::2])
+ # print("xi = {}, etha = {}".format(xi, etha))
+ ab = np.sum((a[::2]+b[1::2])*(a[1::2]+b[::2]))-xi-etha
+ else:
+ xi = np.sum(a[0:-1:2]*a[1::2])
+ etha = np.sum(b[0:-1:2]*b[1::2])
+ ab = np.sum((a[0:-1:2]+b[1::2])*(a[1::2]+b[0:-1:2]))-xi-etha+a[-1]*b[-1]
+ return ab
+
+def winograd(A, B):
+ m,n = np.shape(A)
+ n2,p = np.shape(B)
+ C = np.zeros((m,p))
+ for i in range(np.shape(A)[0]):
+ for j in range(np.shape(B)[1]):
+ C[i,j] = winograd_inner(A[i,:], B[:,j])
+ return C
+
+def winograd2(A, B):
+ m,n = np.shape(A)
+ n2,p = np.shape(B)
+ C = np.zeros((m,p))
+ xi = np.zeros((m))
+ eta = np.zeros((p))
+ ab = 0
+ for i in range(m):
+ for j in range(n//2):
+ xi[i] += A[i,2*j]*A[i,2*j+1]
+
+ for i in range(p):
+ for j in range(n//2):
+ eta[i] += B[2*j,i]*B[2*j+1,i]
+
+ if n%2==0:
+ for i in range(m):
+ for j in range(p):
+ ab = 0
+ for k in range(n//2):
+ ab += (A[i,2*k]+B[2*k+1,j])*(A[i,2*k+1]+B[2*k,j])
+ C[i,j] = ab-eta[j]-xi[i]
+ else:
+ for i in range(m):
+ for j in range(p):
+ ab = 0
+ for k in range(n//2):
+ ab += (A[i,2*k]+B[2*k+1,j])*(A[i,2*k+1]+B[2*k,j])
+ C[i,j] = ab-eta[j]-xi[i]+A[i,-1]*B[-1,j]
+
+ return C
+
+def test_perfomance(n):
+ t_mm = []
+ t_mm_dc = []
+ t_mm_strassen = []
+ t_wino = []
+ t_np = []
+
+ for i in n:
+ A = np.random.randn(i, i)
+ B = np.random.randn(i, i)
+ # A = np.random.randint(-100, 100,(i, i))
+ # B = np.random.randint(-100, 100,(i, i))
+
+ start = time.time()
+ C3 = strassen(A, B)
+ t_mm_strassen.append(time.time() - start)
+
+ start = time.time()
+ C1 = MM(A, B)
+ t_mm.append(time.time() - start)
+
+ start = time.time()
+ C2 = MM_dc(A, B)
+ t_mm_dc.append(time.time() - start)
+
+ start = time.time()
+ C4 = winograd2(A, B)
+ t_wino.append(time.time() - start)
+
+ start = time.time()
+ C = A@B
+ t_np.append(time.time() - start)
+
+ plt.figure(figsize=(13,8))
+ plt.rcParams['font.family'] = 'STIXGeneral'
+ plt.rc('axes', labelsize=23)
+ plt.rc('xtick', labelsize=23)
+ plt.rc('ytick', labelsize=23)
+ plt.plot(n, t_mm, label='Standard', lw=5)
+ plt.plot(n, t_mm_dc, label='Divide and conquer', lw=5)
+ plt.plot(n, t_mm_strassen, label='Strassen', lw=5)
+ plt.plot(n, t_wino, label='Winograd', lw=5)
+ plt.plot(n, t_np, label='NumPy A@B', lw=5)
+ plt.legend()
+ plt.xlabel("n")
+ plt.ylabel("time (s)")
+ plt.grid(True)
+ plt.tight_layout()
+ # plt.yscale('log')
+ plt.legend(fontsize=19)
+ plt.savefig('meas_' + str(max(n))+ '.pdf')
+ arr = np.array([n, t_mm, t_mm_dc, t_mm_strassen, t_wino, t_np])
+ np.savetxt('meas_' + str(max(n))+ '.txt',arr)
+ return arr
+
+
+def plot(num):
+ arr = np.loadtxt('meas_{}.txt'.format(num))
+ n, t_mm, t_mm_dc, t_mm_strassen, t_wino, t_np = arr
+ plt.figure(figsize=(13,8))
+ plt.rcParams['font.family'] = 'STIXGeneral'
+ plt.rc('axes', labelsize=23)
+ plt.rc('xtick', labelsize=23)
+ plt.rc('ytick', labelsize=23)
+ plt.plot(n, t_mm, label='3 For Loops', lw=5)
+ plt.plot(n, t_mm_dc, label='Divide and Conquer', lw=5)
+ plt.plot(n, t_mm_strassen, label='Strassen', lw=5)
+ # plt.plot(n, t_wino, label='Winograd', lw=5)
+ plt.plot(n, t_np, label='NumPy A@B', lw=5)
+ plt.legend()
+ plt.xlabel("n")
+ plt.ylabel("time (s)")
+ plt.grid(True)
+ plt.tight_layout()
+ # plt.yscale('log')
+ plt.legend(fontsize=19)
+ plt.savefig('meas_' + str(num)+ '.pdf')
+ return arr
+
+def plot_c_res(ave, num):
+ MM = np.loadtxt("meas/MM.txt", delimiter=',')
+ # winograd = np.loadtxt("meas/winograd.txt", delimiter=',')
+ blas = np.loadtxt("meas/blas.txt", delimiter=',')
+ MM_dc = np.loadtxt("meas/MM_dc.txt", delimiter=',')
+ strassen = np.loadtxt("meas/strassen.txt", delimiter=',')
+
+ MM_t = MM[:,0]
+ MM_n = MM[:,1]
+ MM_t = np.mean(MM_t.reshape(-1,ave),axis=1)
+ MM_n = np.mean(MM_n.reshape(-1,ave),axis=1)
+
+ MM_dc_t = MM_dc[:,0]
+ MM_dc_n = MM_dc[:,1]
+ MM_dc_t = np.mean(MM_dc_t.reshape(-1,ave),axis=1)
+ MM_dc_n = np.mean(MM_dc_n.reshape(-1,ave),axis=1)
+
+ strassen_t = strassen[:,0]
+ strassen_n = strassen[:,1]
+ strassen_t = np.mean(strassen_t.reshape(-1,ave),axis=1)
+ strassen_n = np.mean(strassen_n.reshape(-1,ave),axis=1)
+
+ # winograd_t = winograd[:,0]
+ # winograd_n = winograd[:,1]
+ # winograd_t = np.mean(winograd_t.reshape(-1,ave),axis=1)
+ # winograd_n = np.mean(winograd_n.reshape(-1,ave),axis=1)
+
+ blas_t = blas[:,0]
+ blas_n = blas[:,1]
+ blas_t = np.mean(blas_t.reshape(-1,ave),axis=1)
+ blas_n = np.mean(blas_n.reshape(-1,ave),axis=1)
+
+ def func(x, a,b):
+ return b*x**a
+
+ # popt, pcov = curve_fit(func, blas_n, blas_t)
+ # popt1, pcov2 = curve_fit(func, blas_n, winograd_t)
+ # popt2, pcov2 = curve_fit(func, blas_n, MM_t)
+
+ plt.figure(figsize=(13,8))
+ plt.rcParams['font.family'] = 'STIXGeneral'
+ plt.rc('axes', labelsize=23)
+ plt.rc('xtick', labelsize=23)
+ plt.rc('ytick', labelsize=23)
+ plt.plot(MM_n, MM_t, label='3 For Loops', lw=5)
+ # plt.plot(winograd_n, winograd_t, label='Winograd MM', lw=5)
+ plt.plot(blas_n, blas_t, label='Blas', lw=5)
+ plt.plot(strassen_n, strassen_t, label='Strassen', lw=5)
+ plt.plot(MM_dc_n, MM_dc_t, label='Divide and Conquer', lw=5)
+ plt.xlabel("n")
+ plt.ylabel("time (s)")
+ plt.grid(True)
+ plt.tight_layout()
+ plt.legend(fontsize=19)
+ plt.savefig('c_meas_' + str(num)+ '.pdf')
+
+ # plt.plot(blas_n, func(blas_n, *popt), 'r-', label='fit blas: a=%5.5f, b=%5.10f' % tuple(popt))
+ # plt.plot(blas_n, func(blas_n, *popt1), 'r-', label='fit winograd: a=%5.5f, b=%5.10f' % tuple(popt1))
+ # plt.plot(blas_n, func(blas_n, *popt2), 'r-', label='fit MM: a=%5.5f, b=%5.10f' % tuple(popt2))
+
+ plt.legend()
+
+
+# test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+if __name__ == '__main__':
+ plot_c_res(1, 4096)
+
+
+ # plot(8)
+ # n = np.logspace(1,10,10,base=2,dtype=(np.int))
+ # n = np.arange(1,50,2)
+ A = np.random.randint(-10, 10, (5,3))
+ B = np.random.randint(-10, 10, (3,5))
+
+ C = winograd2(A, B)
+ C_test = A@B
+ print(C)
+ print(C_test)
+ # print(np.equal(C, C_test))
+
+ # t_np = test_perfomance(n)
+ # C = strassen(A, B)
+ # C_test = A@B
+
+
+ # plot_c_res()
+ # def func(x, a):
+ # return x**a
+
+ # popt, pcov = curve_fit(func, n, t_np, bounds=(2, 3))
+
+
+ # plt.figure()
+ # plt.plot(n, t_np, 'b-', label='data')
+ # plt.plot(n, func(n, *popt), 'r-', label='fit: a=%5.3f' % tuple(popt))
+ # plt.xlabel('x')
+ # plt.ylabel('y')
+ # plt.legend()
+ \ No newline at end of file
diff --git a/buch/papers/multiplikation/code/__pycache__/MM.cpython-38.pyc b/buch/papers/multiplikation/code/__pycache__/MM.cpython-38.pyc
new file mode 100644
index 0000000..7768772
--- /dev/null
+++ b/buch/papers/multiplikation/code/__pycache__/MM.cpython-38.pyc
Binary files differ
diff --git a/buch/papers/multiplikation/code/c_matrix.h b/buch/papers/multiplikation/code/c_matrix.h
new file mode 100644
index 0000000..13df55d
--- /dev/null
+++ b/buch/papers/multiplikation/code/c_matrix.h
@@ -0,0 +1,101 @@
+/* Seminar Matrizen, autogenerated File, Michael Schmid, 30/05/2021, 22:00:57 */
+
+#include <stdint.h>
+const int A0[][2] =
+ {
+ {-15,68},
+ {49,86}
+ };
+const int B0[][2] =
+ {
+ {33,73},
+ {38,-76}
+ };
+const double dB0[][2] =
+ {
+ {33,73},
+ {38,-76}
+ };
+const double dA0[][2] =
+ {
+ {-15,68},
+ {49,86}
+ };
+const int A1[][4] =
+ {
+ {75,-38,-32,-65},
+ {37,74,-31,29},
+ {15,-62,-20,-20},
+ {-31,-35,-89,47}
+ };
+const int B1[][4] =
+ {
+ {71,90,78,-98},
+ {4,63,12,-47},
+ {11,-44,75,-69},
+ {95,-15,64,23}
+ };
+const double dB1[][4] =
+ {
+ {71,90,78,-98},
+ {4,63,12,-47},
+ {11,-44,75,-69},
+ {95,-15,64,23}
+ };
+const double dA1[][4] =
+ {
+ {75,-38,-32,-65},
+ {37,74,-31,29},
+ {15,-62,-20,-20},
+ {-31,-35,-89,47}
+ };
+const int A2[][8] =
+ {
+ {80,42,3,-16,6,55,87,16},
+ {-99,-14,21,-1,-94,-56,91,10},
+ {-47,-55,-59,62,12,-53,87,-65},
+ {-60,94,-67,23,-62,33,-63,-72},
+ {12,-75,16,21,22,-37,1,16},
+ {-100,-99,82,-66,2,64,-13,44},
+ {59,-100,-90,8,36,-24,18,88},
+ {73,-58,75,-100,-19,-29,85,-19}
+ };
+const int B2[][8] =
+ {
+ {-61,88,69,49,-53,47,73,45},
+ {16,14,-88,-11,-67,-73,-20,43},
+ {-60,-63,26,32,-29,18,-44,-69},
+ {1,21,21,38,7,-100,-61,-76},
+ {-90,95,-99,88,49,-80,27,-36},
+ {24,-12,-47,-7,29,15,52,37},
+ {-98,-76,29,76,-41,-75,97,79},
+ {62,-90,-35,-14,-30,-42,-95,52}
+ };
+const double dB2[][8] =
+ {
+ {-61,88,69,49,-53,47,73,45},
+ {16,14,-88,-11,-67,-73,-20,43},
+ {-60,-63,26,32,-29,18,-44,-69},
+ {1,21,21,38,7,-100,-61,-76},
+ {-90,95,-99,88,49,-80,27,-36},
+ {24,-12,-47,-7,29,15,52,37},
+ {-98,-76,29,76,-41,-75,97,79},
+ {62,-90,-35,-14,-30,-42,-95,52}
+ };
+const double dA2[][8] =
+ {
+ {80,42,3,-16,6,55,87,16},
+ {-99,-14,21,-1,-94,-56,91,10},
+ {-47,-55,-59,62,12,-53,87,-65},
+ {-60,94,-67,23,-62,33,-63,-72},
+ {12,-75,16,21,22,-37,1,16},
+ {-100,-99,82,-66,2,64,-13,44},
+ {59,-100,-90,8,36,-24,18,88},
+ {73,-58,75,-100,-19,-29,85,-19}
+ };
+const int *Ap[3] = {(int*) A0,(int*) A1,(int*) A2};
+const int *Bp[3] = {(int*) B0,(int*) B1,(int*) B2};
+const double *dAp[3] = {(double*) dA0,(double*) dA1,(double*) dA2};
+const double *dBp[3] = {(double*) dB0,(double*) dB1,(double*) dB2};
+int n[3] = {2,4,8};
+int n_arrays = 3;
diff --git a/buch/papers/multiplikation/code/c_meas_1024.pdf b/buch/papers/multiplikation/code/c_meas_1024.pdf
new file mode 100644
index 0000000..95b68b5
--- /dev/null
+++ b/buch/papers/multiplikation/code/c_meas_1024.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/c_meas_128.pdf b/buch/papers/multiplikation/code/c_meas_128.pdf
new file mode 100644
index 0000000..56b9200
--- /dev/null
+++ b/buch/papers/multiplikation/code/c_meas_128.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/c_meas_16.pdf b/buch/papers/multiplikation/code/c_meas_16.pdf
new file mode 100644
index 0000000..2edc82d
--- /dev/null
+++ b/buch/papers/multiplikation/code/c_meas_16.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/c_meas_2048.pdf b/buch/papers/multiplikation/code/c_meas_2048.pdf
new file mode 100644
index 0000000..caba698
--- /dev/null
+++ b/buch/papers/multiplikation/code/c_meas_2048.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/c_meas_256.pdf b/buch/papers/multiplikation/code/c_meas_256.pdf
new file mode 100644
index 0000000..383ae86
--- /dev/null
+++ b/buch/papers/multiplikation/code/c_meas_256.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/c_meas_32.pdf b/buch/papers/multiplikation/code/c_meas_32.pdf
new file mode 100644
index 0000000..180fd22
--- /dev/null
+++ b/buch/papers/multiplikation/code/c_meas_32.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/c_meas_4096.pdf b/buch/papers/multiplikation/code/c_meas_4096.pdf
new file mode 100644
index 0000000..547d794
--- /dev/null
+++ b/buch/papers/multiplikation/code/c_meas_4096.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/c_meas_512.pdf b/buch/papers/multiplikation/code/c_meas_512.pdf
new file mode 100644
index 0000000..5e8894e
--- /dev/null
+++ b/buch/papers/multiplikation/code/c_meas_512.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/c_meas_64.pdf b/buch/papers/multiplikation/code/c_meas_64.pdf
new file mode 100644
index 0000000..8ff905c
--- /dev/null
+++ b/buch/papers/multiplikation/code/c_meas_64.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/c_meas_8.pdf b/buch/papers/multiplikation/code/c_meas_8.pdf
new file mode 100644
index 0000000..9682aca
--- /dev/null
+++ b/buch/papers/multiplikation/code/c_meas_8.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/helper_class.py b/buch/papers/multiplikation/code/helper_class.py
new file mode 100755
index 0000000..485fa76
--- /dev/null
+++ b/buch/papers/multiplikation/code/helper_class.py
@@ -0,0 +1,105 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 12 09:02:48 2021
+
+@author: nunigan
+"""
+
+from datetime import datetime
+import numpy as np
+
+class Helper():
+ def __init__(self):
+ pass
+
+ def write_c_matrix(self, n_array):
+
+ with open('c_matrix.h', 'w') as file:
+ file.writelines('/* Seminar Matrizen, autogenerated File, Michael Schmid, {} */ \n \n'.format(datetime.now().strftime("%d/%m/%Y, %H:%M:%S")))
+
+ file.writelines('#include <stdint.h> \n')
+
+
+
+ for k, n in enumerate(n_array):
+ A = np.random.randint(-100,100,(n,n))
+ B = np.random.randint(-100,100,(n,n))
+ file.writelines('const int A{}[][{}] = \n'.format(k, n))
+ file.writelines(' {\n')
+ for i in range(n):
+ file.writelines(' {')
+ for j in range(n):
+ if j == n-1:
+ file.writelines('{}'.format(A[i,j]))
+ else:
+ file.writelines('{},'.format(A[i,j]))
+ if i == n-1:
+ file.writelines('}\n')
+ else:
+ file.writelines('},\n')
+
+ file.writelines(' };\n')
+
+ file.writelines('const int B{}[][{}] = \n'.format(k,n))
+ file.writelines(' {\n')
+ for i in range(n):
+ file.writelines(' {')
+ for j in range(n):
+ if j == n-1:
+ file.writelines('{}'.format(B[i,j]))
+ else:
+ file.writelines('{},'.format(B[i,j]))
+ if i == n-1:
+ file.writelines('}\n')
+ else:
+ file.writelines('},\n')
+
+ file.writelines(' };\n')
+
+ file.writelines('const double dB{}[][{}] = \n'.format(k,n))
+ file.writelines(' {\n')
+ for i in range(n):
+ file.writelines(' {')
+ for j in range(n):
+ if j == n-1:
+ file.writelines('{}'.format(B[i,j]))
+ else:
+ file.writelines('{},'.format(B[i,j]))
+ if i == n-1:
+ file.writelines('}\n')
+ else:
+ file.writelines('},\n')
+
+ file.writelines(' };\n')
+
+ file.writelines('const double dA{}[][{}] = \n'.format(k,n))
+ file.writelines(' {\n')
+ for i in range(n):
+ file.writelines(' {')
+ for j in range(n):
+ if j == n-1:
+ file.writelines('{}'.format(A[i,j]))
+ else:
+ file.writelines('{},'.format(A[i,j]))
+ if i == n-1:
+ file.writelines('}\n')
+ else:
+ file.writelines('},\n')
+
+ file.writelines(' };\n')
+
+ file.writelines('const int *Ap[{}] = {{{}}}; \n'.format(len(n_array),",".join(['(int*) A'+str(element) for element in np.arange(len(n_array))])))
+ file.writelines('const int *Bp[{}] = {{{}}}; \n'.format(len(n_array),",".join(['(int*) B'+str(element) for element in np.arange(len(n_array))])))
+ file.writelines('const double *dAp[{}] = {{{}}}; \n'.format(len(n_array),",".join(['(double*) dA'+str(element) for element in np.arange(len(n_array))])))
+ file.writelines('const double *dBp[{}] = {{{}}}; \n'.format(len(n_array),",".join(['(double*) dB'+str(element) for element in np.arange(len(n_array))])))
+ file.writelines('int n[{}] = {{{}}}; \n'.format(len(n_array),",".join([str(element) for element in n_array])))
+ file.writelines('int n_arrays = {};\n'.format(len(n_array)))
+
+# test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+if __name__ == '__main__':
+
+ helper = Helper()
+ # n = np.arange(2,10)
+ n = np.logspace(1,3,3,base=2,dtype=(np.int))
+ C = helper.write_c_matrix(n)
diff --git a/buch/papers/multiplikation/code/meas/MM.txt b/buch/papers/multiplikation/code/meas/MM.txt
new file mode 100644
index 0000000..1a0cd5d
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/MM.txt
@@ -0,0 +1,12 @@
+0.000000,2
+0.000000,4
+0.000002,8
+0.000011,16
+0.000080,32
+0.000653,64
+0.005397,128
+0.045147,256
+0.487710,512
+3.964180,1024
+128.863544,2048
+996.370209,4096
diff --git a/buch/papers/multiplikation/code/meas/MM_dc.txt b/buch/papers/multiplikation/code/meas/MM_dc.txt
new file mode 100644
index 0000000..0d5580a
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/MM_dc.txt
@@ -0,0 +1,12 @@
+0.000006,2
+0.000007,4
+0.000035,8
+0.000228,16
+0.001310,32
+0.007204,64
+0.034338,128
+0.267511,256
+2.131212,512
+17.177403,1024
+146.112874,2048
+1156.777565,4096
diff --git a/buch/papers/multiplikation/code/meas/blas.txt b/buch/papers/multiplikation/code/meas/blas.txt
new file mode 100644
index 0000000..6b7cd0b
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/blas.txt
@@ -0,0 +1,12 @@
+0.000001,2
+0.000000,4
+0.000001,8
+0.000003,16
+0.000021,32
+0.000164,64
+0.001240,128
+0.009657,256
+0.072523,512
+0.735149,1024
+6.895747,2048
+56.812183,4096
diff --git a/buch/papers/multiplikation/code/meas/strassen.txt b/buch/papers/multiplikation/code/meas/strassen.txt
new file mode 100644
index 0000000..89cf41a
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/strassen.txt
@@ -0,0 +1,12 @@
+0.000000,2
+0.000003,4
+0.000010,8
+0.000086,16
+0.000476,32
+0.003366,64
+0.025547,128
+0.184593,256
+1.248713,512
+9.007700,1024
+61.079879,2048
+424.493037,4096
diff --git a/buch/papers/multiplikation/code/meas/test/4096/MM.txt b/buch/papers/multiplikation/code/meas/test/4096/MM.txt
new file mode 100644
index 0000000..25e40e1
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/test/4096/MM.txt
@@ -0,0 +1,12 @@
+0.000000,2
+0.000000,4
+0.000002,8
+0.000011,16
+0.000100,32
+0.000712,64
+0.005498,128
+0.046711,256
+0.489233,512
+4.006544,1024
+124.427496,2048
+993.405615,4096
diff --git a/buch/papers/multiplikation/code/meas/test/4096/strassen.txt b/buch/papers/multiplikation/code/meas/test/4096/strassen.txt
new file mode 100644
index 0000000..eb2a496
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/test/4096/strassen.txt
@@ -0,0 +1,12 @@
+0.000007,2
+0.000007,4
+0.000029,8
+0.000199,16
+0.001414,32
+0.007583,64
+0.028096,128
+0.171662,256
+1.198323,512
+8.421896,1024
+58.803644,2048
+415.115401,4096
diff --git a/buch/papers/multiplikation/code/meas/test/MM.txt b/buch/papers/multiplikation/code/meas/test/MM.txt
new file mode 100644
index 0000000..e0754ab
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/test/MM.txt
@@ -0,0 +1,14900 @@
+0.000004,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000001,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000001,8
+0.000002,8
+0.000002,8
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000006,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000013,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000008,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000016,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000007,14
+0.000011,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000025,16
+0.000011,16
+0.000020,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000010,16
+0.000016,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000014,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000014,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000015,18
+0.000014,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000015,18
+0.000014,18
+0.000021,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000030,20
+0.000029,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000030,20
+0.000030,20
+0.000029,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000048,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000020,20
+0.000027,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000033,22
+0.000040,22
+0.000045,22
+0.000046,22
+0.000041,22
+0.000040,22
+0.000040,22
+0.000040,22
+0.000042,22
+0.000040,22
+0.000043,22
+0.000030,22
+0.000036,22
+0.000026,22
+0.000037,22
+0.000049,22
+0.000036,22
+0.000046,22
+0.000047,22
+0.000049,22
+0.000037,22
+0.000035,22
+0.000037,22
+0.000050,22
+0.000055,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000036,22
+0.000036,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000026,22
+0.000036,22
+0.000046,22
+0.000062,22
+0.000047,22
+0.000036,22
+0.000047,22
+0.000041,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000050,24
+0.000053,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000055,24
+0.000058,26
+0.000055,26
+0.000077,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000052,26
+0.000043,26
+0.000043,26
+0.000066,26
+0.000061,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000054,28
+0.000054,28
+0.000053,28
+0.000053,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000065,28
+0.000066,28
+0.000058,28
+0.000097,28
+0.000084,28
+0.000073,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000053,28
+0.000054,28
+0.000054,28
+0.000073,28
+0.000054,28
+0.000053,28
+0.000054,28
+0.000054,28
+0.000053,28
+0.000073,28
+0.000054,28
+0.000064,28
+0.000063,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000073,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000082,28
+0.000063,28
+0.000083,28
+0.000063,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000069,30
+0.000066,30
+0.000066,30
+0.000074,30
+0.000103,30
+0.000108,30
+0.000107,30
+0.000112,30
+0.000111,30
+0.000087,30
+0.000105,30
+0.000076,30
+0.000066,30
+0.000107,30
+0.000119,30
+0.000105,30
+0.000117,30
+0.000077,30
+0.000077,30
+0.000069,30
+0.000069,30
+0.000069,30
+0.000069,30
+0.000079,30
+0.000069,30
+0.000069,30
+0.000069,30
+0.000069,30
+0.000069,30
+0.000069,30
+0.000069,30
+0.000069,30
+0.000077,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000096,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000085,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000089,30
+0.000066,30
+0.000066,30
+0.000066,30
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000079,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000102,32
+0.000091,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000090,32
+0.000119,32
+0.000129,32
+0.000134,32
+0.000095,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000100,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000102,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000100,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000100,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000114,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000080,32
+0.000098,34
+0.000096,34
+0.000106,34
+0.000124,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000134,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000131,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000119,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000154,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000116,36
+0.000153,36
+0.000133,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000123,36
+0.000142,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000150,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000113,36
+0.000143,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000143,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000143,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000145,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000161,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000180,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000141,38
+0.000143,38
+0.000168,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000168,40
+0.000164,40
+0.000165,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000166,40
+0.000164,40
+0.000268,40
+0.000164,40
+0.000164,40
+0.000165,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000188,40
+0.000183,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000174,40
+0.000293,40
+0.000184,40
+0.000164,40
+0.000164,40
+0.000170,40
+0.000234,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000195,40
+0.000174,40
+0.000164,40
+0.000214,40
+0.000234,40
+0.000203,40
+0.000164,40
+0.000183,40
+0.000183,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000186,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000164,40
+0.000190,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000200,42
+0.000198,42
+0.000215,42
+0.000258,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000231,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000201,42
+0.000252,42
+0.000189,42
+0.000189,42
+0.000347,42
+0.000296,42
+0.000208,42
+0.000194,42
+0.000195,42
+0.000213,42
+0.000215,42
+0.000323,42
+0.000235,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000199,42
+0.000220,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000199,42
+0.000240,42
+0.000189,42
+0.000222,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000209,42
+0.000199,42
+0.000194,42
+0.000194,42
+0.000194,42
+0.000194,42
+0.000194,42
+0.000194,42
+0.000194,42
+0.000194,42
+0.000194,42
+0.000202,42
+0.000223,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000189,42
+0.000222,44
+0.000216,44
+0.000217,44
+0.000216,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000216,44
+0.000217,44
+0.000288,44
+0.000228,44
+0.000216,44
+0.000217,44
+0.000254,44
+0.000216,44
+0.000216,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000216,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000216,44
+0.000216,44
+0.000268,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000216,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000256,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000254,44
+0.000255,44
+0.000217,44
+0.000216,44
+0.000216,44
+0.000216,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000216,44
+0.000240,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000216,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000216,44
+0.000217,44
+0.000245,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000216,44
+0.000217,44
+0.000217,44
+0.000216,44
+0.000217,44
+0.000217,44
+0.000217,44
+0.000250,46
+0.000246,46
+0.000246,46
+0.000249,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000257,46
+0.000275,46
+0.000303,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000285,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000250,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000252,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000253,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000253,46
+0.000257,46
+0.000277,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000285,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000246,46
+0.000250,46
+0.000286,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000279,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000279,48
+0.000280,48
+0.000286,48
+0.000280,48
+0.000280,48
+0.000279,48
+0.000279,48
+0.000279,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000279,48
+0.000284,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000279,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000279,48
+0.000280,48
+0.000280,48
+0.000279,48
+0.000284,48
+0.000280,48
+0.000280,48
+0.000290,48
+0.000311,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000318,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000281,48
+0.000279,48
+0.000280,48
+0.000279,48
+0.000280,48
+0.000280,48
+0.000279,48
+0.000280,48
+0.000279,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000283,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000281,48
+0.000321,48
+0.000280,48
+0.000332,48
+0.000316,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000279,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000280,48
+0.000334,48
+0.000343,48
+0.000319,50
+0.000338,50
+0.000315,50
+0.000431,50
+0.000315,50
+0.000335,50
+0.000315,50
+0.000446,50
+0.000315,50
+0.000315,50
+0.000351,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000359,50
+0.000315,50
+0.000343,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000355,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000352,50
+0.000315,50
+0.000315,50
+0.000325,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000326,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000354,50
+0.000339,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000343,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000334,50
+0.000376,50
+0.000317,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000315,50
+0.000319,50
+0.000315,50
+0.000359,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000354,52
+0.000353,52
+0.000362,52
+0.000353,52
+0.000354,52
+0.000356,52
+0.000392,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000354,52
+0.000353,52
+0.000354,52
+0.000354,52
+0.000358,52
+0.000353,52
+0.000354,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000354,52
+0.000353,52
+0.000354,52
+0.000355,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000354,52
+0.000357,52
+0.000353,52
+0.000354,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000354,52
+0.000353,52
+0.000354,52
+0.000362,52
+0.000356,52
+0.000354,52
+0.000353,52
+0.000392,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000358,52
+0.000353,52
+0.000353,52
+0.000354,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000354,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000355,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000358,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000353,52
+0.000355,52
+0.000409,54
+0.000395,54
+0.000395,54
+0.000405,54
+0.000423,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000400,54
+0.000394,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000396,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000394,54
+0.000395,54
+0.000395,54
+0.000396,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000394,54
+0.000395,54
+0.000395,54
+0.000398,54
+0.000395,54
+0.000403,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000434,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000397,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000399,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000395,54
+0.000421,54
+0.000395,54
+0.000395,54
+0.000473,54
+0.000404,54
+0.000419,54
+0.000415,54
+0.000419,54
+0.000408,54
+0.000443,54
+0.000419,54
+0.000395,54
+0.000419,54
+0.000434,54
+0.000409,54
+0.000467,54
+0.000462,54
+0.000429,54
+0.000395,54
+0.000440,54
+0.000415,54
+0.000395,54
+0.000497,54
+0.000415,54
+0.000395,54
+0.000436,54
+0.000395,54
+0.000395,54
+0.000431,54
+0.000395,54
+0.000444,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000469,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000463,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000448,56
+0.000439,56
+0.000439,56
+0.000523,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000472,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000535,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000461,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000450,56
+0.000439,56
+0.000468,56
+0.000478,56
+0.000439,56
+0.000439,56
+0.000440,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000441,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000461,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000457,56
+0.000451,56
+0.000451,56
+0.000448,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000439,56
+0.000470,56
+0.000439,56
+0.000439,56
+0.000537,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000512,58
+0.000500,58
+0.000497,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000529,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000491,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000511,58
+0.000496,58
+0.000487,58
+0.000487,58
+0.000526,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000492,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000489,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000489,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000491,58
+0.000487,58
+0.000495,58
+0.000487,58
+0.000487,58
+0.000526,58
+0.000487,58
+0.000487,58
+0.000489,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000521,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000487,58
+0.000545,58
+0.000521,58
+0.000511,58
+0.000557,58
+0.000544,58
+0.000531,58
+0.000500,58
+0.000498,58
+0.000539,58
+0.000521,58
+0.000517,58
+0.000549,58
+0.000508,58
+0.000576,60
+0.000609,60
+0.000601,60
+0.000538,60
+0.000538,60
+0.000582,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000543,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000540,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000542,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000546,60
+0.000538,60
+0.000579,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000569,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000570,60
+0.000567,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000542,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000546,60
+0.000538,60
+0.000541,60
+0.000577,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000543,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000540,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000542,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000548,60
+0.000609,60
+0.000538,60
+0.000570,60
+0.000538,60
+0.000558,60
+0.000558,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000538,60
+0.000542,60
+0.000538,60
+0.000597,62
+0.000593,62
+0.000593,62
+0.000595,62
+0.000593,62
+0.000594,62
+0.000593,62
+0.000592,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000597,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000633,62
+0.000595,62
+0.000601,62
+0.000593,62
+0.000632,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000598,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000595,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000594,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000597,62
+0.000593,62
+0.000601,62
+0.000593,62
+0.000632,62
+0.000593,62
+0.000595,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000597,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000606,62
+0.000668,62
+0.000617,62
+0.000617,62
+0.000637,62
+0.000607,62
+0.000634,62
+0.000625,62
+0.000608,62
+0.000667,62
+0.000634,62
+0.000653,62
+0.000683,62
+0.000625,62
+0.000593,62
+0.000593,62
+0.000635,62
+0.000593,62
+0.000593,62
+0.000633,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000593,62
+0.000613,62
+0.000677,62
+0.000746,62
+0.000613,62
+0.000749,62
+0.000623,62
+0.000612,62
+0.000593,62
+0.000632,62
+0.000593,62
+0.000612,62
+0.000658,64
+0.000681,64
+0.000651,64
+0.000697,64
+0.000650,64
+0.000650,64
+0.000671,64
+0.000650,64
+0.000650,64
+0.000680,64
+0.000650,64
+0.000650,64
+0.000651,64
+0.000650,64
+0.000651,64
+0.000673,64
+0.000732,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000654,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000659,64
+0.000653,64
+0.000690,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000655,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000652,64
+0.000651,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000654,64
+0.000650,64
+0.000670,64
+0.000670,64
+0.000650,64
+0.000709,64
+0.000663,64
+0.000689,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000655,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000652,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000654,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000652,64
+0.000658,64
+0.000650,64
+0.000689,64
+0.000650,64
+0.000650,64
+0.000655,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000652,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000650,64
+0.000654,64
+0.000650,64
+0.000650,64
+0.000651,64
+0.000651,64
+0.000650,64
+0.000725,66
+0.000713,66
+0.000722,66
+0.000713,66
+0.000752,66
+0.000713,66
+0.000718,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000759,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000717,66
+0.000713,66
+0.000812,66
+0.000736,66
+0.000740,66
+0.000776,66
+0.000755,66
+0.000738,66
+0.000766,66
+0.000775,66
+0.000797,66
+0.000776,66
+0.000829,66
+0.000722,66
+0.000713,66
+0.000713,66
+0.000736,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000859,66
+0.000825,66
+0.000713,66
+0.000713,66
+0.000733,66
+0.000757,66
+0.000713,66
+0.000733,66
+0.000765,66
+0.000772,66
+0.000894,66
+0.000713,66
+0.000713,66
+0.000752,66
+0.000731,66
+0.000754,66
+0.000723,66
+0.000713,66
+0.000734,66
+0.000713,66
+0.000713,66
+0.000749,66
+0.000793,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000840,66
+0.000768,66
+0.000752,66
+0.000756,66
+0.000713,66
+0.000724,66
+0.000781,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000736,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000736,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000744,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000713,66
+0.000712,66
+0.000745,66
+0.000713,66
+0.000752,66
+0.000713,66
+0.000713,66
+0.000719,66
+0.000713,66
+0.000789,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000785,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000783,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000780,68
+0.000787,68
+0.000817,68
+0.000778,68
+0.000778,68
+0.000783,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000780,68
+0.000779,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000780,68
+0.000779,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000782,68
+0.000778,68
+0.000787,68
+0.000778,68
+0.000817,68
+0.000781,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000783,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000780,68
+0.000778,68
+0.000845,68
+0.000822,68
+0.000813,68
+0.000832,68
+0.000826,68
+0.000902,68
+0.000890,68
+0.000835,68
+0.000799,68
+0.000868,68
+0.000778,68
+0.000778,68
+0.000816,68
+0.000778,68
+0.000779,68
+0.000778,68
+0.000778,68
+0.000813,68
+0.000798,68
+0.000778,68
+0.000778,68
+0.000798,68
+0.000820,68
+0.000778,68
+0.000779,68
+0.000778,68
+0.000787,68
+0.000841,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000783,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000780,68
+0.000846,68
+0.000778,68
+0.000778,68
+0.000778,68
+0.000786,68
+0.000779,68
+0.000778,68
+0.000779,68
+0.000790,68
+0.000864,70
+0.000887,70
+0.000848,70
+0.000895,70
+0.000856,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000850,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000849,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000863,70
+0.000848,70
+0.000887,70
+0.000848,70
+0.000848,70
+0.000852,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000854,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000850,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000852,70
+0.000857,70
+0.000848,70
+0.000887,70
+0.000848,70
+0.000850,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000896,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000850,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000848,70
+0.000852,70
+0.000848,70
+0.000857,70
+0.000887,70
+0.000848,70
+0.000851,70
+0.001152,70
+0.000848,70
+0.000848,70
+0.000880,70
+0.001018,70
+0.000848,70
+0.001016,70
+0.000885,70
+0.000848,70
+0.000935,70
+0.000894,70
+0.000883,70
+0.000921,70
+0.000926,70
+0.000922,70
+0.001052,70
+0.000956,70
+0.000883,70
+0.001083,70
+0.000970,70
+0.001244,70
+0.000980,70
+0.000928,70
+0.000927,70
+0.000914,70
+0.000951,70
+0.000948,70
+0.000969,70
+0.000974,70
+0.000970,70
+0.001081,70
+0.001080,70
+0.000962,70
+0.000948,70
+0.000948,70
+0.000946,70
+0.000934,70
+0.000946,70
+0.001066,72
+0.001042,72
+0.001018,72
+0.001084,72
+0.001068,72
+0.001038,72
+0.001056,72
+0.001073,72
+0.001119,72
+0.001100,72
+0.001092,72
+0.001032,72
+0.001029,72
+0.001016,72
+0.001057,72
+0.001057,72
+0.001057,72
+0.001068,72
+0.001039,72
+0.001038,72
+0.001066,72
+0.001032,72
+0.001037,72
+0.001037,72
+0.001135,72
+0.001046,72
+0.001085,72
+0.001089,72
+0.001054,72
+0.001079,72
+0.001024,72
+0.001033,72
+0.001036,72
+0.001050,72
+0.000921,72
+0.001033,72
+0.001062,72
+0.000960,72
+0.000921,72
+0.001050,72
+0.001081,72
+0.001111,72
+0.001031,72
+0.001009,72
+0.001014,72
+0.000946,72
+0.001031,72
+0.000950,72
+0.001043,72
+0.000921,72
+0.000921,72
+0.001055,72
+0.000958,72
+0.001054,72
+0.001056,72
+0.000921,72
+0.000980,72
+0.001135,72
+0.001088,72
+0.001116,72
+0.000955,72
+0.000921,72
+0.001174,72
+0.000941,72
+0.000967,72
+0.001058,72
+0.000921,72
+0.000921,72
+0.000947,72
+0.001054,72
+0.000941,72
+0.001007,72
+0.001018,72
+0.001027,72
+0.000987,72
+0.001003,72
+0.001095,72
+0.000942,72
+0.001094,72
+0.000921,72
+0.000971,72
+0.000921,72
+0.000921,72
+0.000942,72
+0.000965,72
+0.000921,72
+0.000921,72
+0.000921,72
+0.000921,72
+0.000966,72
+0.000941,72
+0.000921,72
+0.000941,72
+0.000996,72
+0.000921,72
+0.000921,72
+0.000921,72
+0.000967,72
+0.000921,72
+0.000921,72
+0.001012,74
+0.001031,74
+0.000999,74
+0.001078,74
+0.000998,74
+0.001047,74
+0.000999,74
+0.000999,74
+0.000999,74
+0.001067,74
+0.001024,74
+0.000998,74
+0.000999,74
+0.001002,74
+0.000998,74
+0.000998,74
+0.000998,74
+0.001007,74
+0.000998,74
+0.000998,74
+0.000998,74
+0.001001,74
+0.000998,74
+0.000999,74
+0.001053,74
+0.001033,74
+0.001023,74
+0.000999,74
+0.000998,74
+0.001003,74
+0.000999,74
+0.000999,74
+0.000998,74
+0.001000,74
+0.000999,74
+0.000998,74
+0.000998,74
+0.001005,74
+0.000999,74
+0.000998,74
+0.000998,74
+0.001000,74
+0.001022,74
+0.001024,74
+0.000999,74
+0.001007,74
+0.000999,74
+0.000999,74
+0.000998,74
+0.001000,74
+0.000998,74
+0.000998,74
+0.000999,74
+0.001000,74
+0.000999,74
+0.000999,74
+0.000999,74
+0.001002,74
+0.001021,74
+0.000998,74
+0.001023,74
+0.001002,74
+0.000998,74
+0.000998,74
+0.000998,74
+0.001005,74
+0.000999,74
+0.000999,74
+0.000998,74
+0.001000,74
+0.000998,74
+0.000999,74
+0.001075,74
+0.001077,74
+0.001043,74
+0.001087,74
+0.001126,74
+0.001090,74
+0.001029,74
+0.001098,74
+0.001032,74
+0.000999,74
+0.000998,74
+0.001048,74
+0.001004,74
+0.000999,74
+0.000999,74
+0.000999,74
+0.001006,74
+0.000999,74
+0.000999,74
+0.001023,74
+0.001028,74
+0.000999,74
+0.000998,74
+0.000999,74
+0.001007,74
+0.000998,74
+0.000998,74
+0.000998,74
+0.001095,76
+0.001081,76
+0.001153,76
+0.001081,76
+0.001095,76
+0.001081,76
+0.001081,76
+0.001111,76
+0.001116,76
+0.001082,76
+0.001080,76
+0.001091,76
+0.001080,76
+0.001081,76
+0.001081,76
+0.001083,76
+0.001081,76
+0.001081,76
+0.001082,76
+0.001277,76
+0.001102,76
+0.001101,76
+0.001132,76
+0.001106,76
+0.001081,76
+0.001105,76
+0.001081,76
+0.001081,76
+0.001081,76
+0.001104,76
+0.001081,76
+0.001080,76
+0.001081,76
+0.001109,76
+0.001081,76
+0.001081,76
+0.001109,76
+0.001103,76
+0.001105,76
+0.001081,76
+0.001089,76
+0.001081,76
+0.001081,76
+0.001080,76
+0.001082,76
+0.001081,76
+0.001081,76
+0.001102,76
+0.001081,76
+0.001081,76
+0.001081,76
+0.001085,76
+0.001080,76
+0.001103,76
+0.001104,76
+0.001107,76
+0.001081,76
+0.001081,76
+0.001089,76
+0.001174,76
+0.001081,76
+0.001081,76
+0.001330,76
+0.001080,76
+0.001081,76
+0.001148,76
+0.001121,76
+0.001161,76
+0.001117,76
+0.001203,76
+0.001255,76
+0.001144,76
+0.001592,76
+0.002119,76
+0.002177,76
+0.001425,76
+0.001322,76
+0.001309,76
+0.001290,76
+0.001266,76
+0.001303,76
+0.001343,76
+0.001229,76
+0.001141,76
+0.001222,76
+0.001349,76
+0.001260,76
+0.001221,76
+0.001172,76
+0.001276,76
+0.001166,76
+0.001110,76
+0.001237,76
+0.001164,76
+0.001207,76
+0.001205,76
+0.001145,76
+0.001226,76
+0.001109,76
+0.001230,76
+0.001250,78
+0.001198,78
+0.001318,78
+0.001202,78
+0.001205,78
+0.001384,78
+0.001220,78
+0.001353,78
+0.001168,78
+0.001194,78
+0.001167,78
+0.001167,78
+0.001167,78
+0.001215,78
+0.001167,78
+0.001167,78
+0.001201,78
+0.001167,78
+0.001167,78
+0.001239,78
+0.001190,78
+0.001191,78
+0.001168,78
+0.001204,78
+0.001167,78
+0.001167,78
+0.001198,78
+0.001167,78
+0.001177,78
+0.001198,78
+0.001167,78
+0.001167,78
+0.001167,78
+0.001221,78
+0.001190,78
+0.001194,78
+0.001362,78
+0.001167,78
+0.001167,78
+0.001210,78
+0.001167,78
+0.001167,78
+0.001167,78
+0.001204,78
+0.001167,78
+0.001167,78
+0.001283,78
+0.001278,78
+0.001323,78
+0.001268,78
+0.001204,78
+0.001262,78
+0.001289,78
+0.001167,78
+0.001167,78
+0.001167,78
+0.001202,78
+0.001309,78
+0.001167,78
+0.001206,78
+0.001167,78
+0.001167,78
+0.001423,78
+0.001194,78
+0.001167,78
+0.001167,78
+0.001211,78
+0.001168,78
+0.001168,78
+0.001192,78
+0.001251,78
+0.001167,78
+0.001332,78
+0.001199,78
+0.001190,78
+0.001189,78
+0.001204,78
+0.001191,78
+0.001167,78
+0.001212,78
+0.001167,78
+0.001167,78
+0.001207,78
+0.001167,78
+0.001167,78
+0.001167,78
+0.001201,78
+0.001167,78
+0.001167,78
+0.001239,78
+0.001167,78
+0.001192,78
+0.001184,78
+0.001186,78
+0.001168,78
+0.001167,78
+0.001173,78
+0.001168,78
+0.001167,78
+0.001169,78
+0.001268,80
+0.001257,80
+0.001261,80
+0.001279,80
+0.001282,80
+0.001257,80
+0.001261,80
+0.001257,80
+0.001257,80
+0.001263,80
+0.001257,80
+0.001257,80
+0.001259,80
+0.001257,80
+0.001287,80
+0.001268,80
+0.001257,80
+0.001297,80
+0.001284,80
+0.001257,80
+0.001257,80
+0.001259,80
+0.001257,80
+0.001257,80
+0.001256,80
+0.001263,80
+0.001257,80
+0.001257,80
+0.001259,80
+0.001353,80
+0.001333,80
+0.001366,80
+0.001305,80
+0.001357,80
+0.001332,80
+0.001365,80
+0.001257,80
+0.001291,80
+0.001257,80
+0.001257,80
+0.001282,80
+0.001257,80
+0.001278,80
+0.001294,80
+0.001280,80
+0.001257,80
+0.001286,80
+0.001257,80
+0.001257,80
+0.001280,80
+0.001257,80
+0.001330,80
+0.001257,80
+0.001302,80
+0.001257,80
+0.001257,80
+0.001283,80
+0.001281,80
+0.001257,80
+0.001261,80
+0.001257,80
+0.001257,80
+0.001297,80
+0.001306,80
+0.001257,80
+0.001300,80
+0.001267,80
+0.001257,80
+0.001323,80
+0.001278,80
+0.001280,80
+0.001281,80
+0.001257,80
+0.001257,80
+0.001274,80
+0.001266,80
+0.001257,80
+0.001257,80
+0.001259,80
+0.001257,80
+0.001257,80
+0.001260,80
+0.001278,80
+0.001353,80
+0.001274,80
+0.001259,80
+0.001257,80
+0.001263,80
+0.001257,80
+0.001257,80
+0.001259,80
+0.001257,80
+0.001257,80
+0.001261,80
+0.001434,80
+0.001276,80
+0.001527,80
+0.001383,80
+0.001498,80
+0.001345,80
+0.001604,82
+0.001498,82
+0.001578,82
+0.001498,82
+0.001565,82
+0.001591,82
+0.001523,82
+0.001503,82
+0.001502,82
+0.001531,82
+0.001463,82
+0.001638,82
+0.001432,82
+0.001530,82
+0.001492,82
+0.001578,82
+0.001501,82
+0.001977,82
+0.001577,82
+0.001540,82
+0.001526,82
+0.001540,82
+0.001564,82
+0.001492,82
+0.001627,82
+0.001528,82
+0.001529,82
+0.001539,82
+0.001479,82
+0.001453,82
+0.001450,82
+0.001442,82
+0.001445,82
+0.001457,82
+0.001457,82
+0.001469,82
+0.001572,82
+0.001430,82
+0.001776,82
+0.001605,82
+0.001509,82
+0.001503,82
+0.001509,82
+0.001536,82
+0.001509,82
+0.001493,82
+0.001517,82
+0.001511,82
+0.001508,82
+0.001513,82
+0.001536,82
+0.001484,82
+0.001468,82
+0.001473,82
+0.001476,82
+0.001487,82
+0.001474,82
+0.001489,82
+0.001553,82
+0.001523,82
+0.001489,82
+0.001544,82
+0.001542,82
+0.001464,82
+0.001463,82
+0.001469,82
+0.001482,82
+0.001511,82
+0.001423,82
+0.001497,82
+0.001488,82
+0.001635,82
+0.001456,82
+0.001527,82
+0.001452,82
+0.001566,82
+0.001485,82
+0.001559,82
+0.001428,82
+0.001697,82
+0.001431,82
+0.001431,82
+0.001410,82
+0.001421,82
+0.001736,82
+0.001462,82
+0.001439,82
+0.001382,82
+0.001366,82
+0.001766,82
+0.001578,82
+0.001466,82
+0.001366,82
+0.001556,82
+0.001485,82
+0.001559,82
+0.001420,82
+0.001509,82
+0.001448,82
+0.001433,82
+0.001505,84
+0.001708,84
+0.001583,84
+0.001532,84
+0.001867,84
+0.001624,84
+0.001513,84
+0.001615,84
+0.001491,84
+0.001673,84
+0.001537,84
+0.001602,84
+0.001517,84
+0.001776,84
+0.001573,84
+0.001652,84
+0.001731,84
+0.001606,84
+0.001568,84
+0.001583,84
+0.001534,84
+0.001584,84
+0.001581,84
+0.001996,84
+0.001828,84
+0.001970,84
+0.001907,84
+0.001872,84
+0.001870,84
+0.001966,84
+0.001880,84
+0.001653,84
+0.001818,84
+0.001933,84
+0.001632,84
+0.001582,84
+0.001560,84
+0.001675,84
+0.001603,84
+0.001697,84
+0.001657,84
+0.001648,84
+0.001725,84
+0.001654,84
+0.001623,84
+0.001516,84
+0.001491,84
+0.001517,84
+0.001491,84
+0.001679,84
+0.001637,84
+0.001610,84
+0.001630,84
+0.001572,84
+0.001564,84
+0.001569,84
+0.001545,84
+0.001588,84
+0.001658,84
+0.001571,84
+0.001573,84
+0.001709,84
+0.001576,84
+0.001554,84
+0.001481,84
+0.001796,84
+0.001491,84
+0.001621,84
+0.001545,84
+0.001453,84
+0.001494,84
+0.001452,84
+0.001563,84
+0.001522,84
+0.001584,84
+0.001637,84
+0.001725,84
+0.001619,84
+0.001604,84
+0.001670,84
+0.001588,84
+0.001708,84
+0.001615,84
+0.001452,84
+0.001606,84
+0.001490,84
+0.001604,84
+0.001579,84
+0.001527,84
+0.001452,84
+0.001499,84
+0.001452,84
+0.001465,84
+0.001486,84
+0.001555,84
+0.001452,84
+0.001526,84
+0.001675,84
+0.001599,84
+0.001499,84
+0.001638,86
+0.001737,86
+0.001600,86
+0.001737,86
+0.001559,86
+0.001559,86
+0.001749,86
+0.001691,86
+0.001658,86
+0.001558,86
+0.001590,86
+0.001558,86
+0.001559,86
+0.001587,86
+0.001558,86
+0.001680,86
+0.001558,86
+0.001579,86
+0.001627,86
+0.001597,86
+0.001789,86
+0.001558,86
+0.001558,86
+0.001584,86
+0.001559,86
+0.001583,86
+0.001558,86
+0.001703,86
+0.001776,86
+0.001597,86
+0.001583,86
+0.001558,86
+0.001559,86
+0.001690,86
+0.001600,86
+0.001592,86
+0.001559,86
+0.001559,86
+0.001683,86
+0.001761,86
+0.001623,86
+0.001558,86
+0.001558,86
+0.001584,86
+0.001558,86
+0.001581,86
+0.001796,86
+0.001659,86
+0.001857,86
+0.001810,86
+0.001826,86
+0.001671,86
+0.001702,86
+0.001696,86
+0.001702,86
+0.001628,86
+0.001734,86
+0.001704,86
+0.001711,86
+0.001851,86
+0.001669,86
+0.001721,86
+0.001756,86
+0.001707,86
+0.001834,86
+0.001838,86
+0.001635,86
+0.001871,86
+0.001859,86
+0.001666,86
+0.001666,86
+0.001657,86
+0.001668,86
+0.001654,86
+0.001675,86
+0.001891,86
+0.001799,86
+0.001804,86
+0.001750,86
+0.001787,86
+0.001738,86
+0.001770,86
+0.001625,86
+0.001771,86
+0.001757,86
+0.001690,86
+0.001711,86
+0.001751,86
+0.001820,86
+0.001612,86
+0.001733,86
+0.001706,86
+0.001678,86
+0.001699,86
+0.001700,86
+0.001734,86
+0.001750,86
+0.001779,86
+0.001700,86
+0.001779,86
+0.001813,88
+0.001813,88
+0.001888,88
+0.001836,88
+0.001887,88
+0.001911,88
+0.001892,88
+0.001787,88
+0.001867,88
+0.001848,88
+0.001905,88
+0.001843,88
+0.001897,88
+0.002130,88
+0.004302,88
+0.001848,88
+0.001766,88
+0.001722,88
+0.001804,88
+0.001802,88
+0.001815,88
+0.001818,88
+0.001847,88
+0.001865,88
+0.001767,88
+0.001776,88
+0.001751,88
+0.001773,88
+0.001744,88
+0.001782,88
+0.001919,88
+0.002034,88
+0.001918,88
+0.001979,88
+0.001885,88
+0.001895,88
+0.001865,88
+0.001859,88
+0.001773,88
+0.001917,88
+0.001851,88
+0.001844,88
+0.001803,88
+0.001832,88
+0.001774,88
+0.001863,88
+0.001940,88
+0.001916,88
+0.001999,88
+0.001922,88
+0.001866,88
+0.001984,88
+0.001864,88
+0.001809,88
+0.001784,88
+0.001841,88
+0.001970,88
+0.001865,88
+0.001875,88
+0.001867,88
+0.001998,88
+0.001879,88
+0.001818,88
+0.001863,88
+0.001943,88
+0.002102,88
+0.001872,88
+0.001922,88
+0.001922,88
+0.001738,88
+0.001803,88
+0.001777,88
+0.001788,88
+0.002044,88
+0.002014,88
+0.001786,88
+0.001942,88
+0.001800,88
+0.001764,88
+0.001819,88
+0.001800,88
+0.001826,88
+0.001763,88
+0.001832,88
+0.001832,88
+0.001867,88
+0.001826,88
+0.001783,88
+0.001833,88
+0.001755,88
+0.001767,88
+0.001849,88
+0.001800,88
+0.001838,88
+0.002000,88
+0.001914,88
+0.001889,88
+0.001822,88
+0.001900,88
+0.001868,88
+0.002045,90
+0.002083,90
+0.001996,90
+0.002012,90
+0.001956,90
+0.001960,90
+0.001994,90
+0.001975,90
+0.002229,90
+0.001996,90
+0.001926,90
+0.002033,90
+0.001940,90
+0.001917,90
+0.001934,90
+0.001913,90
+0.001920,90
+0.001983,90
+0.001978,90
+0.002018,90
+0.001928,90
+0.001949,90
+0.001948,90
+0.001969,90
+0.002095,90
+0.001965,90
+0.002043,90
+0.001930,90
+0.001987,90
+0.001946,90
+0.001935,90
+0.001928,90
+0.001970,90
+0.001996,90
+0.001952,90
+0.002076,90
+0.002171,90
+0.002512,90
+0.002524,90
+0.002317,90
+0.002413,90
+0.002428,90
+0.002173,90
+0.002052,90
+0.002012,90
+0.001995,90
+0.001990,90
+0.002001,90
+0.001979,90
+0.001961,90
+0.002068,90
+0.001985,90
+0.001988,90
+0.002031,90
+0.002024,90
+0.002012,90
+0.001985,90
+0.001977,90
+0.002043,90
+0.002001,90
+0.002052,90
+0.002040,90
+0.002011,90
+0.002026,90
+0.001964,90
+0.002007,90
+0.001987,90
+0.001951,90
+0.001966,90
+0.002065,90
+0.001977,90
+0.001908,90
+0.001914,90
+0.002070,90
+0.002188,90
+0.002242,90
+0.002210,90
+0.002093,90
+0.002013,90
+0.001985,90
+0.001969,90
+0.001980,90
+0.001984,90
+0.001978,90
+0.001962,90
+0.001997,90
+0.001951,90
+0.001964,90
+0.001948,90
+0.001950,90
+0.001944,90
+0.002016,90
+0.001914,90
+0.001957,90
+0.001954,90
+0.001952,90
+0.001933,90
+0.001929,90
+0.001929,90
+0.001955,90
+0.002176,92
+0.002076,92
+0.002074,92
+0.002073,92
+0.002086,92
+0.002072,92
+0.002070,92
+0.002071,92
+0.002150,92
+0.002102,92
+0.002085,92
+0.002072,92
+0.002090,92
+0.002103,92
+0.002081,92
+0.002080,92
+0.002178,92
+0.002117,92
+0.002096,92
+0.002074,92
+0.002081,92
+0.002049,92
+0.001983,92
+0.001978,92
+0.001988,92
+0.002048,92
+0.002083,92
+0.001966,92
+0.001939,92
+0.001905,92
+0.001938,92
+0.001905,92
+0.001998,92
+0.001988,92
+0.001990,92
+0.001956,92
+0.001944,92
+0.001905,92
+0.001940,92
+0.001905,92
+0.001931,92
+0.002051,92
+0.001932,92
+0.001916,92
+0.001945,92
+0.001934,92
+0.001905,92
+0.001934,92
+0.001905,92
+0.001959,92
+0.001905,92
+0.001956,92
+0.002195,92
+0.002039,92
+0.002183,92
+0.001987,92
+0.002163,92
+0.002143,92
+0.002184,92
+0.002212,92
+0.002241,92
+0.002146,92
+0.002183,92
+0.002171,92
+0.002169,92
+0.002408,92
+0.002204,92
+0.002163,92
+0.002097,92
+0.002111,92
+0.002057,92
+0.002114,92
+0.002097,92
+0.002273,92
+0.002191,92
+0.002150,92
+0.002058,92
+0.002047,92
+0.002057,92
+0.002034,92
+0.001942,92
+0.002168,92
+0.002163,92
+0.003191,92
+0.002162,92
+0.002106,92
+0.002028,92
+0.002057,92
+0.002162,92
+0.002098,92
+0.002227,92
+0.002239,92
+0.002172,92
+0.002044,92
+0.002031,92
+0.002021,92
+0.002299,92
+0.002519,92
+0.002628,92
+0.002104,92
+0.002270,94
+0.002232,94
+0.002239,94
+0.002805,94
+0.002718,94
+0.002506,94
+0.002880,94
+0.002652,94
+0.002438,94
+0.002516,94
+0.002958,94
+0.002180,94
+0.002139,94
+0.002145,94
+0.002162,94
+0.002192,94
+0.002308,94
+0.002193,94
+0.003367,94
+0.002772,94
+0.002902,94
+0.002238,94
+0.002120,94
+0.002267,94
+0.002291,94
+0.002955,94
+0.002548,94
+0.002764,94
+0.002785,94
+0.002638,94
+0.002414,94
+0.002271,94
+0.002242,94
+0.002232,94
+0.002199,94
+0.002193,94
+0.002248,94
+0.002287,94
+0.002269,94
+0.002258,94
+0.002242,94
+0.002174,94
+0.002188,94
+0.002180,94
+0.002209,94
+0.002219,94
+0.002284,94
+0.002228,94
+0.002259,94
+0.002227,94
+0.002286,94
+0.002191,94
+0.002205,94
+0.002281,94
+0.002241,94
+0.002187,94
+0.002224,94
+0.002170,94
+0.002151,94
+0.002234,94
+0.002278,94
+0.002294,94
+0.002267,94
+0.002179,94
+0.002405,94
+0.002226,94
+0.002247,94
+0.002268,94
+0.002221,94
+0.002960,94
+0.003003,94
+0.002788,94
+0.002929,94
+0.002821,94
+0.003428,94
+0.002702,94
+0.002226,94
+0.002220,94
+0.002311,94
+0.002193,94
+0.002503,94
+0.002530,94
+0.002313,94
+0.002327,94
+0.002228,94
+0.002315,94
+0.002801,94
+0.003093,94
+0.002355,94
+0.002123,94
+0.002102,94
+0.002036,94
+0.002268,94
+0.002291,94
+0.002212,94
+0.002548,94
+0.002096,94
+0.002070,94
+0.002223,94
+0.003631,94
+0.003131,96
+0.002345,96
+0.002444,96
+0.002200,96
+0.002164,96
+0.002201,96
+0.002165,96
+0.002459,96
+0.002256,96
+0.002386,96
+0.002270,96
+0.002165,96
+0.002200,96
+0.002165,96
+0.002303,96
+0.002474,96
+0.002570,96
+0.002492,96
+0.002222,96
+0.002253,96
+0.002445,96
+0.002405,96
+0.002374,96
+0.002388,96
+0.002320,96
+0.002348,96
+0.002412,96
+0.002335,96
+0.002826,96
+0.002458,96
+0.002369,96
+0.002287,96
+0.002271,96
+0.002221,96
+0.002232,96
+0.002600,96
+0.002674,96
+0.002477,96
+0.002204,96
+0.002200,96
+0.002249,96
+0.002207,96
+0.002188,96
+0.003085,96
+0.002353,96
+0.002224,96
+0.002199,96
+0.002165,96
+0.002200,96
+0.002524,96
+0.002687,96
+0.002478,96
+0.002204,96
+0.002224,96
+0.002204,96
+0.002476,96
+0.002659,96
+0.002713,96
+0.002460,96
+0.002290,96
+0.002394,96
+0.002247,96
+0.002490,96
+0.002873,96
+0.002604,96
+0.002406,96
+0.002254,96
+0.002250,96
+0.002389,96
+0.002253,96
+0.002941,96
+0.002625,96
+0.002418,96
+0.002181,96
+0.002247,96
+0.002221,96
+0.002249,96
+0.002854,96
+0.002349,96
+0.002397,96
+0.002164,96
+0.002199,96
+0.002287,96
+0.002282,96
+0.002452,96
+0.002915,96
+0.002363,96
+0.002283,96
+0.002221,96
+0.002247,96
+0.002222,96
+0.002580,96
+0.002344,96
+0.002385,96
+0.002205,96
+0.002164,96
+0.002200,96
+0.002164,96
+0.002477,96
+0.002228,96
+0.002862,98
+0.002740,98
+0.002681,98
+0.002558,98
+0.003056,98
+0.003342,98
+0.002864,98
+0.003272,98
+0.003514,98
+0.002586,98
+0.002846,98
+0.003309,98
+0.002700,98
+0.002704,98
+0.002443,98
+0.002605,98
+0.003502,98
+0.003117,98
+0.002557,98
+0.002528,98
+0.002538,98
+0.002366,98
+0.002391,98
+0.003854,98
+0.003106,98
+0.002539,98
+0.002463,98
+0.002305,98
+0.003020,98
+0.002789,98
+0.002425,98
+0.002469,98
+0.002396,98
+0.002366,98
+0.002765,98
+0.002778,98
+0.002635,98
+0.002610,98
+0.002480,98
+0.002392,98
+0.002396,98
+0.002714,98
+0.002756,98
+0.002841,98
+0.004154,98
+0.002943,98
+0.002630,98
+0.002467,98
+0.003615,98
+0.003165,98
+0.002790,98
+0.002379,98
+0.003336,98
+0.002897,98
+0.003019,98
+0.002448,98
+0.002841,98
+0.002532,98
+0.002560,98
+0.002856,98
+0.003478,98
+0.003149,98
+0.002553,98
+0.002413,98
+0.002631,98
+0.003139,98
+0.002597,98
+0.002427,98
+0.002502,98
+0.002393,98
+0.002618,98
+0.002441,98
+0.002753,98
+0.003863,98
+0.003689,98
+0.002348,98
+0.002846,98
+0.002731,98
+0.002495,98
+0.002508,98
+0.002396,98
+0.002401,98
+0.002703,98
+0.002545,98
+0.002685,98
+0.002514,98
+0.002346,98
+0.002623,98
+0.002410,98
+0.002921,98
+0.003268,98
+0.002623,98
+0.002346,98
+0.002697,98
+0.002615,98
+0.002521,98
+0.003498,98
+0.003344,98
+0.003301,98
+0.002581,98
+0.002742,100
+0.002698,100
+0.003454,100
+0.002797,100
+0.002585,100
+0.002507,100
+0.002585,100
+0.002588,100
+0.003374,100
+0.002645,100
+0.002527,100
+0.002447,100
+0.002799,100
+0.002665,100
+0.003417,100
+0.002694,100
+0.002484,100
+0.002548,100
+0.002658,100
+0.002574,100
+0.003506,100
+0.002723,100
+0.002596,100
+0.002688,100
+0.002624,100
+0.002649,100
+0.003460,100
+0.002747,100
+0.002662,100
+0.002631,100
+0.002617,100
+0.002584,100
+0.002649,100
+0.002590,100
+0.002796,100
+0.002484,100
+0.002778,100
+0.002643,100
+0.002649,100
+0.002754,100
+0.002555,100
+0.002564,100
+0.002531,100
+0.004300,100
+0.002859,100
+0.002562,100
+0.002571,100
+0.002561,100
+0.002549,100
+0.002654,100
+0.002806,100
+0.002635,100
+0.002647,100
+0.002842,100
+0.002732,100
+0.002691,100
+0.004549,100
+0.003644,100
+0.003237,100
+0.003062,100
+0.003510,100
+0.002940,100
+0.002762,100
+0.002677,100
+0.002640,100
+0.002693,100
+0.002635,100
+0.002778,100
+0.004505,100
+0.002998,100
+0.003058,100
+0.002824,100
+0.002817,100
+0.002728,100
+0.002627,100
+0.002649,100
+0.002588,100
+0.003822,100
+0.003904,100
+0.003254,100
+0.003074,100
+0.003190,100
+0.003889,100
+0.003142,100
+0.002844,100
+0.002776,100
+0.002816,100
+0.003645,100
+0.003645,100
+0.002665,100
+0.002592,100
+0.002575,100
+0.002658,100
+0.003486,100
+0.002725,100
+0.002622,100
+0.002620,100
+0.002645,100
+0.002613,100
+0.002580,100
+0.002724,102
+0.003303,102
+0.003048,102
+0.002780,102
+0.002951,102
+0.004601,102
+0.003367,102
+0.003190,102
+0.003475,102
+0.003924,102
+0.003630,102
+0.002814,102
+0.002834,102
+0.002798,102
+0.002829,102
+0.003342,102
+0.003120,102
+0.002870,102
+0.002729,102
+0.002820,102
+0.003945,102
+0.003139,102
+0.003297,102
+0.002713,102
+0.002807,102
+0.002903,102
+0.003155,102
+0.003056,102
+0.002928,102
+0.002823,102
+0.002892,102
+0.003179,102
+0.002805,102
+0.002963,102
+0.003007,102
+0.002791,102
+0.002833,102
+0.003276,102
+0.003000,102
+0.002734,102
+0.002885,102
+0.002941,102
+0.003071,102
+0.003235,102
+0.003131,102
+0.002980,102
+0.003010,102
+0.002969,102
+0.002932,102
+0.003002,102
+0.002888,102
+0.002757,102
+0.002811,102
+0.002874,102
+0.002963,102
+0.002898,102
+0.002741,102
+0.002809,102
+0.002712,102
+0.003060,102
+0.003273,102
+0.003245,102
+0.003031,102
+0.002997,102
+0.003172,102
+0.002861,102
+0.002823,102
+0.002939,102
+0.002998,102
+0.002820,102
+0.002794,102
+0.003012,102
+0.002913,102
+0.002679,102
+0.002762,102
+0.002738,102
+0.002825,102
+0.002687,102
+0.002860,102
+0.002803,102
+0.002834,102
+0.002665,102
+0.002883,102
+0.002636,102
+0.002978,102
+0.002732,102
+0.002656,102
+0.002633,102
+0.002697,102
+0.002831,102
+0.002744,102
+0.002656,102
+0.002900,102
+0.002691,102
+0.002800,102
+0.002862,102
+0.003009,102
+0.002916,102
+0.002882,102
+0.002770,102
+0.003104,104
+0.004950,104
+0.005103,104
+0.004573,104
+0.004026,104
+0.003457,104
+0.003062,104
+0.003048,104
+0.002974,104
+0.003241,104
+0.003673,104
+0.002939,104
+0.002939,104
+0.002946,104
+0.003087,104
+0.003103,104
+0.003060,104
+0.003008,104
+0.003019,104
+0.003130,104
+0.003015,104
+0.003053,104
+0.002991,104
+0.003000,104
+0.003002,104
+0.002993,104
+0.003105,104
+0.003042,104
+0.003033,104
+0.003031,104
+0.003215,104
+0.002948,104
+0.002988,104
+0.003126,104
+0.003376,104
+0.003281,104
+0.003323,104
+0.003151,104
+0.003025,104
+0.002992,104
+0.002998,104
+0.003124,104
+0.003087,104
+0.003148,104
+0.003070,104
+0.003095,104
+0.003224,104
+0.003072,104
+0.002990,104
+0.003106,104
+0.003007,104
+0.003000,104
+0.003089,104
+0.002909,104
+0.002937,104
+0.003134,104
+0.003013,104
+0.003071,104
+0.003501,104
+0.003272,104
+0.002931,104
+0.002971,104
+0.003224,104
+0.003673,104
+0.004977,104
+0.005140,104
+0.004520,104
+0.003520,104
+0.003634,104
+0.003674,104
+0.003072,104
+0.004450,104
+0.005067,104
+0.003972,104
+0.003040,104
+0.004208,104
+0.003163,104
+0.003146,104
+0.003114,104
+0.003184,104
+0.004320,104
+0.004138,104
+0.003283,104
+0.003101,104
+0.003353,104
+0.003452,104
+0.003375,104
+0.003198,104
+0.002984,104
+0.002996,104
+0.003103,104
+0.003065,104
+0.002990,104
+0.003533,104
+0.002977,104
+0.003177,104
+0.003234,104
+0.003008,104
+0.002749,104
+0.002798,104
+0.003047,106
+0.003276,106
+0.003251,106
+0.002976,106
+0.002943,106
+0.002945,106
+0.003244,106
+0.003172,106
+0.003055,106
+0.002941,106
+0.002908,106
+0.003125,106
+0.003282,106
+0.003298,106
+0.002979,106
+0.002907,106
+0.002947,106
+0.003287,106
+0.003200,106
+0.003031,106
+0.002942,106
+0.002940,106
+0.003263,106
+0.003190,106
+0.003135,106
+0.003207,106
+0.003102,106
+0.003048,106
+0.003238,106
+0.004084,106
+0.003262,106
+0.002951,106
+0.003074,106
+0.003253,106
+0.003276,106
+0.002987,106
+0.002948,106
+0.002943,106
+0.003273,106
+0.003223,106
+0.003069,106
+0.002946,106
+0.002907,106
+0.003239,106
+0.003170,106
+0.003175,106
+0.002966,106
+0.002907,106
+0.002944,106
+0.003637,106
+0.003381,106
+0.003021,106
+0.002907,106
+0.002945,106
+0.003403,106
+0.003164,106
+0.003231,106
+0.003006,106
+0.003251,106
+0.003278,106
+0.003057,106
+0.003331,106
+0.003197,106
+0.003204,106
+0.003135,106
+0.003388,106
+0.003199,106
+0.003293,106
+0.003074,106
+0.003239,106
+0.003718,106
+0.003302,106
+0.003199,106
+0.003224,106
+0.003473,106
+0.004491,106
+0.003305,106
+0.002990,106
+0.003136,106
+0.003739,106
+0.003203,106
+0.003375,106
+0.003028,106
+0.003151,106
+0.003945,106
+0.003031,106
+0.003347,106
+0.003095,106
+0.003152,106
+0.003090,106
+0.003259,106
+0.003189,106
+0.002980,106
+0.002939,106
+0.002946,106
+0.003175,106
+0.003065,106
+0.003058,106
+0.002943,106
+0.002907,106
+0.003187,108
+0.003114,108
+0.003144,108
+0.003167,108
+0.003105,108
+0.003137,108
+0.003077,108
+0.003091,108
+0.003151,108
+0.003082,108
+0.003082,108
+0.003137,108
+0.003076,108
+0.003128,108
+0.003080,108
+0.003082,108
+0.003117,108
+0.003076,108
+0.003171,108
+0.003267,108
+0.003295,108
+0.003273,108
+0.003076,108
+0.003203,108
+0.003136,108
+0.003176,108
+0.003111,108
+0.003154,108
+0.003122,108
+0.003130,108
+0.003084,108
+0.003076,108
+0.003118,108
+0.003448,108
+0.003253,108
+0.003176,108
+0.003076,108
+0.003272,108
+0.003213,108
+0.003440,108
+0.003461,108
+0.003272,108
+0.003390,108
+0.003595,108
+0.003716,108
+0.003763,108
+0.003569,108
+0.003491,108
+0.004074,108
+0.004008,108
+0.003675,108
+0.003863,108
+0.004063,108
+0.004119,108
+0.003293,108
+0.003363,108
+0.003859,108
+0.004069,108
+0.003520,108
+0.003406,108
+0.003918,108
+0.003379,108
+0.003471,108
+0.003419,108
+0.003413,108
+0.003456,108
+0.003645,108
+0.003479,108
+0.003432,108
+0.003446,108
+0.003743,108
+0.003456,108
+0.003485,108
+0.003335,108
+0.003717,108
+0.003818,108
+0.004702,108
+0.003204,108
+0.003619,108
+0.004511,108
+0.003444,108
+0.003417,108
+0.003457,108
+0.003391,108
+0.004317,108
+0.003866,108
+0.003940,108
+0.004001,108
+0.004094,108
+0.003464,108
+0.003306,108
+0.003358,108
+0.004539,108
+0.003901,108
+0.003670,108
+0.003260,108
+0.003190,108
+0.003597,108
+0.003501,108
+0.003408,108
+0.003429,110
+0.003429,110
+0.003797,110
+0.004116,110
+0.004120,110
+0.003768,110
+0.004135,110
+0.003665,110
+0.003478,110
+0.003370,110
+0.003650,110
+0.003790,110
+0.003530,110
+0.003283,110
+0.003287,110
+0.003979,110
+0.003637,110
+0.003364,110
+0.003284,110
+0.003276,110
+0.003956,110
+0.003654,110
+0.003303,110
+0.003277,110
+0.003401,110
+0.003906,110
+0.003552,110
+0.003310,110
+0.003291,110
+0.003906,110
+0.003494,110
+0.004124,110
+0.004018,110
+0.003607,110
+0.004405,110
+0.003534,110
+0.003367,110
+0.003302,110
+0.004091,110
+0.003674,110
+0.003433,110
+0.003281,110
+0.003282,110
+0.004209,110
+0.004076,110
+0.003343,110
+0.003248,110
+0.003524,110
+0.004683,110
+0.003419,110
+0.003310,110
+0.003274,110
+0.003638,110
+0.004112,110
+0.003305,110
+0.003293,110
+0.003420,110
+0.004203,110
+0.003878,110
+0.003977,110
+0.003768,110
+0.004266,110
+0.003622,110
+0.003306,110
+0.003291,110
+0.003711,110
+0.004202,110
+0.003488,110
+0.003287,110
+0.003288,110
+0.004122,110
+0.003463,110
+0.003373,110
+0.003309,110
+0.003280,110
+0.003765,110
+0.003592,110
+0.003307,110
+0.003268,110
+0.003380,110
+0.003534,110
+0.003634,110
+0.003308,110
+0.003291,110
+0.003403,110
+0.003537,110
+0.003463,110
+0.004221,110
+0.003886,110
+0.003534,110
+0.003454,110
+0.003349,110
+0.003297,110
+0.003337,110
+0.003307,110
+0.003330,110
+0.003333,110
+0.003292,110
+0.003253,110
+0.003314,110
+0.003456,112
+0.003488,112
+0.003424,112
+0.003424,112
+0.003485,112
+0.003424,112
+0.003509,112
+0.003465,112
+0.003487,112
+0.003426,112
+0.003655,112
+0.003506,112
+0.003448,112
+0.003691,112
+0.003444,112
+0.003525,112
+0.004253,112
+0.004014,112
+0.003595,112
+0.003568,112
+0.003467,112
+0.003682,112
+0.003663,112
+0.003452,112
+0.003849,112
+0.003829,112
+0.003802,112
+0.004047,112
+0.003946,112
+0.003842,112
+0.003872,112
+0.003809,112
+0.003732,112
+0.003750,112
+0.003766,112
+0.003737,112
+0.003740,112
+0.003876,112
+0.003732,112
+0.003700,112
+0.004181,112
+0.004431,112
+0.004791,112
+0.004435,112
+0.004282,112
+0.004833,112
+0.003635,112
+0.003641,112
+0.004416,112
+0.004212,112
+0.003849,112
+0.003800,112
+0.004405,112
+0.004508,112
+0.003790,112
+0.003760,112
+0.004236,112
+0.004309,112
+0.004036,112
+0.004067,112
+0.004138,112
+0.004338,112
+0.003998,112
+0.003950,112
+0.004470,112
+0.004087,112
+0.003750,112
+0.003674,112
+0.004195,112
+0.003909,112
+0.003730,112
+0.003789,112
+0.003871,112
+0.004001,112
+0.003885,112
+0.003800,112
+0.003805,112
+0.003705,112
+0.003966,112
+0.003826,112
+0.003758,112
+0.004308,112
+0.004099,112
+0.003878,112
+0.003669,112
+0.004048,112
+0.003747,112
+0.004013,112
+0.003836,112
+0.004167,112
+0.004281,112
+0.003775,112
+0.003679,112
+0.003618,112
+0.004103,112
+0.004505,112
+0.003802,112
+0.003920,112
+0.004098,112
+0.003758,112
+0.004096,114
+0.004092,114
+0.004524,114
+0.003986,114
+0.004240,114
+0.004373,114
+0.004719,114
+0.004651,114
+0.004453,114
+0.004648,114
+0.004415,114
+0.004713,114
+0.004440,114
+0.004585,114
+0.004241,114
+0.003937,114
+0.003874,114
+0.004223,114
+0.004237,114
+0.004248,114
+0.003954,114
+0.004599,114
+0.003933,114
+0.004173,114
+0.003968,114
+0.004382,114
+0.004115,114
+0.004127,114
+0.004023,114
+0.004088,114
+0.004349,114
+0.004448,114
+0.004103,114
+0.004327,114
+0.004140,114
+0.004051,114
+0.004106,114
+0.004270,114
+0.004178,114
+0.004092,114
+0.004039,114
+0.003899,114
+0.004260,114
+0.004283,114
+0.004056,114
+0.004069,114
+0.004379,114
+0.004036,114
+0.004061,114
+0.004247,114
+0.003940,114
+0.004357,114
+0.004266,114
+0.004872,114
+0.004120,114
+0.004111,114
+0.004133,114
+0.004764,114
+0.004693,114
+0.004351,114
+0.004444,114
+0.004386,114
+0.004131,114
+0.004052,114
+0.003993,114
+0.004490,114
+0.004194,114
+0.004035,114
+0.004154,114
+0.004109,114
+0.004098,114
+0.004010,114
+0.004149,114
+0.004626,114
+0.004505,114
+0.003911,114
+0.004349,114
+0.004280,114
+0.004227,114
+0.003865,114
+0.004203,114
+0.004726,114
+0.004246,114
+0.004057,114
+0.004151,114
+0.004506,114
+0.004091,114
+0.004129,114
+0.003975,114
+0.004005,114
+0.004205,114
+0.004115,114
+0.004046,114
+0.004115,114
+0.004059,114
+0.003898,114
+0.003900,114
+0.004033,114
+0.003874,114
+0.003878,114
+0.004165,116
+0.004023,116
+0.003963,116
+0.003937,116
+0.003927,116
+0.003950,116
+0.004177,116
+0.003951,116
+0.003834,116
+0.003977,116
+0.003862,116
+0.003893,116
+0.003824,116
+0.003883,116
+0.004006,116
+0.004065,116
+0.003836,116
+0.003913,116
+0.003836,116
+0.003851,116
+0.003851,116
+0.003833,116
+0.003878,116
+0.003807,116
+0.003856,116
+0.003801,116
+0.003897,116
+0.003805,116
+0.003903,116
+0.003825,116
+0.003925,116
+0.003808,116
+0.003824,116
+0.003827,116
+0.003812,116
+0.003879,116
+0.003935,116
+0.003904,116
+0.003808,116
+0.003932,116
+0.003906,116
+0.004212,116
+0.003857,116
+0.004047,116
+0.003861,116
+0.003930,116
+0.003859,116
+0.003830,116
+0.003823,116
+0.003885,116
+0.003844,116
+0.003812,116
+0.003804,116
+0.003832,116
+0.003877,116
+0.003803,116
+0.003807,116
+0.003801,116
+0.003831,116
+0.003943,116
+0.003805,116
+0.003826,116
+0.003802,116
+0.003859,116
+0.003803,116
+0.003913,116
+0.003920,116
+0.004088,116
+0.003964,116
+0.003828,116
+0.003826,116
+0.003879,116
+0.003828,116
+0.003809,116
+0.003812,116
+0.003832,116
+0.003845,116
+0.003829,116
+0.003806,116
+0.003802,116
+0.003875,116
+0.003803,116
+0.003804,116
+0.003800,116
+0.003830,116
+0.003849,116
+0.003802,116
+0.003805,116
+0.003802,116
+0.003875,116
+0.003802,116
+0.003932,116
+0.003888,116
+0.004108,116
+0.003871,116
+0.003825,116
+0.003979,116
+0.003924,116
+0.003832,116
+0.003967,116
+0.004099,118
+0.004075,118
+0.004074,118
+0.004004,118
+0.004010,118
+0.004033,118
+0.004051,118
+0.004004,118
+0.004004,118
+0.004007,118
+0.004094,118
+0.004050,118
+0.004003,118
+0.004006,118
+0.004077,118
+0.004006,118
+0.004087,118
+0.004210,118
+0.004358,118
+0.004105,118
+0.004024,118
+0.004011,118
+0.004085,118
+0.004140,118
+0.004008,118
+0.004016,118
+0.004140,118
+0.004010,118
+0.004005,118
+0.004004,118
+0.004075,118
+0.004006,118
+0.004006,118
+0.004004,118
+0.004124,118
+0.004004,118
+0.004149,118
+0.004055,118
+0.004022,118
+0.004042,118
+0.004037,118
+0.004253,118
+0.004472,118
+0.004140,118
+0.004036,118
+0.004067,118
+0.004177,118
+0.004095,118
+0.004128,118
+0.004145,118
+0.004078,118
+0.004070,118
+0.004007,118
+0.004009,118
+0.004034,118
+0.004069,118
+0.004007,118
+0.004009,118
+0.004007,118
+0.004071,118
+0.004006,118
+0.004003,118
+0.004006,118
+0.004093,118
+0.004039,118
+0.004071,118
+0.004192,118
+0.004376,118
+0.004032,118
+0.004024,118
+0.004029,118
+0.004094,118
+0.004011,118
+0.004007,118
+0.004009,118
+0.004075,118
+0.004004,118
+0.004006,118
+0.004004,118
+0.004078,118
+0.004024,118
+0.004006,118
+0.004003,118
+0.004033,118
+0.004112,118
+0.004038,118
+0.004023,118
+0.004035,118
+0.004048,118
+0.004004,118
+0.004159,118
+0.004318,118
+0.004226,118
+0.004037,118
+0.004078,118
+0.004100,118
+0.004078,118
+0.004041,118
+0.004005,118
+0.004013,118
+0.004287,120
+0.004207,120
+0.004205,120
+0.004205,120
+0.004275,120
+0.004208,120
+0.004204,120
+0.004206,120
+0.004272,120
+0.004207,120
+0.004204,120
+0.004236,120
+0.004244,120
+0.004211,120
+0.004343,120
+0.004570,120
+0.004448,120
+0.004240,120
+0.004242,120
+0.004260,120
+0.004269,120
+0.004209,120
+0.004207,120
+0.004272,120
+0.004207,120
+0.004203,120
+0.004206,120
+0.004277,120
+0.004204,120
+0.004205,120
+0.004203,120
+0.004275,120
+0.004203,120
+0.004205,120
+0.004223,120
+0.004274,120
+0.004203,120
+0.004205,120
+0.004403,120
+0.004593,120
+0.004256,120
+0.004269,120
+0.004335,120
+0.004336,120
+0.004315,120
+0.004269,120
+0.004230,120
+0.004365,120
+0.004229,120
+0.004224,120
+0.004224,120
+0.004274,120
+0.004204,120
+0.004206,120
+0.004233,120
+0.004246,120
+0.004391,120
+0.004207,120
+0.004236,120
+0.004243,120
+0.004206,120
+0.004343,120
+0.004532,120
+0.004434,120
+0.004247,120
+0.004307,120
+0.004299,120
+0.004225,120
+0.004233,120
+0.004225,120
+0.004294,120
+0.004319,120
+0.004244,120
+0.004232,120
+0.004317,120
+0.004256,120
+0.004245,120
+0.004250,120
+0.004315,120
+0.004206,120
+0.004204,120
+0.004205,120
+0.004273,120
+0.004206,120
+0.004238,120
+0.004449,120
+0.004641,120
+0.004204,120
+0.004205,120
+0.004224,120
+0.004247,120
+0.004204,120
+0.004205,120
+0.004233,120
+0.004265,120
+0.004204,120
+0.004205,120
+0.004231,120
+0.004290,120
+0.004203,120
+0.004448,122
+0.004493,122
+0.004564,122
+0.004424,122
+0.004419,122
+0.004477,122
+0.004420,122
+0.004419,122
+0.004614,122
+0.004852,122
+0.004420,122
+0.004643,122
+0.004469,122
+0.004523,122
+0.004598,122
+0.004456,122
+0.004554,122
+0.004446,122
+0.004423,122
+0.004419,122
+0.004492,122
+0.004420,122
+0.004420,122
+0.004452,122
+0.004460,122
+0.004424,122
+0.004421,122
+0.004471,122
+0.004488,122
+0.004445,122
+0.004588,122
+0.004816,122
+0.004674,122
+0.004440,122
+0.004448,122
+0.004523,122
+0.004466,122
+0.004424,122
+0.004470,122
+0.004481,122
+0.004423,122
+0.004464,122
+0.004488,122
+0.004422,122
+0.004427,122
+0.004422,122
+0.004530,122
+0.004423,122
+0.004420,122
+0.004422,122
+0.004537,122
+0.004419,122
+0.004470,122
+0.004943,122
+0.004728,122
+0.004450,122
+0.004420,122
+0.004705,122
+0.004813,122
+0.004763,122
+0.004560,122
+0.004446,122
+0.004525,122
+0.004445,122
+0.004512,122
+0.004572,122
+0.004654,122
+0.004420,122
+0.004476,122
+0.004561,122
+0.004623,122
+0.004454,122
+0.004489,122
+0.004460,122
+0.004494,122
+0.004738,122
+0.004682,122
+0.004465,122
+0.004475,122
+0.004489,122
+0.004479,122
+0.004420,122
+0.004420,122
+0.004477,122
+0.004420,122
+0.004442,122
+0.004431,122
+0.004486,122
+0.004441,122
+0.004464,122
+0.004468,122
+0.004420,122
+0.004422,122
+0.004419,122
+0.004512,122
+0.004420,122
+0.004425,122
+0.004646,122
+0.004711,122
+0.004576,122
+0.004711,124
+0.004750,124
+0.004739,124
+0.004677,124
+0.004678,124
+0.004712,124
+0.004638,124
+0.004635,124
+0.004690,124
+0.004638,124
+0.004636,124
+0.004637,124
+0.004684,124
+0.004695,124
+0.004646,124
+0.004648,124
+0.004681,124
+0.004635,124
+0.004683,124
+0.004996,124
+0.004826,124
+0.004724,124
+0.004688,124
+0.004707,124
+0.004640,124
+0.004642,124
+0.004685,124
+0.004681,124
+0.004666,124
+0.004638,124
+0.004685,124
+0.004640,124
+0.004692,124
+0.004689,124
+0.004635,124
+0.004641,124
+0.004636,124
+0.004689,124
+0.004661,124
+0.004636,124
+0.004882,124
+0.004919,124
+0.004701,124
+0.004638,124
+0.004705,124
+0.004638,124
+0.004636,124
+0.004647,124
+0.004680,124
+0.004636,124
+0.005736,124
+0.004788,124
+0.004636,124
+0.004643,124
+0.004678,124
+0.004667,124
+0.004638,124
+0.004635,124
+0.004687,124
+0.004641,124
+0.004636,124
+0.004925,124
+0.005010,124
+0.004684,124
+0.004679,124
+0.004749,124
+0.004758,124
+0.004657,124
+0.004758,124
+0.004704,124
+0.004636,124
+0.004638,124
+0.004706,124
+0.004639,124
+0.004636,124
+0.004667,124
+0.004699,124
+0.004636,124
+0.004670,124
+0.004706,124
+0.004659,124
+0.004635,124
+0.004787,124
+0.005047,124
+0.004857,124
+0.004656,124
+0.004749,124
+0.004659,124
+0.004636,124
+0.004662,124
+0.004766,124
+0.004687,124
+0.004664,124
+0.004730,124
+0.004661,124
+0.004636,124
+0.004642,124
+0.004704,124
+0.004640,124
+0.004638,124
+0.004915,126
+0.004906,126
+0.004864,126
+0.004917,126
+0.005215,126
+0.005071,126
+0.004884,126
+0.005222,126
+0.004990,126
+0.005259,126
+0.005390,126
+0.005463,126
+0.005577,126
+0.005841,126
+0.005507,126
+0.005470,126
+0.005750,126
+0.007375,126
+0.006174,126
+0.006265,126
+0.005507,126
+0.005868,126
+0.009030,126
+0.007537,126
+0.007350,126
+0.005591,126
+0.005574,126
+0.007123,126
+0.005460,126
+0.005456,126
+0.007157,126
+0.005286,126
+0.005380,126
+0.006827,126
+0.005305,126
+0.005246,126
+0.006802,126
+0.005030,126
+0.008349,126
+0.008952,126
+0.004990,126
+0.004984,126
+0.004962,126
+0.004979,126
+0.005130,126
+0.004950,126
+0.005002,126
+0.004897,126
+0.004938,126
+0.004991,126
+0.004948,126
+0.005013,126
+0.004889,126
+0.004946,126
+0.004927,126
+0.004868,126
+0.006621,126
+0.008387,126
+0.004923,126
+0.004954,126
+0.004954,126
+0.004868,126
+0.005026,126
+0.004867,126
+0.004864,126
+0.004906,126
+0.004905,126
+0.004864,126
+0.004866,126
+0.004947,126
+0.004884,126
+0.004866,126
+0.004942,126
+0.004866,126
+0.004867,126
+0.005186,126
+0.008795,126
+0.005915,126
+0.004976,126
+0.004869,126
+0.004885,126
+0.004933,126
+0.004925,126
+0.004887,126
+0.004868,126
+0.004964,126
+0.004888,126
+0.004887,126
+0.004947,126
+0.004867,126
+0.004949,126
+0.004907,126
+0.004930,126
+0.004866,126
+0.004866,126
+0.007738,126
+0.007211,126
+0.004975,126
+0.004872,126
+0.004864,126
+0.005386,128
+0.005457,128
+0.005374,128
+0.005376,128
+0.005440,128
+0.005372,128
+0.005418,128
+0.005458,128
+0.005413,128
+0.005375,128
+0.005435,128
+0.005372,128
+0.005376,128
+0.007662,128
+0.008165,128
+0.005499,128
+0.005405,128
+0.005429,128
+0.005458,128
+0.005401,128
+0.005376,128
+0.005431,128
+0.005375,128
+0.005376,128
+0.005431,128
+0.005375,128
+0.005376,128
+0.005392,128
+0.005415,128
+0.005377,128
+0.005393,128
+0.008756,128
+0.007322,128
+0.005482,128
+0.005442,128
+0.005407,128
+0.005487,128
+0.005377,128
+0.005396,128
+0.005436,128
+0.005373,128
+0.005375,128
+0.005435,128
+0.005373,128
+0.005418,128
+0.005435,128
+0.005373,128
+0.005376,128
+0.006360,128
+0.009397,128
+0.005654,128
+0.005469,128
+0.005642,128
+0.005554,128
+0.005407,128
+0.005405,128
+0.005435,128
+0.005401,128
+0.005411,128
+0.005434,128
+0.005408,128
+0.005464,128
+0.005396,128
+0.005417,128
+0.005377,128
+0.005395,128
+0.008415,128
+0.007413,128
+0.005487,128
+0.005378,128
+0.005376,128
+0.005459,128
+0.005373,128
+0.005375,128
+0.005466,128
+0.005374,128
+0.005660,128
+0.006978,128
+0.005549,128
+0.005383,128
+0.005587,128
+0.006194,128
+0.005526,128
+0.008246,128
+0.008427,128
+0.005702,128
+0.005406,128
+0.005692,128
+0.005657,128
+0.005604,128
+0.005617,128
+0.005458,128
+0.005567,128
+0.005881,128
+0.005510,128
+0.005733,128
+0.005493,128
+0.005481,128
+0.005583,128
+0.005448,128
+0.007634,130
+0.008371,130
+0.005475,130
+0.005438,130
+0.005381,130
+0.005505,130
+0.005396,130
+0.005344,130
+0.005421,130
+0.005375,130
+0.005337,130
+0.005420,130
+0.005397,130
+0.005339,130
+0.005418,130
+0.005390,130
+0.005344,130
+0.005521,130
+0.007434,130
+0.008883,130
+0.005438,130
+0.005415,130
+0.005448,130
+0.005405,130
+0.005400,130
+0.005437,130
+0.005424,130
+0.005340,130
+0.005439,130
+0.005372,130
+0.005340,130
+0.005378,130
+0.005383,130
+0.005380,130
+0.005378,130
+0.006334,130
+0.009437,130
+0.005541,130
+0.005377,130
+0.005616,130
+0.005437,130
+0.005339,130
+0.005600,130
+0.005439,130
+0.005337,130
+0.005339,130
+0.005459,130
+0.005337,130
+0.005339,130
+0.005439,130
+0.005337,130
+0.005341,130
+0.005442,130
+0.007503,130
+0.008373,130
+0.005348,130
+0.005343,130
+0.005455,130
+0.005339,130
+0.005364,130
+0.005397,130
+0.005379,130
+0.005341,130
+0.005378,130
+0.005380,130
+0.005342,130
+0.005357,130
+0.005421,130
+0.005341,130
+0.005337,130
+0.005517,130
+0.008094,130
+0.007734,130
+0.005471,130
+0.006000,130
+0.006253,130
+0.005450,130
+0.005444,130
+0.005474,130
+0.005337,130
+0.005420,130
+0.005439,130
+0.005398,130
+0.005341,130
+0.005421,130
+0.005338,130
+0.005342,130
+0.005425,130
+0.006189,130
+0.009636,130
+0.005515,130
+0.005400,130
+0.005429,130
+0.005374,130
+0.005482,130
+0.005847,130
+0.005396,130
+0.005360,130
+0.005418,130
+0.005342,130
+0.005615,132
+0.005666,132
+0.005921,132
+0.005611,132
+0.005735,132
+0.005710,132
+0.010125,132
+0.006354,132
+0.005653,132
+0.005672,132
+0.005607,132
+0.005646,132
+0.005715,132
+0.006172,132
+0.006019,132
+0.005687,132
+0.005589,132
+0.005627,132
+0.005667,132
+0.005585,132
+0.005590,132
+0.005691,132
+0.007254,132
+0.009219,132
+0.005691,132
+0.005624,132
+0.005865,132
+0.005591,132
+0.005606,132
+0.005692,132
+0.005588,132
+0.005589,132
+0.005665,132
+0.005587,132
+0.005611,132
+0.005685,132
+0.005606,132
+0.005592,132
+0.005745,132
+0.007300,132
+0.009084,132
+0.005619,132
+0.005597,132
+0.005708,132
+0.005624,132
+0.005675,132
+0.005747,132
+0.005725,132
+0.005683,132
+0.005650,132
+0.005598,132
+0.005613,132
+0.005687,132
+0.005588,132
+0.005605,132
+0.005759,132
+0.007564,132
+0.008772,132
+0.005623,132
+0.005671,132
+0.005660,132
+0.005645,132
+0.005625,132
+0.005628,132
+0.005589,132
+0.005606,132
+0.005635,132
+0.005744,132
+0.005645,132
+0.005590,132
+0.005586,132
+0.005669,132
+0.005738,132
+0.007667,132
+0.008944,132
+0.005686,132
+0.005690,132
+0.006929,132
+0.010806,132
+0.010826,132
+0.010964,132
+0.010989,132
+0.010404,132
+0.008319,132
+0.005731,132
+0.008331,132
+0.008752,132
+0.005674,132
+0.005879,132
+0.005639,132
+0.005672,132
+0.005971,132
+0.005622,132
+0.005645,132
+0.005624,132
+0.005586,132
+0.005622,132
+0.005624,132
+0.005585,132
+0.005644,132
+0.005968,134
+0.006600,134
+0.010243,134
+0.005955,134
+0.006033,134
+0.005905,134
+0.005864,134
+0.005923,134
+0.005841,134
+0.005846,134
+0.005925,134
+0.005844,134
+0.005881,134
+0.005923,134
+0.005842,134
+0.005863,134
+0.005983,134
+0.006247,134
+0.010562,134
+0.006022,134
+0.005924,134
+0.005888,134
+0.005843,134
+0.005924,134
+0.005841,134
+0.005843,134
+0.005926,134
+0.005840,134
+0.005844,134
+0.005922,134
+0.005846,134
+0.005840,134
+0.005944,134
+0.005923,134
+0.009654,134
+0.007257,134
+0.005909,134
+0.005901,134
+0.005865,134
+0.005921,134
+0.005845,134
+0.005841,134
+0.005926,134
+0.005883,134
+0.005865,134
+0.005927,134
+0.005846,134
+0.005843,134
+0.005923,134
+0.005908,134
+0.008324,134
+0.008524,134
+0.005931,134
+0.005912,134
+0.005887,134
+0.006011,134
+0.005851,134
+0.005841,134
+0.005926,134
+0.005842,134
+0.005844,134
+0.005920,134
+0.005845,134
+0.005842,134
+0.005939,134
+0.005904,134
+0.007211,134
+0.009723,134
+0.005917,134
+0.005949,134
+0.005866,134
+0.005883,134
+0.005884,134
+0.005840,134
+0.005925,134
+0.005842,134
+0.005845,134
+0.005928,134
+0.005843,134
+0.005844,134
+0.005949,134
+0.005903,134
+0.005978,134
+0.010587,134
+0.006265,134
+0.005974,134
+0.005847,134
+0.005888,134
+0.005879,134
+0.005845,134
+0.005881,134
+0.005883,134
+0.005842,134
+0.005926,134
+0.005844,134
+0.005844,134
+0.005926,134
+0.005949,134
+0.005843,134
+0.009580,134
+0.007544,136
+0.006259,136
+0.006137,136
+0.006177,136
+0.006148,136
+0.006099,136
+0.006257,136
+0.006103,136
+0.006102,136
+0.006180,136
+0.006124,136
+0.006101,136
+0.006234,136
+0.006189,136
+0.007276,136
+0.010162,136
+0.006208,136
+0.006129,136
+0.006098,136
+0.006184,136
+0.006101,136
+0.006133,136
+0.006182,136
+0.006138,136
+0.006145,136
+0.006140,136
+0.006122,136
+0.006238,136
+0.006165,136
+0.006100,136
+0.009424,136
+0.007949,136
+0.006220,136
+0.006165,136
+0.006179,136
+0.006205,136
+0.006099,136
+0.006204,136
+0.006101,136
+0.006102,136
+0.006177,136
+0.006145,136
+0.006163,136
+0.006159,136
+0.006162,136
+0.006208,136
+0.010491,136
+0.007331,136
+0.006136,136
+0.006138,136
+0.006207,136
+0.006110,136
+0.006183,136
+0.006164,136
+0.006098,136
+0.006185,136
+0.006101,136
+0.006102,136
+0.006207,136
+0.006182,136
+0.006102,136
+0.009914,136
+0.007608,136
+0.006170,136
+0.006119,136
+0.006205,136
+0.006101,136
+0.006102,136
+0.006182,136
+0.006102,136
+0.006121,136
+0.006210,136
+0.006097,136
+0.006181,136
+0.006171,136
+0.006104,136
+0.007201,136
+0.010121,136
+0.006260,136
+0.006129,136
+0.006142,136
+0.006253,136
+0.006098,136
+0.006221,136
+0.006100,136
+0.006102,136
+0.006218,136
+0.006102,136
+0.006113,136
+0.006188,136
+0.006159,136
+0.006146,136
+0.009205,136
+0.008398,136
+0.006163,136
+0.006129,136
+0.006238,136
+0.006110,136
+0.006101,136
+0.006184,136
+0.006475,138
+0.006483,138
+0.006375,138
+0.006380,138
+0.006462,138
+0.006437,138
+0.006422,138
+0.008880,138
+0.009047,138
+0.006436,138
+0.006377,138
+0.006463,138
+0.006380,138
+0.006415,138
+0.006424,138
+0.006379,138
+0.006465,138
+0.006380,138
+0.006375,138
+0.006458,138
+0.006482,138
+0.006478,138
+0.009612,138
+0.008407,138
+0.006416,138
+0.006408,138
+0.006474,138
+0.006380,138
+0.006463,138
+0.006381,138
+0.006463,138
+0.006476,138
+0.006379,138
+0.006420,138
+0.006414,138
+0.006450,138
+0.006463,138
+0.010245,138
+0.007760,138
+0.006435,138
+0.006458,138
+0.006458,138
+0.006388,138
+0.006456,138
+0.006402,138
+0.006378,138
+0.006481,138
+0.006399,138
+0.006458,138
+0.006480,138
+0.006398,138
+0.006459,138
+0.010950,138
+0.006932,138
+0.006438,138
+0.006532,138
+0.006417,138
+0.006415,138
+0.006459,138
+0.006376,138
+0.006423,138
+0.006416,138
+0.006381,138
+0.006499,138
+0.006475,138
+0.006380,138
+0.006794,138
+0.011207,138
+0.006485,138
+0.006396,138
+0.006503,138
+0.006445,138
+0.006410,138
+0.006490,138
+0.006439,138
+0.006463,138
+0.006386,138
+0.006378,138
+0.006462,138
+0.006463,138
+0.006458,138
+0.007488,138
+0.010416,138
+0.006409,138
+0.006401,138
+0.006456,138
+0.006436,138
+0.006480,138
+0.006379,138
+0.006380,138
+0.006474,138
+0.006375,138
+0.006423,138
+0.006417,138
+0.006450,138
+0.006461,138
+0.007113,138
+0.011225,138
+0.006471,138
+0.006478,138
+0.006769,140
+0.006656,140
+0.006753,140
+0.006655,140
+0.006738,140
+0.006691,140
+0.006655,140
+0.006737,140
+0.006713,140
+0.006737,140
+0.006694,140
+0.011793,140
+0.006709,140
+0.006807,140
+0.006790,140
+0.006687,140
+0.006729,140
+0.006655,140
+0.006696,140
+0.006692,140
+0.006655,140
+0.006736,140
+0.006710,140
+0.006765,140
+0.006694,140
+0.010488,140
+0.008057,140
+0.006740,140
+0.006800,140
+0.006695,140
+0.006780,140
+0.006676,140
+0.006678,140
+0.006751,140
+0.006655,140
+0.006747,140
+0.006761,140
+0.006656,140
+0.006732,140
+0.009127,140
+0.009353,140
+0.006724,140
+0.006806,140
+0.006677,140
+0.006760,140
+0.006654,140
+0.006715,140
+0.006734,140
+0.006651,140
+0.006733,140
+0.006684,140
+0.006766,140
+0.006730,140
+0.007838,140
+0.010583,140
+0.006669,140
+0.006790,140
+0.006676,140
+0.006704,140
+0.006691,140
+0.006655,140
+0.006734,140
+0.006676,140
+0.006805,140
+0.006760,140
+0.006711,140
+0.006734,140
+0.006655,140
+0.011768,140
+0.006691,140
+0.006817,140
+0.006717,140
+0.006691,140
+0.006778,140
+0.006655,140
+0.006731,140
+0.006655,140
+0.006719,140
+0.006782,140
+0.006765,140
+0.006796,140
+0.006700,140
+0.010922,140
+0.007698,140
+0.006781,140
+0.006674,140
+0.006694,140
+0.006740,140
+0.006651,140
+0.006738,140
+0.006656,140
+0.006655,140
+0.006736,140
+0.006822,140
+0.006776,140
+0.006673,140
+0.009524,140
+0.008979,140
+0.006754,140
+0.006715,140
+0.007035,142
+0.007048,142
+0.006946,142
+0.007020,142
+0.007048,142
+0.007000,142
+0.007080,142
+0.007065,142
+0.007026,142
+0.006946,142
+0.011171,142
+0.007917,142
+0.007063,142
+0.007218,142
+0.007036,142
+0.006964,142
+0.007092,142
+0.007063,142
+0.008122,142
+0.007109,142
+0.007142,142
+0.007097,142
+0.006951,142
+0.008729,142
+0.010398,142
+0.007144,142
+0.007088,142
+0.006942,142
+0.007028,142
+0.006949,142
+0.007069,142
+0.007492,142
+0.007120,142
+0.007258,142
+0.007069,142
+0.007050,142
+0.006944,142
+0.010432,142
+0.009191,142
+0.007110,142
+0.007057,142
+0.007094,142
+0.006976,142
+0.007043,142
+0.006947,142
+0.006946,142
+0.007023,142
+0.007052,142
+0.007024,142
+0.006946,142
+0.008870,142
+0.010285,142
+0.007081,142
+0.006970,142
+0.007068,142
+0.007010,142
+0.007010,142
+0.007087,142
+0.006966,142
+0.007024,142
+0.006985,142
+0.007014,142
+0.007026,142
+0.006945,142
+0.010603,142
+0.008532,142
+0.007087,142
+0.006987,142
+0.007045,142
+0.006968,142
+0.007052,142
+0.007006,142
+0.006958,142
+0.007029,142
+0.007006,142
+0.007024,142
+0.006943,142
+0.006946,142
+0.012083,142
+0.007096,142
+0.006994,142
+0.006994,142
+0.007034,142
+0.007008,142
+0.007026,142
+0.006946,142
+0.006985,142
+0.006985,142
+0.007024,142
+0.007025,142
+0.006942,142
+0.008762,142
+0.010367,142
+0.007151,142
+0.006977,142
+0.007046,142
+0.006955,142
+0.006988,142
+0.006987,142
+0.006944,142
+0.007327,144
+0.007334,144
+0.007310,144
+0.007232,144
+0.007268,144
+0.012184,144
+0.007532,144
+0.007281,144
+0.007333,144
+0.007233,144
+0.007237,144
+0.007310,144
+0.007274,144
+0.007310,144
+0.007298,144
+0.007331,144
+0.007454,144
+0.007391,144
+0.011581,144
+0.007960,144
+0.007244,144
+0.007270,144
+0.007314,144
+0.007273,144
+0.007328,144
+0.007248,144
+0.007312,144
+0.007335,144
+0.007310,144
+0.007232,144
+0.007269,144
+0.010878,144
+0.008735,144
+0.007287,144
+0.007312,144
+0.007293,144
+0.007232,144
+0.007358,144
+0.007243,144
+0.007335,144
+0.007291,144
+0.007310,144
+0.007231,144
+0.007227,144
+0.010332,144
+0.009383,144
+0.007242,144
+0.007305,144
+0.007304,144
+0.007293,144
+0.007309,144
+0.007232,144
+0.007310,144
+0.007312,144
+0.007339,144
+0.007228,144
+0.007231,144
+0.009600,144
+0.010036,144
+0.007243,144
+0.007316,144
+0.007283,144
+0.007262,144
+0.007314,144
+0.007254,144
+0.007333,144
+0.007283,144
+0.007355,144
+0.007228,144
+0.007274,144
+0.007931,144
+0.012148,144
+0.007279,144
+0.007336,144
+0.007293,144
+0.007232,144
+0.007309,144
+0.007231,144
+0.007310,144
+0.007292,144
+0.007352,144
+0.007228,144
+0.007375,144
+0.009157,144
+0.010462,144
+0.007231,144
+0.007276,144
+0.007271,144
+0.007230,144
+0.007311,144
+0.007231,144
+0.007312,144
+0.007291,144
+0.007270,144
+0.007267,144
+0.007231,144
+0.008402,144
+0.011334,144
+0.007284,144
+0.007240,144
+0.007692,146
+0.007635,146
+0.007671,146
+0.007604,146
+0.007675,146
+0.007674,146
+0.007691,146
+0.007592,146
+0.008196,146
+0.011100,146
+0.009205,146
+0.007645,146
+0.007745,146
+0.007741,146
+0.007693,146
+0.007592,146
+0.007713,146
+0.007721,146
+0.007635,146
+0.007631,146
+0.007589,146
+0.008456,146
+0.011895,146
+0.007599,146
+0.007672,146
+0.007591,146
+0.007850,146
+0.007654,146
+0.007612,146
+0.007675,146
+0.007654,146
+0.007694,146
+0.007590,146
+0.007653,146
+0.011486,146
+0.008898,146
+0.007667,146
+0.007743,146
+0.007588,146
+0.007674,146
+0.007592,146
+0.007675,146
+0.007653,146
+0.007671,146
+0.007592,146
+0.007812,146
+0.008585,146
+0.011660,146
+0.007667,146
+0.007763,146
+0.007664,146
+0.007691,146
+0.007589,146
+0.007630,146
+0.007656,146
+0.007675,146
+0.007671,146
+0.007592,146
+0.007714,146
+0.011731,146
+0.008435,146
+0.007684,146
+0.007714,146
+0.007672,146
+0.007723,146
+0.007733,146
+0.007689,146
+0.007660,146
+0.007674,146
+0.007592,146
+0.007674,146
+0.008910,146
+0.011245,146
+0.007650,146
+0.007695,146
+0.007592,146
+0.007752,146
+0.007666,146
+0.007710,146
+0.007593,146
+0.007711,146
+0.007716,146
+0.007592,146
+0.007674,146
+0.012258,146
+0.007952,146
+0.007695,146
+0.007613,146
+0.007652,146
+0.007758,146
+0.007596,146
+0.007690,146
+0.007652,146
+0.007679,146
+0.007635,146
+0.007674,146
+0.008160,146
+0.012631,146
+0.008593,146
+0.007761,146
+0.007959,148
+0.007968,148
+0.007851,148
+0.007933,148
+0.007973,148
+0.007929,148
+0.008064,148
+0.007951,148
+0.009425,148
+0.011397,148
+0.007870,148
+0.007970,148
+0.007905,148
+0.007930,148
+0.007850,148
+0.007932,148
+0.007918,148
+0.007932,148
+0.007850,148
+0.007933,148
+0.008677,148
+0.012120,148
+0.007928,148
+0.007977,148
+0.007935,148
+0.007924,148
+0.007869,148
+0.007936,148
+0.007914,148
+0.007929,148
+0.007850,148
+0.007940,148
+0.008258,148
+0.012461,148
+0.007890,148
+0.007965,148
+0.007929,148
+0.007910,148
+0.007851,148
+0.007914,148
+0.007934,148
+0.007977,148
+0.007850,148
+0.007929,148
+0.007850,148
+0.012867,148
+0.007892,148
+0.007950,148
+0.007874,148
+0.007932,148
+0.007872,148
+0.007944,148
+0.007951,148
+0.007930,148
+0.007850,148
+0.007911,148
+0.007851,148
+0.012936,148
+0.007927,148
+0.007969,148
+0.007873,148
+0.007961,148
+0.007850,148
+0.007933,148
+0.007970,148
+0.007910,148
+0.007927,148
+0.007972,148
+0.007849,148
+0.012914,148
+0.007896,148
+0.007971,148
+0.007897,148
+0.007961,148
+0.007914,148
+0.007989,148
+0.007942,148
+0.007972,148
+0.007896,148
+0.007957,148
+0.007873,148
+0.012887,148
+0.007898,148
+0.007967,148
+0.007851,148
+0.007972,148
+0.007890,148
+0.007907,148
+0.007930,148
+0.007909,148
+0.007850,148
+0.007909,148
+0.007851,148
+0.012450,148
+0.008353,148
+0.007964,148
+0.007935,148
+0.007967,148
+0.007860,148
+0.008012,148
+0.008326,150
+0.008283,150
+0.008174,150
+0.008234,150
+0.008176,150
+0.013231,150
+0.008333,150
+0.008238,150
+0.008228,150
+0.008234,150
+0.008227,150
+0.008236,150
+0.008307,150
+0.008221,150
+0.008196,150
+0.008215,150
+0.009105,150
+0.013067,150
+0.009257,150
+0.008500,150
+0.008297,150
+0.008421,150
+0.008322,150
+0.008274,150
+0.008333,150
+0.008374,150
+0.008256,150
+0.008175,150
+0.013310,150
+0.008296,150
+0.008247,150
+0.008317,150
+0.008242,150
+0.008293,150
+0.008203,150
+0.008344,150
+0.008177,150
+0.008256,150
+0.008198,150
+0.010603,150
+0.010949,150
+0.008287,150
+0.008198,150
+0.008256,150
+0.008192,150
+0.008240,150
+0.008258,150
+0.008269,150
+0.008235,150
+0.008241,150
+0.008175,150
+0.013210,150
+0.008325,150
+0.008201,150
+0.008306,150
+0.008176,150
+0.008239,150
+0.008211,150
+0.008391,150
+0.008218,150
+0.008248,150
+0.008181,150
+0.009482,150
+0.011948,150
+0.008287,150
+0.008195,150
+0.008310,150
+0.008197,150
+0.008256,150
+0.008283,150
+0.008265,150
+0.008176,150
+0.008239,150
+0.008176,150
+0.012253,150
+0.009329,150
+0.008246,150
+0.008255,150
+0.008195,150
+0.008235,150
+0.008176,150
+0.008328,150
+0.008177,150
+0.008353,150
+0.008176,150
+0.008301,150
+0.013030,150
+0.008253,150
+0.008203,150
+0.008289,150
+0.008261,150
+0.008237,150
+0.008196,150
+0.008282,150
+0.008176,150
+0.008215,150
+0.008199,150
+0.011124,150
+0.010348,150
+0.008221,150
+0.008590,152
+0.008528,152
+0.008581,152
+0.008496,152
+0.008618,152
+0.008500,152
+0.008539,152
+0.008495,152
+0.009897,152
+0.012220,152
+0.008549,152
+0.008580,152
+0.008496,152
+0.008536,152
+0.008536,152
+0.008594,152
+0.008504,152
+0.008537,152
+0.008508,152
+0.008783,152
+0.013258,152
+0.008581,152
+0.008518,152
+0.008561,152
+0.008531,152
+0.008556,152
+0.008678,152
+0.008503,152
+0.008537,152
+0.008538,152
+0.008536,152
+0.013405,152
+0.009086,152
+0.008519,152
+0.008583,152
+0.008531,152
+0.008603,152
+0.008575,152
+0.008543,152
+0.008708,152
+0.008499,152
+0.008728,152
+0.013398,152
+0.008614,152
+0.008541,152
+0.008572,152
+0.008527,152
+0.008578,152
+0.008571,152
+0.008540,152
+0.008496,152
+0.008633,152
+0.008537,152
+0.012668,152
+0.009393,152
+0.008538,152
+0.008580,152
+0.008513,152
+0.008534,152
+0.008556,152
+0.008553,152
+0.008498,152
+0.008536,152
+0.008495,152
+0.011647,152
+0.010350,152
+0.008567,152
+0.008598,152
+0.008497,152
+0.008541,152
+0.008564,152
+0.008630,152
+0.008497,152
+0.008536,152
+0.008499,152
+0.010562,152
+0.011428,152
+0.008526,152
+0.008558,152
+0.008550,152
+0.008571,152
+0.008993,152
+0.009109,152
+0.008602,152
+0.008796,152
+0.008519,152
+0.010517,152
+0.011600,152
+0.008552,152
+0.008619,152
+0.008497,152
+0.008579,152
+0.008496,152
+0.008652,152
+0.008569,152
+0.008620,152
+0.008498,152
+0.009709,152
+0.012485,152
+0.008564,152
+0.009016,154
+0.008902,154
+0.008946,154
+0.008847,154
+0.008991,154
+0.008844,154
+0.008929,154
+0.008883,154
+0.011722,154
+0.011108,154
+0.008916,154
+0.008952,154
+0.008897,154
+0.008927,154
+0.008921,154
+0.008936,154
+0.008879,154
+0.008908,154
+0.008925,154
+0.013578,154
+0.009007,154
+0.008936,154
+0.008911,154
+0.008889,154
+0.008881,154
+0.009014,154
+0.008844,154
+0.008920,154
+0.008842,154
+0.008925,154
+0.013867,154
+0.008872,154
+0.008942,154
+0.008897,154
+0.008921,154
+0.008842,154
+0.008996,154
+0.009369,154
+0.009038,154
+0.008919,154
+0.009989,154
+0.013399,154
+0.008900,154
+0.008974,154
+0.008902,154
+0.008949,154
+0.008947,154
+0.008939,154
+0.009119,154
+0.008847,154
+0.008954,154
+0.013207,154
+0.009464,154
+0.008922,154
+0.008902,154
+0.008945,154
+0.008842,154
+0.009057,154
+0.008846,154
+0.008920,154
+0.008889,154
+0.008921,154
+0.013838,154
+0.008916,154
+0.008943,154
+0.008860,154
+0.008921,154
+0.008842,154
+0.009052,154
+0.008841,154
+0.008921,154
+0.008842,154
+0.010556,154
+0.012137,154
+0.008893,154
+0.009020,154
+0.008856,154
+0.008920,154
+0.008948,154
+0.009503,154
+0.008969,154
+0.008888,154
+0.008961,154
+0.012439,154
+0.010243,154
+0.008968,154
+0.008888,154
+0.008947,154
+0.008843,154
+0.008980,154
+0.008842,154
+0.008925,154
+0.008843,154
+0.008920,154
+0.013791,154
+0.008942,154
+0.008941,154
+0.008903,154
+0.008926,154
+0.008848,154
+0.009499,156
+0.009334,156
+0.009283,156
+0.009266,156
+0.011629,156
+0.011676,156
+0.009271,156
+0.009246,156
+0.009345,156
+0.009240,156
+0.009374,156
+0.009283,156
+0.009286,156
+0.009184,156
+0.009266,156
+0.014065,156
+0.009249,156
+0.009320,156
+0.009289,156
+0.009245,156
+0.009339,156
+0.009187,156
+0.009283,156
+0.009188,156
+0.009263,156
+0.013484,156
+0.009916,156
+0.009344,156
+0.009206,156
+0.009293,156
+0.009184,156
+0.009405,156
+0.009270,156
+0.009185,156
+0.009287,156
+0.011293,156
+0.012023,156
+0.009330,156
+0.009187,156
+0.009264,156
+0.009192,156
+0.009396,156
+0.009184,156
+0.009284,156
+0.009228,156
+0.009224,156
+0.014616,156
+0.009291,156
+0.009270,156
+0.009321,156
+0.009187,156
+0.009374,156
+0.009282,156
+0.009344,156
+0.009185,156
+0.009271,156
+0.013772,156
+0.009505,156
+0.009288,156
+0.009205,156
+0.009265,156
+0.009332,156
+0.009187,156
+0.009263,156
+0.009286,156
+0.009381,156
+0.010971,156
+0.012399,156
+0.009319,156
+0.009214,156
+0.009270,156
+0.009185,156
+0.009331,156
+0.009207,156
+0.009204,156
+0.009225,156
+0.009189,156
+0.014033,156
+0.009291,156
+0.009208,156
+0.009224,156
+0.009228,156
+0.009336,156
+0.009186,156
+0.009225,156
+0.009186,156
+0.009245,156
+0.012972,156
+0.010474,156
+0.009281,156
+0.009432,156
+0.009240,156
+0.009350,156
+0.009186,156
+0.009249,156
+0.009185,156
+0.009224,156
+0.010326,156
+0.013002,156
+0.009279,156
+0.009701,158
+0.009625,158
+0.009621,158
+0.009726,158
+0.009628,158
+0.009543,158
+0.009582,158
+0.010835,158
+0.013186,158
+0.009713,158
+0.009620,158
+0.009625,158
+0.009666,158
+0.009545,158
+0.009610,158
+0.009585,158
+0.009679,158
+0.010873,158
+0.013045,158
+0.009651,158
+0.009623,158
+0.009568,158
+0.009643,158
+0.009545,158
+0.009583,158
+0.009542,158
+0.009586,158
+0.010793,158
+0.013279,158
+0.009682,158
+0.009608,158
+0.009561,158
+0.009687,158
+0.009548,158
+0.009582,158
+0.009545,158
+0.009612,158
+0.010642,158
+0.013318,158
+0.009618,158
+0.009640,158
+0.009560,158
+0.009687,158
+0.009544,158
+0.009582,158
+0.009546,158
+0.009582,158
+0.009657,158
+0.014768,158
+0.009654,158
+0.009671,158
+0.009584,158
+0.009713,158
+0.009808,158
+0.009650,158
+0.009599,158
+0.009547,158
+0.009723,158
+0.009852,158
+0.009656,158
+0.009584,158
+0.009627,158
+0.009685,158
+0.009587,158
+0.009604,158
+0.009544,158
+0.009607,158
+0.009562,158
+0.009986,158
+0.009774,158
+0.009682,158
+0.011187,158
+0.009877,158
+0.009714,158
+0.009629,158
+0.009544,158
+0.009622,158
+0.009546,158
+0.009776,158
+0.009973,158
+0.009588,158
+0.010187,158
+0.009548,158
+0.009694,158
+0.009594,158
+0.009582,158
+0.009623,158
+0.009543,158
+0.009730,158
+0.009879,158
+0.009693,158
+0.009872,158
+0.009792,158
+0.009710,158
+0.009545,158
+0.009621,158
+0.009547,158
+0.009622,158
+0.009627,158
+0.010054,158
+0.010054,160
+0.009929,160
+0.010009,160
+0.009988,160
+0.010043,160
+0.010026,160
+0.009913,160
+0.009992,160
+0.009988,160
+0.010275,160
+0.010065,160
+0.009904,160
+0.010016,160
+0.009985,160
+0.009989,160
+0.009988,160
+0.009997,160
+0.010034,160
+0.010070,160
+0.010303,160
+0.010059,160
+0.009946,160
+0.010008,160
+0.009986,160
+0.009979,160
+0.009984,160
+0.009905,160
+0.009988,160
+0.009993,160
+0.010278,160
+0.010234,160
+0.009945,160
+0.010079,160
+0.009987,160
+0.009990,160
+0.012101,160
+0.010456,160
+0.009979,160
+0.010182,160
+0.010254,160
+0.010008,160
+0.009989,160
+0.009967,160
+0.010090,160
+0.009973,160
+0.010025,160
+0.009985,160
+0.009903,160
+0.010008,160
+0.010262,160
+0.010137,160
+0.010036,160
+0.009937,160
+0.010067,160
+0.010004,160
+0.010024,160
+0.009989,160
+0.009907,160
+0.009991,160
+0.010275,160
+0.010042,160
+0.009989,160
+0.009911,160
+0.010050,160
+0.009907,160
+0.010129,160
+0.010013,160
+0.009909,160
+0.009995,160
+0.010495,160
+0.010028,160
+0.010029,160
+0.009951,160
+0.010063,160
+0.010007,160
+0.009944,160
+0.009986,160
+0.009904,160
+0.010006,160
+0.010279,160
+0.010067,160
+0.010054,160
+0.009934,160
+0.010086,160
+0.009944,160
+0.009944,160
+0.009987,160
+0.009904,160
+0.009985,160
+0.010425,160
+0.009962,160
+0.009988,160
+0.009906,160
+0.010069,160
+0.009944,160
+0.009949,160
+0.009985,160
+0.009904,160
+0.010007,160
+0.010422,160
+0.010407,162
+0.010363,162
+0.010280,162
+0.010447,162
+0.010445,162
+0.010283,162
+0.010360,162
+0.010319,162
+0.010479,162
+0.010749,162
+0.010282,162
+0.010404,162
+0.010358,162
+0.010366,162
+0.010361,162
+0.010360,162
+0.010364,162
+0.010358,162
+0.010496,162
+0.010656,162
+0.010365,162
+0.010284,162
+0.010423,162
+0.010320,162
+0.010323,162
+0.010378,162
+0.010281,162
+0.010360,162
+0.010843,162
+0.010325,162
+0.010400,162
+0.010281,162
+0.010441,162
+0.010361,162
+0.010284,162
+0.010378,162
+0.010372,162
+0.010364,162
+0.010847,162
+0.010389,162
+0.010406,162
+0.010388,162
+0.010346,162
+0.010407,162
+0.010365,162
+0.010317,162
+0.010364,162
+0.010498,162
+0.010612,162
+0.010410,162
+0.010280,162
+0.010466,162
+0.010487,162
+0.010487,162
+0.010363,162
+0.010280,162
+0.010450,162
+0.010746,162
+0.010334,162
+0.010491,162
+0.010358,162
+0.010363,162
+0.010387,162
+0.010300,162
+0.010363,162
+0.010362,162
+0.010541,162
+0.010729,162
+0.010459,162
+0.010328,162
+0.010466,162
+0.010283,162
+0.010364,162
+0.010362,162
+0.010282,162
+0.010362,162
+0.010745,162
+0.010464,162
+0.010403,162
+0.010316,162
+0.010428,162
+0.010365,162
+0.010284,162
+0.010382,162
+0.010364,162
+0.010383,162
+0.010771,162
+0.010351,162
+0.010378,162
+0.010404,162
+0.010364,162
+0.011207,162
+0.010435,162
+0.010319,162
+0.010426,162
+0.010802,162
+0.010531,162
+0.010431,162
+0.010284,162
+0.010522,162
+0.010784,164
+0.010711,164
+0.010748,164
+0.010809,164
+0.010786,164
+0.011112,164
+0.010752,164
+0.010789,164
+0.010813,164
+0.010773,164
+0.010780,164
+0.011292,164
+0.011594,164
+0.011430,164
+0.011138,164
+0.010801,164
+0.010771,164
+0.010786,164
+0.010763,164
+0.010774,164
+0.010746,164
+0.010671,164
+0.010771,164
+0.011398,164
+0.010791,164
+0.010771,164
+0.010810,164
+0.010777,164
+0.010796,164
+0.010822,164
+0.011003,164
+0.010760,164
+0.010943,164
+0.011030,164
+0.010857,164
+0.010801,164
+0.010826,164
+0.010754,164
+0.010670,164
+0.010748,164
+0.010750,164
+0.010836,164
+0.011151,164
+0.010840,164
+0.010732,164
+0.010915,164
+0.010751,164
+0.010709,164
+0.010746,164
+0.010754,164
+0.010714,164
+0.011173,164
+0.010763,164
+0.010850,164
+0.010793,164
+0.010779,164
+0.010792,164
+0.010793,164
+0.010669,164
+0.010780,164
+0.011376,164
+0.010779,164
+0.010790,164
+0.010751,164
+0.010751,164
+0.010753,164
+0.010751,164
+0.010669,164
+0.010745,164
+0.010846,164
+0.012370,164
+0.010926,164
+0.011042,164
+0.010808,164
+0.010782,164
+0.010733,164
+0.010707,164
+0.010750,164
+0.010891,164
+0.011047,164
+0.011147,164
+0.010669,164
+0.010834,164
+0.010770,164
+0.010670,164
+0.010747,164
+0.010746,164
+0.010755,164
+0.011173,164
+0.011209,164
+0.010669,164
+0.011009,164
+0.010817,164
+0.010712,164
+0.010766,164
+0.010734,164
+0.010828,164
+0.011192,164
+0.010784,164
+0.010732,164
+0.011191,166
+0.011185,166
+0.011145,166
+0.011888,166
+0.012399,166
+0.012089,166
+0.011909,166
+0.011759,166
+0.011249,166
+0.011758,166
+0.011934,166
+0.011491,166
+0.011819,166
+0.011546,166
+0.011587,166
+0.011658,166
+0.012568,166
+0.011181,166
+0.011217,166
+0.011118,166
+0.011121,166
+0.011059,166
+0.011164,166
+0.011387,166
+0.011276,166
+0.011226,166
+0.011204,166
+0.011228,166
+0.011131,166
+0.011142,166
+0.011100,166
+0.011137,166
+0.011355,166
+0.011357,166
+0.011142,166
+0.011250,166
+0.011281,166
+0.011159,166
+0.011142,166
+0.011099,166
+0.011100,166
+0.011505,166
+0.011219,166
+0.011137,166
+0.011220,166
+0.011239,166
+0.011102,166
+0.011155,166
+0.011142,166
+0.011062,166
+0.011673,166
+0.011270,166
+0.011083,166
+0.011158,166
+0.011245,166
+0.011062,166
+0.011140,166
+0.011156,166
+0.011061,166
+0.011578,166
+0.011292,166
+0.011134,166
+0.011167,166
+0.011235,166
+0.011059,166
+0.011144,166
+0.011139,166
+0.011159,166
+0.011497,166
+0.011209,166
+0.011156,166
+0.011138,166
+0.011201,166
+0.011061,166
+0.011138,166
+0.011169,166
+0.011059,166
+0.011572,166
+0.011204,166
+0.011161,166
+0.011254,166
+0.011203,166
+0.011098,166
+0.011138,166
+0.011144,166
+0.011083,166
+0.011473,166
+0.011272,166
+0.011144,166
+0.011296,166
+0.011161,166
+0.011103,166
+0.011360,166
+0.011138,166
+0.011134,166
+0.011465,166
+0.011145,166
+0.011102,166
+0.011164,166
+0.011182,166
+0.011523,168
+0.011490,168
+0.011535,168
+0.011532,168
+0.011907,168
+0.011672,168
+0.011655,168
+0.011612,168
+0.011542,168
+0.011551,168
+0.011531,168
+0.011524,168
+0.011651,168
+0.011834,168
+0.011450,168
+0.011632,168
+0.011648,168
+0.011473,168
+0.011532,168
+0.011528,168
+0.011452,168
+0.011698,168
+0.011850,168
+0.011598,168
+0.011687,168
+0.011610,168
+0.011528,168
+0.011452,168
+0.011555,168
+0.011512,168
+0.011784,168
+0.011572,168
+0.011512,168
+0.011580,168
+0.011532,168
+0.011554,168
+0.011490,168
+0.011495,168
+0.011668,168
+0.011871,168
+0.011485,168
+0.011530,168
+0.011591,168
+0.011449,168
+0.011529,168
+0.011532,168
+0.011516,168
+0.011658,168
+0.011794,168
+0.011571,168
+0.011533,168
+0.011528,168
+0.011533,168
+0.011450,168
+0.011528,168
+0.011552,168
+0.011742,168
+0.011668,168
+0.011667,168
+0.011600,168
+0.011559,168
+0.011602,168
+0.011623,168
+0.011590,168
+0.011655,168
+0.012261,168
+0.011516,168
+0.011774,168
+0.011784,168
+0.011491,168
+0.011541,168
+0.011557,168
+0.011546,168
+0.011727,168
+0.011933,168
+0.011591,168
+0.011511,168
+0.011567,168
+0.011619,168
+0.011493,168
+0.011491,168
+0.011567,168
+0.012135,168
+0.011495,168
+0.011536,168
+0.011575,168
+0.011452,168
+0.011510,168
+0.011513,168
+0.011452,168
+0.011755,168
+0.012195,168
+0.011600,168
+0.011611,168
+0.011585,168
+0.011533,168
+0.011453,168
+0.011526,168
+0.011563,168
+0.011778,168
+0.012368,170
+0.011991,170
+0.012023,170
+0.011874,170
+0.011995,170
+0.011975,170
+0.011873,170
+0.012019,170
+0.012605,170
+0.011974,170
+0.012064,170
+0.012011,170
+0.011956,170
+0.011913,170
+0.011915,170
+0.011957,170
+0.012581,170
+0.011992,170
+0.011972,170
+0.012224,170
+0.011968,170
+0.011880,170
+0.011963,170
+0.011961,170
+0.012367,170
+0.012179,170
+0.012012,170
+0.012050,170
+0.011872,170
+0.011946,170
+0.011983,170
+0.011910,170
+0.012138,170
+0.012355,170
+0.012069,170
+0.011953,170
+0.011972,170
+0.011951,170
+0.011969,170
+0.011873,170
+0.011954,170
+0.012545,170
+0.011952,170
+0.012034,170
+0.011974,170
+0.011952,170
+0.011891,170
+0.011952,170
+0.011949,170
+0.012361,170
+0.012149,170
+0.012212,170
+0.012514,170
+0.012752,170
+0.012681,170
+0.012633,170
+0.012701,170
+0.012961,170
+0.012976,170
+0.013305,170
+0.013122,170
+0.013128,170
+0.013197,170
+0.013457,170
+0.012856,170
+0.014079,170
+0.012390,170
+0.012251,170
+0.012068,170
+0.011998,170
+0.012010,170
+0.011881,170
+0.012047,170
+0.013430,170
+0.012022,170
+0.012064,170
+0.012012,170
+0.011969,170
+0.011879,170
+0.011970,170
+0.012012,170
+0.013293,170
+0.012159,170
+0.012003,170
+0.012090,170
+0.011921,170
+0.011919,170
+0.011975,170
+0.011976,170
+0.013089,170
+0.013243,170
+0.012087,170
+0.012064,170
+0.012142,170
+0.011978,170
+0.012004,170
+0.011963,170
+0.011878,170
+0.013426,170
+0.011999,170
+0.012542,172
+0.012343,172
+0.012399,172
+0.012399,172
+0.012399,172
+0.012335,172
+0.013855,172
+0.012485,172
+0.012488,172
+0.012322,172
+0.012376,172
+0.012417,172
+0.012376,172
+0.012359,172
+0.013822,172
+0.012456,172
+0.012528,172
+0.012299,172
+0.012400,172
+0.012376,172
+0.012380,172
+0.012348,172
+0.013919,172
+0.012396,172
+0.012518,172
+0.012300,172
+0.012436,172
+0.012373,172
+0.012377,172
+0.012768,172
+0.013555,172
+0.012493,172
+0.012480,172
+0.012365,172
+0.012372,172
+0.012416,172
+0.012470,172
+0.012911,172
+0.013230,172
+0.012400,172
+0.012480,172
+0.012401,172
+0.012358,172
+0.012374,172
+0.012399,172
+0.012936,172
+0.013161,172
+0.012432,172
+0.012491,172
+0.012339,172
+0.012351,172
+0.012387,172
+0.012380,172
+0.012970,172
+0.013251,172
+0.012388,172
+0.012437,172
+0.012403,172
+0.012297,172
+0.012398,172
+0.012422,172
+0.012949,172
+0.013123,172
+0.012379,172
+0.012475,172
+0.012376,172
+0.012297,172
+0.012430,172
+0.012380,172
+0.013706,172
+0.013553,172
+0.012487,172
+0.012477,172
+0.012439,172
+0.012298,172
+0.012377,172
+0.012376,172
+0.013300,172
+0.012890,172
+0.012415,172
+0.012543,172
+0.012378,172
+0.012305,172
+0.012375,172
+0.012374,172
+0.013355,172
+0.012861,172
+0.012377,172
+0.012459,172
+0.012386,172
+0.012342,172
+0.012377,172
+0.012387,172
+0.013479,172
+0.012737,172
+0.012374,172
+0.012439,172
+0.012419,172
+0.012339,172
+0.012335,172
+0.012924,174
+0.014114,174
+0.013398,174
+0.012870,174
+0.012829,174
+0.012810,174
+0.012898,174
+0.012773,174
+0.012770,174
+0.014461,174
+0.012943,174
+0.012952,174
+0.012893,174
+0.012770,174
+0.012819,174
+0.012815,174
+0.013198,174
+0.013806,174
+0.012834,174
+0.012930,174
+0.012905,174
+0.013421,174
+0.012810,174
+0.012833,174
+0.014129,174
+0.013014,174
+0.012818,174
+0.012832,174
+0.012812,174
+0.012827,174
+0.012774,174
+0.012827,174
+0.014350,174
+0.012876,174
+0.012939,174
+0.012771,174
+0.012778,174
+0.012826,174
+0.012832,174
+0.012847,174
+0.014217,174
+0.012893,174
+0.012886,174
+0.012816,174
+0.012773,174
+0.012781,174
+0.012813,174
+0.014284,174
+0.013887,174
+0.013176,174
+0.012836,174
+0.012812,174
+0.012850,174
+0.012854,174
+0.012751,174
+0.014305,174
+0.012886,174
+0.012893,174
+0.012796,174
+0.012766,174
+0.012814,174
+0.012808,174
+0.012820,174
+0.014250,174
+0.012876,174
+0.012902,174
+0.012811,174
+0.012777,174
+0.012769,174
+0.012870,174
+0.013717,174
+0.013426,174
+0.012750,174
+0.012822,174
+0.012850,174
+0.012808,174
+0.012984,174
+0.012814,174
+0.013902,174
+0.012985,174
+0.012943,174
+0.012767,174
+0.012812,174
+0.012810,174
+0.012809,174
+0.012775,174
+0.014276,174
+0.012971,174
+0.012871,174
+0.012878,174
+0.012763,174
+0.012850,174
+0.012817,174
+0.012812,174
+0.014245,174
+0.012864,174
+0.013058,174
+0.012952,174
+0.012890,174
+0.012775,174
+0.013229,176
+0.014257,176
+0.013616,176
+0.013359,176
+0.013247,176
+0.013200,176
+0.013245,176
+0.013236,176
+0.013294,176
+0.014650,176
+0.013181,176
+0.013312,176
+0.013240,176
+0.013241,176
+0.013264,176
+0.013196,176
+0.014077,176
+0.013740,176
+0.013320,176
+0.013239,176
+0.013155,176
+0.013252,176
+0.013269,176
+0.013234,176
+0.015676,176
+0.013342,176
+0.013354,176
+0.013246,176
+0.013241,176
+0.013235,176
+0.013202,176
+0.014308,176
+0.013464,176
+0.013379,176
+0.013273,176
+0.013302,176
+0.013184,176
+0.013255,176
+0.013260,176
+0.014662,176
+0.013348,176
+0.013158,176
+0.013240,176
+0.013244,176
+0.013241,176
+0.013302,176
+0.014299,176
+0.013475,176
+0.013319,176
+0.013235,176
+0.013244,176
+0.013223,176
+0.013300,176
+0.013448,176
+0.014596,176
+0.013353,176
+0.013236,176
+0.013191,176
+0.013241,176
+0.013890,176
+0.013450,176
+0.014640,176
+0.013330,176
+0.013404,176
+0.013243,176
+0.013239,176
+0.013238,176
+0.013216,176
+0.013558,176
+0.014477,176
+0.013404,176
+0.013368,176
+0.013281,176
+0.013190,176
+0.013259,176
+0.013234,176
+0.014619,176
+0.013257,176
+0.013273,176
+0.013255,176
+0.013242,176
+0.013230,176
+0.013262,176
+0.013705,176
+0.014162,176
+0.013396,176
+0.013258,176
+0.013253,176
+0.013167,176
+0.013313,176
+0.013258,176
+0.014743,176
+0.013368,176
+0.013229,176
+0.013240,176
+0.013265,176
+0.013312,176
+0.013221,176
+0.014368,176
+0.014610,176
+0.014034,178
+0.013804,178
+0.013749,178
+0.013730,178
+0.013697,178
+0.013688,178
+0.015298,178
+0.013925,178
+0.013806,178
+0.013768,178
+0.013693,178
+0.013685,178
+0.013730,178
+0.015227,178
+0.013905,178
+0.013775,178
+0.013737,178
+0.013648,178
+0.013803,178
+0.013741,178
+0.015209,178
+0.013851,178
+0.013757,178
+0.013646,178
+0.013730,178
+0.013816,178
+0.013727,178
+0.014983,178
+0.013994,178
+0.013671,178
+0.013728,178
+0.013737,178
+0.013749,178
+0.013727,178
+0.014320,178
+0.014624,178
+0.013803,178
+0.013733,178
+0.013728,178
+0.013793,178
+0.013732,178
+0.013658,178
+0.015135,178
+0.013893,178
+0.013753,178
+0.013730,178
+0.013949,178
+0.014305,178
+0.013707,178
+0.015145,178
+0.013894,178
+0.013792,178
+0.013752,178
+0.013750,178
+0.013733,178
+0.013735,178
+0.015082,178
+0.013848,178
+0.013724,178
+0.013745,178
+0.013650,178
+0.013775,178
+0.013733,178
+0.014791,178
+0.014185,178
+0.013790,178
+0.013675,178
+0.013743,178
+0.013723,178
+0.013748,178
+0.013917,178
+0.016409,178
+0.013868,178
+0.013665,178
+0.013760,178
+0.013723,178
+0.013813,178
+0.013727,178
+0.015177,178
+0.013749,178
+0.013743,178
+0.013724,178
+0.013724,178
+0.013728,178
+0.013685,178
+0.015080,178
+0.013865,178
+0.013746,178
+0.013721,178
+0.013739,178
+0.013731,178
+0.013676,178
+0.015119,178
+0.013960,178
+0.013744,178
+0.013728,178
+0.013740,178
+0.013644,178
+0.013724,178
+0.014658,178
+0.014728,180
+0.014195,180
+0.014154,180
+0.014114,180
+0.014113,180
+0.014158,180
+0.015102,180
+0.014781,180
+0.014233,180
+0.014154,180
+0.014149,180
+0.014076,180
+0.014217,180
+0.014995,180
+0.014969,180
+0.014297,180
+0.014176,180
+0.014168,180
+0.014086,180
+0.014151,180
+0.014921,180
+0.014900,180
+0.014164,180
+0.014154,180
+0.014149,180
+0.014153,180
+0.014112,180
+0.014883,180
+0.014967,180
+0.014175,180
+0.014164,180
+0.014196,180
+0.014109,180
+0.014114,180
+0.014899,180
+0.015049,180
+0.014223,180
+0.014156,180
+0.014178,180
+0.014150,180
+0.014075,180
+0.015177,180
+0.015930,180
+0.014194,180
+0.014163,180
+0.014190,180
+0.014157,180
+0.014110,180
+0.014913,180
+0.014957,180
+0.014214,180
+0.014177,180
+0.014151,180
+0.014155,180
+0.014152,180
+0.014882,180
+0.014835,180
+0.014170,180
+0.014159,180
+0.014152,180
+0.014232,180
+0.014157,180
+0.015053,180
+0.014741,180
+0.014195,180
+0.014153,180
+0.014174,180
+0.014151,180
+0.014157,180
+0.015240,180
+0.014557,180
+0.014173,180
+0.014154,180
+0.014157,180
+0.014151,180
+0.014394,180
+0.015120,180
+0.014651,180
+0.014242,180
+0.014196,180
+0.014211,180
+0.014216,180
+0.014153,180
+0.015174,180
+0.014765,180
+0.014133,180
+0.014154,180
+0.014189,180
+0.014172,180
+0.014150,180
+0.015249,180
+0.014679,180
+0.014261,180
+0.014184,180
+0.014153,180
+0.014189,180
+0.014164,180
+0.015344,180
+0.014498,180
+0.014108,180
+0.014750,182
+0.014647,182
+0.014627,182
+0.014627,182
+0.016130,182
+0.014691,182
+0.014653,182
+0.014672,182
+0.014551,182
+0.014638,182
+0.014671,182
+0.017304,182
+0.014720,182
+0.014631,182
+0.014627,182
+0.014625,182
+0.014627,182
+0.015040,182
+0.015694,182
+0.014651,182
+0.014626,182
+0.014629,182
+0.014627,182
+0.014628,182
+0.015926,182
+0.014910,182
+0.014648,182
+0.014550,182
+0.014717,182
+0.014645,182
+0.014633,182
+0.016201,182
+0.014751,182
+0.014878,182
+0.014713,182
+0.014713,182
+0.014655,182
+0.014610,182
+0.016184,182
+0.014636,182
+0.014632,182
+0.014627,182
+0.014632,182
+0.014793,182
+0.015369,182
+0.015352,182
+0.014551,182
+0.014627,182
+0.014633,182
+0.014628,182
+0.014625,182
+0.016009,182
+0.014969,182
+0.014744,182
+0.014692,182
+0.014556,182
+0.014629,182
+0.014630,182
+0.016128,182
+0.015961,182
+0.014838,182
+0.014701,182
+0.014754,182
+0.014700,182
+0.014594,182
+0.016209,182
+0.014634,182
+0.014625,182
+0.014630,182
+0.014634,182
+0.014626,182
+0.015189,182
+0.015702,182
+0.014674,182
+0.014607,182
+0.014588,182
+0.014629,182
+0.014722,182
+0.016583,182
+0.015458,182
+0.014648,182
+0.014629,182
+0.014654,182
+0.014622,182
+0.014551,182
+0.016172,182
+0.014692,182
+0.014670,182
+0.014647,182
+0.014626,182
+0.014631,182
+0.014628,182
+0.016231,182
+0.014702,182
+0.014695,182
+0.014647,182
+0.014689,182
+0.014630,182
+0.015389,182
+0.015426,182
+0.015261,184
+0.015180,184
+0.015138,184
+0.015059,184
+0.015058,184
+0.016465,184
+0.015138,184
+0.015098,184
+0.015097,184
+0.015119,184
+0.015141,184
+0.015094,184
+0.016480,184
+0.015096,184
+0.015165,184
+0.015160,184
+0.015066,184
+0.015055,184
+0.016511,184
+0.015245,184
+0.015117,184
+0.015112,184
+0.015097,184
+0.015093,184
+0.015099,184
+0.016688,184
+0.015242,184
+0.015145,184
+0.015171,184
+0.015055,184
+0.015094,184
+0.015913,184
+0.016243,184
+0.016548,184
+0.016859,184
+0.016615,184
+0.016799,184
+0.017313,184
+0.016958,184
+0.016048,184
+0.016098,184
+0.015850,184
+0.015472,184
+0.015232,184
+0.015827,184
+0.015177,184
+0.015074,184
+0.016331,184
+0.017115,184
+0.016935,184
+0.016747,184
+0.016620,184
+0.016549,184
+0.016444,184
+0.016073,184
+0.016638,184
+0.016661,184
+0.017202,184
+0.016771,184
+0.016886,184
+0.016380,184
+0.016665,184
+0.016209,184
+0.016098,184
+0.015419,184
+0.015109,184
+0.015642,184
+0.017083,184
+0.016561,184
+0.015799,184
+0.015359,184
+0.015220,184
+0.015253,184
+0.016316,184
+0.017189,184
+0.016395,184
+0.016625,184
+0.016639,184
+0.016613,184
+0.016478,184
+0.016285,184
+0.016545,184
+0.016739,184
+0.017193,184
+0.018658,184
+0.016758,184
+0.016925,184
+0.016327,184
+0.015753,184
+0.016161,184
+0.017930,184
+0.016808,184
+0.016986,184
+0.016812,184
+0.018616,184
+0.017193,184
+0.017303,184
+0.019176,184
+0.018340,184
+0.019973,184
+0.020155,186
+0.020461,186
+0.018463,186
+0.019075,186
+0.024476,186
+0.022738,186
+0.020556,186
+0.019866,186
+0.017708,186
+0.018356,186
+0.017593,186
+0.018223,186
+0.019948,186
+0.020820,186
+0.022140,186
+0.017918,186
+0.019225,186
+0.019098,186
+0.019009,186
+0.022953,186
+0.017083,186
+0.018396,186
+0.017968,186
+0.017585,186
+0.016829,186
+0.016879,186
+0.016319,186
+0.016866,186
+0.018337,186
+0.018310,186
+0.023732,186
+0.018696,186
+0.019207,186
+0.019455,186
+0.018706,186
+0.017146,186
+0.016986,186
+0.017028,186
+0.019344,186
+0.019544,186
+0.017739,186
+0.017609,186
+0.017587,186
+0.017680,186
+0.017810,186
+0.017584,186
+0.017399,186
+0.018720,186
+0.017195,186
+0.017573,186
+0.017484,186
+0.018048,186
+0.021768,186
+0.016621,186
+0.017351,186
+0.016885,186
+0.016948,186
+0.017927,186
+0.017122,186
+0.017224,186
+0.017469,186
+0.017162,186
+0.017409,186
+0.017101,186
+0.017373,186
+0.016490,186
+0.017339,186
+0.017151,186
+0.017822,186
+0.017549,186
+0.017109,186
+0.016668,186
+0.016529,186
+0.016398,186
+0.017232,186
+0.019138,186
+0.017349,186
+0.016798,186
+0.016739,186
+0.017289,186
+0.016649,186
+0.017188,186
+0.016960,186
+0.016722,186
+0.017282,186
+0.016667,186
+0.016988,186
+0.016480,186
+0.016038,186
+0.015908,186
+0.015761,186
+0.015867,186
+0.019385,186
+0.017620,186
+0.018975,186
+0.017683,186
+0.016649,186
+0.017682,186
+0.017443,186
+0.017369,186
+0.017585,188
+0.017031,188
+0.016650,188
+0.016580,188
+0.016551,188
+0.016911,188
+0.017369,188
+0.017895,188
+0.020415,188
+0.021828,188
+0.020295,188
+0.020074,188
+0.020325,188
+0.018933,188
+0.016831,188
+0.016935,188
+0.016587,188
+0.016250,188
+0.016128,188
+0.016203,188
+0.016281,188
+0.016457,188
+0.016501,188
+0.016292,188
+0.016134,188
+0.017463,188
+0.016336,188
+0.016530,188
+0.016388,188
+0.016234,188
+0.016892,188
+0.021228,188
+0.018101,188
+0.018236,188
+0.019020,188
+0.022148,188
+0.028301,188
+0.030740,188
+0.028133,188
+0.030402,188
+0.030221,188
+0.021442,188
+0.026085,188
+0.021689,188
+0.021782,188
+0.019309,188
+0.018858,188
+0.016389,188
+0.016632,188
+0.019297,188
+0.017420,188
+0.018507,188
+0.016734,188
+0.017010,188
+0.017164,188
+0.017296,188
+0.019475,188
+0.018051,188
+0.016476,188
+0.018042,188
+0.016878,188
+0.016812,188
+0.018170,188
+0.017259,188
+0.016538,188
+0.016762,188
+0.017282,188
+0.017397,188
+0.022841,188
+0.018055,188
+0.016597,188
+0.016511,188
+0.016567,188
+0.016492,188
+0.018150,188
+0.017119,188
+0.016564,188
+0.017333,188
+0.016671,188
+0.016647,188
+0.016544,188
+0.016785,188
+0.016593,188
+0.017043,188
+0.016483,188
+0.016506,188
+0.020677,188
+0.016481,188
+0.016269,188
+0.016441,188
+0.016390,188
+0.016472,188
+0.020768,188
+0.016408,188
+0.016359,188
+0.016669,188
+0.016571,188
+0.017968,188
+0.019100,188
+0.016422,188
+0.019606,190
+0.018196,190
+0.017098,190
+0.017581,190
+0.017235,190
+0.016891,190
+0.017145,190
+0.017270,190
+0.017056,190
+0.021680,190
+0.020330,190
+0.019509,190
+0.017363,190
+0.017317,190
+0.017935,190
+0.017530,190
+0.017335,190
+0.018212,190
+0.017494,190
+0.017188,190
+0.017696,190
+0.016806,190
+0.016855,190
+0.017064,190
+0.017031,190
+0.017257,190
+0.017479,190
+0.016840,190
+0.016886,190
+0.017175,190
+0.016892,190
+0.016751,190
+0.017574,190
+0.016842,190
+0.016957,190
+0.017035,190
+0.016909,190
+0.017014,190
+0.017247,190
+0.016834,190
+0.016835,190
+0.017247,190
+0.017006,190
+0.017128,190
+0.018882,190
+0.018347,190
+0.017874,190
+0.017716,190
+0.016836,190
+0.017167,190
+0.016848,190
+0.016718,190
+0.016687,190
+0.016791,190
+0.016808,190
+0.017179,190
+0.016809,190
+0.016723,190
+0.016876,190
+0.017000,190
+0.016726,190
+0.017112,190
+0.016764,190
+0.016678,190
+0.016707,190
+0.016774,190
+0.016693,190
+0.017114,190
+0.016812,190
+0.016817,190
+0.016675,190
+0.016843,190
+0.016779,190
+0.017179,190
+0.016748,190
+0.016754,190
+0.017375,190
+0.017169,190
+0.018405,190
+0.018924,190
+0.018512,190
+0.018088,190
+0.017260,190
+0.017003,190
+0.016994,190
+0.018513,190
+0.017271,190
+0.017029,190
+0.017007,190
+0.016876,190
+0.016957,190
+0.019317,190
+0.019256,190
+0.018045,190
+0.017711,190
+0.017179,190
+0.021522,190
+0.019157,190
+0.022006,190
+0.022502,190
+0.024940,192
+0.020805,192
+0.018494,192
+0.018604,192
+0.018872,192
+0.020463,192
+0.019122,192
+0.018341,192
+0.018278,192
+0.018342,192
+0.021521,192
+0.021664,192
+0.023983,192
+0.022446,192
+0.020787,192
+0.020216,192
+0.021117,192
+0.021752,192
+0.020148,192
+0.020033,192
+0.019823,192
+0.019258,192
+0.018466,192
+0.018968,192
+0.019993,192
+0.024043,192
+0.020247,192
+0.020460,192
+0.022285,192
+0.032353,192
+0.020860,192
+0.019693,192
+0.019178,192
+0.019545,192
+0.019595,192
+0.022936,192
+0.019735,192
+0.020366,192
+0.020715,192
+0.020817,192
+0.019938,192
+0.019200,192
+0.019328,192
+0.019081,192
+0.019019,192
+0.024591,192
+0.020063,192
+0.023090,192
+0.020689,192
+0.025426,192
+0.024649,192
+0.022197,192
+0.023562,192
+0.025272,192
+0.021982,192
+0.019063,192
+0.020815,192
+0.018930,192
+0.019309,192
+0.021683,192
+0.018894,192
+0.018693,192
+0.018402,192
+0.018643,192
+0.018803,192
+0.018865,192
+0.018530,192
+0.018566,192
+0.018457,192
+0.019478,192
+0.019840,192
+0.019749,192
+0.021034,192
+0.020868,192
+0.023697,192
+0.019251,192
+0.019106,192
+0.021241,192
+0.019936,192
+0.020166,192
+0.019412,192
+0.019460,192
+0.019504,192
+0.019592,192
+0.019792,192
+0.019798,192
+0.019799,192
+0.019798,192
+0.021687,192
+0.020310,192
+0.020672,192
+0.020906,192
+0.020747,192
+0.020806,192
+0.020942,192
+0.022014,192
+0.020865,192
+0.020481,192
+0.021178,192
+0.020042,192
+0.019345,194
+0.020383,194
+0.034984,194
+0.031715,194
+0.019095,194
+0.019188,194
+0.019084,194
+0.019325,194
+0.018859,194
+0.019776,194
+0.018427,194
+0.018625,194
+0.018061,194
+0.018269,194
+0.018030,194
+0.018468,194
+0.017982,194
+0.018246,194
+0.018547,194
+0.019330,194
+0.019578,194
+0.019471,194
+0.020268,194
+0.019597,194
+0.019489,194
+0.019100,194
+0.019014,194
+0.019099,194
+0.018724,194
+0.018987,194
+0.018608,194
+0.018548,194
+0.018599,194
+0.018297,194
+0.018905,194
+0.018515,194
+0.018691,194
+0.018296,194
+0.018482,194
+0.018275,194
+0.018193,194
+0.017980,194
+0.018071,194
+0.018040,194
+0.017936,194
+0.019145,194
+0.019417,194
+0.019837,194
+0.020615,194
+0.020887,194
+0.019485,194
+0.018711,194
+0.018365,194
+0.019080,194
+0.018409,194
+0.018458,194
+0.018273,194
+0.017884,194
+0.017895,194
+0.018663,194
+0.019215,194
+0.019486,194
+0.019641,194
+0.019856,194
+0.019866,194
+0.019767,194
+0.020457,194
+0.019443,194
+0.019975,194
+0.019074,194
+0.018775,194
+0.019472,194
+0.020400,194
+0.020998,194
+0.020603,194
+0.020092,194
+0.019683,194
+0.020105,194
+0.018864,194
+0.018451,194
+0.017971,194
+0.018226,194
+0.017998,194
+0.017893,194
+0.018022,194
+0.017815,194
+0.017903,194
+0.018246,194
+0.019260,194
+0.019605,194
+0.019167,194
+0.019089,194
+0.019311,194
+0.019635,194
+0.019365,194
+0.019919,194
+0.020112,194
+0.019885,194
+0.019468,194
+0.019149,194
+0.020764,196
+0.021087,196
+0.020729,196
+0.023838,196
+0.024036,196
+0.019970,196
+0.019897,196
+0.020047,196
+0.019956,196
+0.019867,196
+0.019909,196
+0.021403,196
+0.021023,196
+0.021649,196
+0.020910,196
+0.020714,196
+0.021551,196
+0.021570,196
+0.021105,196
+0.019902,196
+0.019433,196
+0.021446,196
+0.021803,196
+0.020211,196
+0.019600,196
+0.018518,196
+0.019530,196
+0.020621,196
+0.021180,196
+0.020092,196
+0.019216,196
+0.019500,196
+0.021280,196
+0.021502,196
+0.020392,196
+0.020218,196
+0.019788,196
+0.019832,196
+0.019178,196
+0.019315,196
+0.018625,196
+0.018539,196
+0.019664,196
+0.019096,196
+0.019631,196
+0.019488,196
+0.019109,196
+0.019395,196
+0.019174,196
+0.019152,196
+0.018386,196
+0.018477,196
+0.018987,196
+0.018399,196
+0.019330,196
+0.019047,196
+0.018537,196
+0.018668,196
+0.018769,196
+0.018420,196
+0.018592,196
+0.018385,196
+0.018368,196
+0.018968,196
+0.018484,196
+0.018433,196
+0.018916,196
+0.018328,196
+0.018830,196
+0.018451,196
+0.018356,196
+0.018438,196
+0.018313,196
+0.018338,196
+0.018935,196
+0.018504,196
+0.018554,196
+0.018682,196
+0.018337,196
+0.018847,196
+0.019009,196
+0.018384,196
+0.019396,196
+0.018847,196
+0.018546,196
+0.018771,196
+0.018494,196
+0.018434,196
+0.018456,196
+0.018361,196
+0.019148,196
+0.021199,196
+0.019170,196
+0.018582,196
+0.018312,196
+0.018855,196
+0.023224,196
+0.019320,196
+0.023507,196
+0.021675,196
+0.020363,198
+0.021072,198
+0.020478,198
+0.019864,198
+0.022227,198
+0.020976,198
+0.019821,198
+0.019979,198
+0.019839,198
+0.021022,198
+0.020894,198
+0.019946,198
+0.020093,198
+0.024282,198
+0.022166,198
+0.020987,198
+0.021312,198
+0.020292,198
+0.019523,198
+0.019733,198
+0.019085,198
+0.019108,198
+0.018861,198
+0.020641,198
+0.022971,198
+0.023156,198
+0.022558,198
+0.023455,198
+0.021469,198
+0.020916,198
+0.021697,198
+0.021540,198
+0.021498,198
+0.022028,198
+0.023256,198
+0.021457,198
+0.021465,198
+0.020630,198
+0.021839,198
+0.020525,198
+0.020847,198
+0.020563,198
+0.020045,198
+0.020640,198
+0.020792,198
+0.020395,198
+0.019915,198
+0.019510,198
+0.019546,198
+0.018955,198
+0.019296,198
+0.018956,198
+0.018959,198
+0.019419,198
+0.021557,198
+0.024834,198
+0.020640,198
+0.019464,198
+0.019883,198
+0.020924,198
+0.020797,198
+0.019979,198
+0.020777,198
+0.020949,198
+0.020096,198
+0.020566,198
+0.020725,198
+0.020589,198
+0.020503,198
+0.021146,198
+0.020854,198
+0.020709,198
+0.020673,198
+0.021265,198
+0.020957,198
+0.020087,198
+0.020293,198
+0.020254,198
+0.020485,198
+0.020327,198
+0.019938,198
+0.019418,198
+0.020064,198
+0.019959,198
+0.020235,198
+0.019863,198
+0.019784,198
+0.019847,198
+0.019759,198
+0.019440,198
+0.019175,198
+0.019037,198
+0.019055,198
+0.019500,198
+0.018947,198
+0.018935,198
+0.018942,198
+0.019043,198
+0.019386,198
+0.018894,198
+0.019847,200
+0.019664,200
+0.019531,200
+0.019984,200
+0.019496,200
+0.019535,200
+0.019523,200
+0.019396,200
+0.019900,200
+0.019467,200
+0.019590,200
+0.019588,200
+0.019606,200
+0.019987,200
+0.020046,200
+0.019704,200
+0.019461,200
+0.020299,200
+0.020112,200
+0.019736,200
+0.019486,200
+0.019468,200
+0.019677,200
+0.019764,200
+0.020011,200
+0.019543,200
+0.019450,200
+0.019493,200
+0.019740,200
+0.019989,200
+0.019563,200
+0.019551,200
+0.019500,200
+0.019565,200
+0.020163,200
+0.019851,200
+0.019784,200
+0.019433,200
+0.019716,200
+0.020197,200
+0.019575,200
+0.019520,200
+0.019471,200
+0.019425,200
+0.020289,200
+0.019476,200
+0.019521,200
+0.019553,200
+0.019613,200
+0.020180,200
+0.019593,200
+0.019575,200
+0.019641,200
+0.019589,200
+0.020003,200
+0.019793,200
+0.019558,200
+0.019446,200
+0.019542,200
+0.019870,200
+0.019855,200
+0.020083,200
+0.019634,200
+0.019726,200
+0.020650,200
+0.019880,200
+0.019689,200
+0.020130,200
+0.019559,200
+0.019814,200
+0.019751,200
+0.019683,200
+0.019536,200
+0.019511,200
+0.019739,200
+0.019761,200
+0.019844,200
+0.019614,200
+0.019510,200
+0.019615,200
+0.019933,200
+0.019595,200
+0.019627,200
+0.019514,200
+0.019771,200
+0.019989,200
+0.019759,200
+0.019605,200
+0.019446,200
+0.019555,200
+0.020018,200
+0.019672,200
+0.019454,200
+0.019554,200
+0.019475,200
+0.019982,200
+0.019757,200
+0.019448,200
+0.019456,200
+0.019556,200
+0.020752,202
+0.020315,202
+0.020130,202
+0.020352,202
+0.020185,202
+0.020527,202
+0.020467,202
+0.020032,202
+0.020118,202
+0.020047,202
+0.020468,202
+0.020382,202
+0.020043,202
+0.020195,202
+0.020701,202
+0.022772,202
+0.020800,202
+0.020752,202
+0.020241,202
+0.020193,202
+0.020553,202
+0.021345,202
+0.021025,202
+0.021084,202
+0.021334,202
+0.021501,202
+0.021238,202
+0.020361,202
+0.020826,202
+0.020559,202
+0.021365,202
+0.021705,202
+0.021215,202
+0.020839,202
+0.021010,202
+0.024230,202
+0.020649,202
+0.020775,202
+0.020427,202
+0.021548,202
+0.020331,202
+0.020407,202
+0.020270,202
+0.020106,202
+0.020695,202
+0.022353,202
+0.020113,202
+0.020133,202
+0.020351,202
+0.020511,202
+0.020268,202
+0.020175,202
+0.020279,202
+0.020470,202
+0.020585,202
+0.020178,202
+0.020050,202
+0.021290,202
+0.020567,202
+0.020655,202
+0.020220,202
+0.020202,202
+0.020527,202
+0.022670,202
+0.021468,202
+0.020876,202
+0.022385,202
+0.032710,202
+0.039798,202
+0.023425,202
+0.021605,202
+0.023522,202
+0.021182,202
+0.020169,202
+0.020112,202
+0.020041,202
+0.021666,202
+0.020232,202
+0.020173,202
+0.021271,202
+0.022316,202
+0.022846,202
+0.021547,202
+0.023117,202
+0.022271,202
+0.023128,202
+0.024963,202
+0.022957,202
+0.025744,202
+0.023609,202
+0.021734,202
+0.021805,202
+0.021457,202
+0.021720,202
+0.024516,202
+0.022754,202
+0.023032,202
+0.021576,202
+0.022953,202
+0.020970,202
+0.021015,204
+0.020775,204
+0.020687,204
+0.025122,204
+0.020993,204
+0.020820,204
+0.020792,204
+0.020859,204
+0.030238,204
+0.025164,204
+0.026316,204
+0.023593,204
+0.025047,204
+0.023127,204
+0.022618,204
+0.022424,204
+0.022037,204
+0.022084,204
+0.021993,204
+0.022581,204
+0.021904,204
+0.021925,204
+0.022160,204
+0.022226,204
+0.022588,204
+0.028373,204
+0.022144,204
+0.023337,204
+0.023259,204
+0.022549,204
+0.023086,204
+0.023397,204
+0.022853,204
+0.028375,204
+0.023074,204
+0.022656,204
+0.022478,204
+0.022516,204
+0.025986,204
+0.020992,204
+0.020852,204
+0.020867,204
+0.025466,204
+0.021012,204
+0.020711,204
+0.020913,204
+0.021363,204
+0.027080,204
+0.022212,204
+0.021433,204
+0.020768,204
+0.025439,204
+0.021289,204
+0.023418,204
+0.026657,204
+0.022670,204
+0.023941,204
+0.023481,204
+0.025152,204
+0.022343,204
+0.023359,204
+0.023745,204
+0.023200,204
+0.022828,204
+0.023002,204
+0.022384,204
+0.022177,204
+0.022080,204
+0.021990,204
+0.022732,204
+0.022659,204
+0.023318,204
+0.022884,204
+0.022393,204
+0.023143,204
+0.023760,204
+0.024075,204
+0.022287,204
+0.022691,204
+0.021653,204
+0.021537,204
+0.020961,204
+0.022480,204
+0.020901,204
+0.022064,204
+0.024598,204
+0.028897,204
+0.024398,204
+0.022677,204
+0.022657,204
+0.022089,204
+0.021633,204
+0.022691,204
+0.024345,204
+0.022917,204
+0.024167,204
+0.022165,204
+0.022049,204
+0.022787,204
+0.024235,204
+0.023591,206
+0.021978,206
+0.021865,206
+0.021844,206
+0.022636,206
+0.022349,206
+0.021367,206
+0.021330,206
+0.022050,206
+0.021592,206
+0.021232,206
+0.021594,206
+0.022438,206
+0.022745,206
+0.022449,206
+0.021736,206
+0.021858,206
+0.022040,206
+0.021889,206
+0.021391,206
+0.021359,206
+0.021393,206
+0.021920,206
+0.021935,206
+0.022188,206
+0.021793,206
+0.021650,206
+0.022413,206
+0.021509,206
+0.021635,206
+0.022036,206
+0.023080,206
+0.021413,206
+0.021489,206
+0.021287,206
+0.021372,206
+0.022243,206
+0.022011,206
+0.021568,206
+0.022526,206
+0.022047,206
+0.021898,206
+0.021383,206
+0.021404,206
+0.021395,206
+0.021860,206
+0.021563,206
+0.021460,206
+0.021246,206
+0.021360,206
+0.022058,206
+0.021339,206
+0.022831,206
+0.021602,206
+0.021552,206
+0.021860,206
+0.021494,206
+0.021493,206
+0.021341,206
+0.022150,206
+0.023089,206
+0.023404,206
+0.023811,206
+0.023137,206
+0.023687,206
+0.023525,206
+0.022122,206
+0.021608,206
+0.022198,206
+0.021359,206
+0.022185,206
+0.021756,206
+0.021619,206
+0.021804,206
+0.021404,206
+0.021511,206
+0.021431,206
+0.022140,206
+0.021525,206
+0.021277,206
+0.021323,206
+0.021513,206
+0.022128,206
+0.021489,206
+0.023350,206
+0.021501,206
+0.022080,206
+0.021529,206
+0.021403,206
+0.021514,206
+0.021426,206
+0.022244,206
+0.021401,206
+0.021319,206
+0.022172,206
+0.022706,206
+0.022246,206
+0.021965,206
+0.021504,206
+0.022424,206
+0.023821,208
+0.023756,208
+0.022642,208
+0.025208,208
+0.023727,208
+0.022863,208
+0.022806,208
+0.022508,208
+0.022684,208
+0.022997,208
+0.023056,208
+0.023113,208
+0.022604,208
+0.023785,208
+0.029033,208
+0.024733,208
+0.024317,208
+0.024554,208
+0.024225,208
+0.025887,208
+0.024642,208
+0.025190,208
+0.024142,208
+0.024546,208
+0.022975,208
+0.023746,208
+0.023763,208
+0.026540,208
+0.024444,208
+0.023780,208
+0.023109,208
+0.022683,208
+0.022263,208
+0.021896,208
+0.022531,208
+0.025044,208
+0.023229,208
+0.022732,208
+0.023278,208
+0.022880,208
+0.024107,208
+0.024268,208
+0.024868,208
+0.025449,208
+0.024925,208
+0.024397,208
+0.025436,208
+0.025071,208
+0.025322,208
+0.024356,208
+0.026775,208
+0.024093,208
+0.026201,208
+0.025142,208
+0.027131,208
+0.024924,208
+0.025702,208
+0.027040,208
+0.024313,208
+0.024575,208
+0.024335,208
+0.024293,208
+0.023861,208
+0.023234,208
+0.022936,208
+0.022000,208
+0.022155,208
+0.023588,208
+0.024183,208
+0.022588,208
+0.021907,208
+0.022326,208
+0.022018,208
+0.021848,208
+0.021839,208
+0.022088,208
+0.022409,208
+0.021985,208
+0.021948,208
+0.021927,208
+0.022259,208
+0.021915,208
+0.022055,208
+0.021779,208
+0.021774,208
+0.022601,208
+0.022210,208
+0.021924,208
+0.022733,208
+0.023556,208
+0.025291,208
+0.024384,208
+0.024610,208
+0.028181,208
+0.024314,208
+0.024542,208
+0.024557,208
+0.023488,208
+0.023457,208
+0.023533,208
+0.024409,210
+0.024628,210
+0.023856,210
+0.023852,210
+0.023106,210
+0.023128,210
+0.023243,210
+0.023334,210
+0.022987,210
+0.022623,210
+0.022790,210
+0.022955,210
+0.022740,210
+0.022705,210
+0.022813,210
+0.022882,210
+0.023087,210
+0.022539,210
+0.022487,210
+0.023094,210
+0.022589,210
+0.022518,210
+0.022693,210
+0.022863,210
+0.022825,210
+0.022861,210
+0.022547,210
+0.022669,210
+0.022950,210
+0.022901,210
+0.023057,210
+0.022649,210
+0.023103,210
+0.022778,210
+0.022605,210
+0.023652,210
+0.024703,210
+0.025658,210
+0.024492,210
+0.023719,210
+0.024246,210
+0.024166,210
+0.024462,210
+0.023157,210
+0.023018,210
+0.024428,210
+0.026391,210
+0.024282,210
+0.023907,210
+0.025583,210
+0.023684,210
+0.023131,210
+0.022876,210
+0.024564,210
+0.022791,210
+0.022825,210
+0.022587,210
+0.024037,210
+0.023186,210
+0.022641,210
+0.022504,210
+0.022791,210
+0.024149,210
+0.022694,210
+0.022492,210
+0.022470,210
+0.024329,210
+0.023516,210
+0.022771,210
+0.022512,210
+0.023819,210
+0.023292,210
+0.022586,210
+0.022538,210
+0.022760,210
+0.023383,210
+0.023399,210
+0.022960,210
+0.022517,210
+0.023320,210
+0.022742,210
+0.022517,210
+0.022731,210
+0.022745,210
+0.023166,210
+0.023166,210
+0.022732,210
+0.023988,210
+0.024082,210
+0.024657,210
+0.024366,210
+0.027884,210
+0.024597,210
+0.025377,210
+0.023830,210
+0.023895,210
+0.024427,210
+0.023678,210
+0.025564,210
+0.024984,210
+0.028780,212
+0.029890,212
+0.027592,212
+0.026942,212
+0.030883,212
+0.027178,212
+0.028512,212
+0.039651,212
+0.028242,212
+0.028991,212
+0.026668,212
+0.027360,212
+0.026401,212
+0.029501,212
+0.026908,212
+0.027813,212
+0.027291,212
+0.026234,212
+0.027539,212
+0.028791,212
+0.027450,212
+0.025350,212
+0.023689,212
+0.023496,212
+0.023258,212
+0.023522,212
+0.024155,212
+0.024813,212
+0.026071,212
+0.027582,212
+0.025773,212
+0.024817,212
+0.023433,212
+0.023553,212
+0.023926,212
+0.024485,212
+0.024293,212
+0.024646,212
+0.029259,212
+0.025543,212
+0.024065,212
+0.024499,212
+0.030856,212
+0.027562,212
+0.024638,212
+0.023682,212
+0.023831,212
+0.023276,212
+0.023219,212
+0.023363,212
+0.023826,212
+0.023578,212
+0.023316,212
+0.023402,212
+0.023999,212
+0.023216,212
+0.023572,212
+0.023125,212
+0.023700,212
+0.025048,212
+0.024970,212
+0.024854,212
+0.024401,212
+0.025642,212
+0.025771,212
+0.025708,212
+0.024839,212
+0.025416,212
+0.023692,212
+0.023449,212
+0.024185,212
+0.024160,212
+0.023241,212
+0.025328,212
+0.023427,212
+0.024180,212
+0.023727,212
+0.023739,212
+0.023470,212
+0.023785,212
+0.023785,212
+0.026845,212
+0.026689,212
+0.032715,212
+0.027248,212
+0.026124,212
+0.025759,212
+0.025625,212
+0.024113,212
+0.023480,212
+0.023333,212
+0.023605,212
+0.023243,212
+0.023336,212
+0.023319,212
+0.023747,212
+0.023551,212
+0.023361,212
+0.024556,212
+0.024892,212
+0.026700,214
+0.025213,214
+0.026438,214
+0.025136,214
+0.026425,214
+0.025937,214
+0.025493,214
+0.024801,214
+0.024645,214
+0.025036,214
+0.024143,214
+0.024138,214
+0.024073,214
+0.023911,214
+0.024143,214
+0.024270,214
+0.024084,214
+0.024074,214
+0.023962,214
+0.024107,214
+0.024537,214
+0.024517,214
+0.024748,214
+0.024388,214
+0.024160,214
+0.024152,214
+0.023880,214
+0.024127,214
+0.024769,214
+0.024106,214
+0.023967,214
+0.024425,214
+0.025422,214
+0.024347,214
+0.024800,214
+0.023930,214
+0.024677,214
+0.023916,214
+0.024202,214
+0.023872,214
+0.024607,214
+0.023927,214
+0.023970,214
+0.024261,214
+0.025395,214
+0.024604,214
+0.024098,214
+0.024544,214
+0.024544,214
+0.024166,214
+0.023802,214
+0.023982,214
+0.024028,214
+0.024306,214
+0.024041,214
+0.024064,214
+0.024016,214
+0.024493,214
+0.024140,214
+0.023797,214
+0.023974,214
+0.024329,214
+0.023998,214
+0.023922,214
+0.023908,214
+0.024607,214
+0.023883,214
+0.024193,214
+0.024173,214
+0.024611,214
+0.023901,214
+0.023930,214
+0.023932,214
+0.024221,214
+0.024181,214
+0.023771,214
+0.024193,214
+0.023987,214
+0.024391,214
+0.023819,214
+0.023993,214
+0.023855,214
+0.024511,214
+0.023991,214
+0.023807,214
+0.024126,214
+0.024321,214
+0.024102,214
+0.023873,214
+0.023921,214
+0.024535,214
+0.024155,214
+0.023932,214
+0.024392,214
+0.024515,214
+0.023947,214
+0.024139,214
+0.023944,214
+0.027535,214
+0.025248,214
+0.025484,216
+0.025123,216
+0.030448,216
+0.025789,216
+0.024894,216
+0.025904,216
+0.026197,216
+0.024432,216
+0.024402,216
+0.024708,216
+0.026282,216
+0.024615,216
+0.024535,216
+0.024753,216
+0.026081,216
+0.024561,216
+0.024475,216
+0.024744,216
+0.025945,216
+0.024761,216
+0.024542,216
+0.024724,216
+0.025159,216
+0.024840,216
+0.024601,216
+0.024741,216
+0.025042,216
+0.024965,216
+0.024499,216
+0.024812,216
+0.024926,216
+0.024801,216
+0.024435,216
+0.024676,216
+0.024981,216
+0.025004,216
+0.024671,216
+0.024859,216
+0.025062,216
+0.024994,216
+0.024513,216
+0.024685,216
+0.024627,216
+0.025029,216
+0.024553,216
+0.024694,216
+0.024752,216
+0.024954,216
+0.024574,216
+0.024582,216
+0.024523,216
+0.025109,216
+0.024530,216
+0.024503,216
+0.024665,216
+0.024862,216
+0.024782,216
+0.024510,216
+0.024871,216
+0.024840,216
+0.024585,216
+0.024626,216
+0.024589,216
+0.025097,216
+0.024512,216
+0.024515,216
+0.024539,216
+0.025020,216
+0.024724,216
+0.025950,216
+0.025361,216
+0.024966,216
+0.024595,216
+0.024620,216
+0.024548,216
+0.024962,216
+0.024853,216
+0.024712,216
+0.025908,216
+0.024977,216
+0.024504,216
+0.024641,216
+0.024624,216
+0.024878,216
+0.024699,216
+0.024645,216
+0.024614,216
+0.024994,216
+0.024638,216
+0.024640,216
+0.024676,216
+0.024891,216
+0.024802,216
+0.024641,216
+0.024596,216
+0.025361,216
+0.024752,216
+0.024759,216
+0.024553,216
+0.025133,216
+0.026054,218
+0.025362,218
+0.025420,218
+0.025677,218
+0.025630,218
+0.025347,218
+0.025488,218
+0.025886,218
+0.025560,218
+0.025564,218
+0.025548,218
+0.025869,218
+0.025400,218
+0.025229,218
+0.025425,218
+0.025760,218
+0.025523,218
+0.025417,218
+0.025613,218
+0.025950,218
+0.025742,218
+0.026214,218
+0.025615,218
+0.025978,218
+0.025597,218
+0.025436,218
+0.025336,218
+0.025929,218
+0.025384,218
+0.025450,218
+0.025279,218
+0.025758,218
+0.026162,218
+0.026038,218
+0.025452,218
+0.025823,218
+0.025876,218
+0.025534,218
+0.025492,218
+0.025908,218
+0.025268,218
+0.025463,218
+0.025701,218
+0.025900,218
+0.025401,218
+0.025399,218
+0.025506,218
+0.026239,218
+0.025726,218
+0.025523,218
+0.025512,218
+0.025693,218
+0.025337,218
+0.025391,218
+0.025715,218
+0.025980,218
+0.025722,218
+0.025406,218
+0.025888,218
+0.025402,218
+0.025444,218
+0.025225,218
+0.025808,218
+0.025480,218
+0.025621,218
+0.025296,218
+0.025849,218
+0.025335,218
+0.025513,218
+0.025507,218
+0.025734,218
+0.025532,218
+0.025320,218
+0.025351,218
+0.026005,218
+0.025512,218
+0.025464,218
+0.025527,218
+0.025952,218
+0.025491,218
+0.025561,218
+0.025331,218
+0.026120,218
+0.025413,218
+0.025770,218
+0.025433,218
+0.026001,218
+0.025613,218
+0.030177,218
+0.025411,218
+0.025951,218
+0.025443,218
+0.025476,218
+0.025370,218
+0.025936,218
+0.025675,218
+0.025550,218
+0.025630,218
+0.025618,218
+0.025579,218
+0.026034,220
+0.026495,220
+0.026471,220
+0.026135,220
+0.026024,220
+0.026502,220
+0.026192,220
+0.026208,220
+0.025793,220
+0.026485,220
+0.026102,220
+0.026000,220
+0.025925,220
+0.026730,220
+0.026285,220
+0.026114,220
+0.026022,220
+0.026625,220
+0.026283,220
+0.025947,220
+0.026193,220
+0.026647,220
+0.026127,220
+0.026263,220
+0.026584,220
+0.026220,220
+0.026227,220
+0.025974,220
+0.026622,220
+0.026000,220
+0.026058,220
+0.025875,220
+0.026576,220
+0.026332,220
+0.026333,220
+0.026040,220
+0.026581,220
+0.026081,220
+0.025933,220
+0.025890,220
+0.026702,220
+0.026128,220
+0.026023,220
+0.026261,220
+0.026445,220
+0.026108,220
+0.025919,220
+0.026601,220
+0.026105,220
+0.026200,220
+0.025909,220
+0.026559,220
+0.026029,220
+0.026357,220
+0.025926,220
+0.026565,220
+0.026243,220
+0.026013,220
+0.026061,220
+0.026618,220
+0.026076,220
+0.026005,220
+0.026074,220
+0.026654,220
+0.027963,220
+0.026178,220
+0.026506,220
+0.026037,220
+0.026183,220
+0.025942,220
+0.026730,220
+0.026153,220
+0.026348,220
+0.025951,220
+0.026421,220
+0.026054,220
+0.026047,220
+0.025945,220
+0.026649,220
+0.026028,220
+0.026105,220
+0.025931,220
+0.026659,220
+0.026037,220
+0.025900,220
+0.026170,220
+0.026410,220
+0.027071,220
+0.029181,220
+0.029791,220
+0.032931,220
+0.029965,220
+0.028955,220
+0.028804,220
+0.028369,220
+0.033877,220
+0.035271,220
+0.029037,220
+0.030304,220
+0.028764,220
+0.032144,222
+0.030095,222
+0.029826,222
+0.030025,222
+0.030439,222
+0.029537,222
+0.030335,222
+0.030394,222
+0.031119,222
+0.030428,222
+0.029719,222
+0.030357,222
+0.030121,222
+0.030463,222
+0.030936,222
+0.029935,222
+0.030507,222
+0.030769,222
+0.030753,222
+0.031559,222
+0.030556,222
+0.028491,222
+0.038898,222
+0.031032,222
+0.032999,222
+0.030822,222
+0.031671,222
+0.027785,222
+0.028481,222
+0.029536,222
+0.028762,222
+0.029051,222
+0.028534,222
+0.028510,222
+0.028585,222
+0.028222,222
+0.027511,222
+0.026921,222
+0.027167,222
+0.028879,222
+0.029678,222
+0.029246,222
+0.028604,222
+0.027927,222
+0.027112,222
+0.026937,222
+0.027582,222
+0.027922,222
+0.028084,222
+0.027279,222
+0.032112,222
+0.028924,222
+0.028764,222
+0.028468,222
+0.028902,222
+0.029415,222
+0.028632,222
+0.028597,222
+0.028101,222
+0.027938,222
+0.027737,222
+0.027592,222
+0.027508,222
+0.026710,222
+0.027587,222
+0.027275,222
+0.026938,222
+0.026820,222
+0.027447,222
+0.026860,222
+0.027257,222
+0.027210,222
+0.027288,222
+0.026897,222
+0.026723,222
+0.027392,222
+0.027271,222
+0.026700,222
+0.027218,222
+0.027228,222
+0.026802,222
+0.026738,222
+0.026919,222
+0.027479,222
+0.026767,222
+0.027356,222
+0.028218,222
+0.027190,222
+0.026627,222
+0.026783,222
+0.029107,222
+0.027437,222
+0.027101,222
+0.027245,222
+0.027957,222
+0.027147,222
+0.026625,222
+0.027619,222
+0.026972,222
+0.026861,222
+0.030481,224
+0.031907,224
+0.030276,224
+0.030199,224
+0.030781,224
+0.030660,224
+0.029803,224
+0.029641,224
+0.030029,224
+0.030143,224
+0.030204,224
+0.029160,224
+0.028092,224
+0.027552,224
+0.028139,224
+0.027974,224
+0.027323,224
+0.027517,224
+0.028085,224
+0.030571,224
+0.030403,224
+0.029997,224
+0.028308,224
+0.027460,224
+0.028766,224
+0.029718,224
+0.028819,224
+0.029245,224
+0.031629,224
+0.032029,224
+0.030914,224
+0.030517,224
+0.030474,224
+0.030768,224
+0.031882,224
+0.031387,224
+0.030420,224
+0.031337,224
+0.030044,224
+0.034327,224
+0.030854,224
+0.030328,224
+0.033406,224
+0.031817,224
+0.030631,224
+0.032101,224
+0.033730,224
+0.029826,224
+0.031530,224
+0.031753,224
+0.033048,224
+0.032152,224
+0.030505,224
+0.029881,224
+0.031639,224
+0.029774,224
+0.028924,224
+0.028632,224
+0.027792,224
+0.029400,224
+0.030336,224
+0.030603,224
+0.028470,224
+0.028010,224
+0.027968,224
+0.027848,224
+0.034007,224
+0.034008,224
+0.032426,224
+0.031746,224
+0.038141,224
+0.032608,224
+0.031625,224
+0.034657,224
+0.038820,224
+0.033090,224
+0.033139,224
+0.031559,224
+0.032271,224
+0.030568,224
+0.032382,224
+0.030899,224
+0.030876,224
+0.031431,224
+0.032091,224
+0.030831,224
+0.033164,224
+0.031260,224
+0.032525,224
+0.030558,224
+0.031484,224
+0.032766,224
+0.040871,224
+0.034256,224
+0.029736,224
+0.030002,224
+0.030190,224
+0.031873,224
+0.035653,224
+0.030355,224
+0.038359,226
+0.032737,226
+0.032086,226
+0.031910,226
+0.033470,226
+0.035968,226
+0.035538,226
+0.031602,226
+0.031934,226
+0.033544,226
+0.031603,226
+0.032140,226
+0.030537,226
+0.029187,226
+0.033465,226
+0.032267,226
+0.028616,226
+0.029906,226
+0.030404,226
+0.031123,226
+0.030498,226
+0.029185,226
+0.029922,226
+0.029873,226
+0.029993,226
+0.029503,226
+0.029013,226
+0.029772,226
+0.029598,226
+0.029569,226
+0.029438,226
+0.029786,226
+0.029251,226
+0.029219,226
+0.029285,226
+0.028921,226
+0.029585,226
+0.029455,226
+0.030155,226
+0.037745,226
+0.048594,226
+0.035934,226
+0.029589,226
+0.030131,226
+0.031797,226
+0.032539,226
+0.037528,226
+0.030358,226
+0.030639,226
+0.033117,226
+0.030044,226
+0.032242,226
+0.055458,226
+0.031261,226
+0.030087,226
+0.030046,226
+0.030232,226
+0.029933,226
+0.033404,226
+0.031345,226
+0.029815,226
+0.034788,226
+0.030248,226
+0.031458,226
+0.030393,226
+0.029576,226
+0.034623,226
+0.031584,226
+0.030099,226
+0.032214,226
+0.038271,226
+0.053570,226
+0.032201,226
+0.037901,226
+0.032488,226
+0.040133,226
+0.047461,226
+0.054163,226
+0.034901,226
+0.029900,226
+0.029762,226
+0.033021,226
+0.033003,226
+0.038823,226
+0.037308,226
+0.032131,226
+0.034172,226
+0.033802,226
+0.030919,226
+0.031852,226
+0.033025,226
+0.031556,226
+0.032073,226
+0.033406,226
+0.033584,226
+0.032928,226
+0.038199,226
+0.033780,226
+0.038584,226
+0.055719,226
+0.058413,228
+0.035285,228
+0.035209,228
+0.037280,228
+0.033502,228
+0.032071,228
+0.035548,228
+0.034351,228
+0.036300,228
+0.033368,228
+0.032850,228
+0.034856,228
+0.031111,228
+0.031256,228
+0.032246,228
+0.032399,228
+0.030678,228
+0.032127,228
+0.034021,228
+0.033264,228
+0.035448,228
+0.033460,228
+0.032239,228
+0.034237,228
+0.033503,228
+0.035946,228
+0.038068,228
+0.037110,228
+0.032372,228
+0.034622,228
+0.043915,228
+0.038023,228
+0.032146,228
+0.033678,228
+0.035175,228
+0.039960,228
+0.038647,228
+0.032987,228
+0.034119,228
+0.031473,228
+0.034447,228
+0.037187,228
+0.034195,228
+0.053888,228
+0.057387,228
+0.041434,228
+0.035605,228
+0.037209,228
+0.038886,228
+0.038520,228
+0.037813,228
+0.038613,228
+0.037488,228
+0.035828,228
+0.055271,228
+0.044974,228
+0.036878,228
+0.033910,228
+0.040586,228
+0.034270,228
+0.035660,228
+0.037039,228
+0.035461,228
+0.033405,228
+0.034598,228
+0.033075,228
+0.031569,228
+0.029700,228
+0.028999,228
+0.028899,228
+0.030214,228
+0.029377,228
+0.029040,228
+0.028972,228
+0.030507,228
+0.030097,228
+0.029211,228
+0.031429,228
+0.031037,228
+0.030696,228
+0.032641,228
+0.030338,228
+0.030568,228
+0.035138,228
+0.033369,228
+0.033579,228
+0.032370,228
+0.033078,228
+0.033028,228
+0.036455,228
+0.031926,228
+0.037841,228
+0.043416,228
+0.034424,228
+0.035560,228
+0.035623,228
+0.033878,228
+0.034861,228
+0.040343,228
+0.031714,228
+0.031521,230
+0.032262,230
+0.031759,230
+0.031238,230
+0.040024,230
+0.030795,230
+0.030423,230
+0.037331,230
+0.034220,230
+0.038911,230
+0.033386,230
+0.030560,230
+0.032715,230
+0.032480,230
+0.032481,230
+0.032610,230
+0.031889,230
+0.029772,230
+0.031411,230
+0.036283,230
+0.035074,230
+0.031736,230
+0.032945,230
+0.033298,230
+0.035190,230
+0.035525,230
+0.033094,230
+0.030818,230
+0.030266,230
+0.030043,230
+0.033915,230
+0.033520,230
+0.043449,230
+0.031992,230
+0.032614,230
+0.030324,230
+0.029697,230
+0.031615,230
+0.029970,230
+0.029960,230
+0.030578,230
+0.030815,230
+0.029851,230
+0.029909,230
+0.031756,230
+0.030288,230
+0.029887,230
+0.031984,230
+0.030395,230
+0.030012,230
+0.031443,230
+0.030140,230
+0.029813,230
+0.029760,230
+0.030528,230
+0.031063,230
+0.030089,230
+0.030302,230
+0.031332,230
+0.030670,230
+0.030580,230
+0.030771,230
+0.029953,230
+0.029818,230
+0.030290,230
+0.029702,230
+0.029878,230
+0.030488,230
+0.029758,230
+0.029761,230
+0.030089,230
+0.029880,230
+0.029779,230
+0.029914,230
+0.030102,230
+0.030568,230
+0.029937,230
+0.040401,230
+0.031918,230
+0.033614,230
+0.033388,230
+0.031643,230
+0.033828,230
+0.033263,230
+0.032154,230
+0.037540,230
+0.031902,230
+0.031859,230
+0.031949,230
+0.032026,230
+0.033004,230
+0.033935,230
+0.032172,230
+0.030865,230
+0.034507,230
+0.031688,230
+0.030815,230
+0.031229,230
+0.032014,230
+0.031126,230
+0.032550,232
+0.031897,232
+0.031908,232
+0.035073,232
+0.038418,232
+0.041864,232
+0.035232,232
+0.033638,232
+0.037859,232
+0.036304,232
+0.041679,232
+0.037868,232
+0.035952,232
+0.034724,232
+0.035198,232
+0.037757,232
+0.048921,232
+0.045694,232
+0.034858,232
+0.034677,232
+0.037713,232
+0.035391,232
+0.034319,232
+0.035481,232
+0.031987,232
+0.032051,232
+0.036022,232
+0.032238,232
+0.032866,232
+0.036448,232
+0.037238,232
+0.036668,232
+0.034088,232
+0.036922,232
+0.035981,232
+0.035254,232
+0.040008,232
+0.036387,232
+0.036067,232
+0.035025,232
+0.040029,232
+0.035266,232
+0.035036,232
+0.033987,232
+0.033387,232
+0.033578,232
+0.035668,232
+0.033234,232
+0.032961,232
+0.044879,232
+0.034288,232
+0.036545,232
+0.037218,232
+0.060757,232
+0.052725,232
+0.059088,232
+0.046550,232
+0.035530,232
+0.037320,232
+0.035810,232
+0.037426,232
+0.038875,232
+0.039483,232
+0.036936,232
+0.039523,232
+0.035185,232
+0.036760,232
+0.039975,232
+0.033352,232
+0.034196,232
+0.038098,232
+0.035772,232
+0.034154,232
+0.046065,232
+0.036488,232
+0.036674,232
+0.032738,232
+0.040295,232
+0.034094,232
+0.032441,232
+0.034736,232
+0.039548,232
+0.043287,232
+0.035976,232
+0.034000,232
+0.039252,232
+0.036005,232
+0.035834,232
+0.038083,232
+0.042782,232
+0.034514,232
+0.036371,232
+0.037417,232
+0.036355,232
+0.035273,232
+0.034276,232
+0.034102,232
+0.034029,232
+0.032980,232
+0.033573,232
+0.038926,234
+0.040618,234
+0.040820,234
+0.037968,234
+0.038272,234
+0.042271,234
+0.049123,234
+0.034518,234
+0.038881,234
+0.036649,234
+0.034415,234
+0.036345,234
+0.042409,234
+0.046327,234
+0.040199,234
+0.035942,234
+0.033875,234
+0.034114,234
+0.032950,234
+0.034286,234
+0.033797,234
+0.033200,234
+0.034005,234
+0.034584,234
+0.033112,234
+0.035728,234
+0.034922,234
+0.034962,234
+0.033979,234
+0.037586,234
+0.032872,234
+0.032678,234
+0.032931,234
+0.031773,234
+0.031569,234
+0.032165,234
+0.031644,234
+0.031421,234
+0.031764,234
+0.032788,234
+0.031787,234
+0.032033,234
+0.032698,234
+0.034101,234
+0.032329,234
+0.031548,234
+0.031429,234
+0.031976,234
+0.031711,234
+0.031761,234
+0.031984,234
+0.032145,234
+0.032423,234
+0.031948,234
+0.032846,234
+0.032110,234
+0.031985,234
+0.032124,234
+0.032101,234
+0.032569,234
+0.031868,234
+0.031619,234
+0.031396,234
+0.031854,234
+0.031510,234
+0.031874,234
+0.032488,234
+0.031960,234
+0.032351,234
+0.032967,234
+0.031426,234
+0.031421,234
+0.032175,234
+0.032020,234
+0.031694,234
+0.031361,234
+0.032057,234
+0.031503,234
+0.031530,234
+0.031835,234
+0.031568,234
+0.032580,234
+0.033096,234
+0.031693,234
+0.031557,234
+0.031821,234
+0.031663,234
+0.031552,234
+0.031997,234
+0.031551,234
+0.032328,234
+0.038241,234
+0.033073,234
+0.034025,234
+0.041936,234
+0.034898,234
+0.034670,234
+0.033454,234
+0.032831,234
+0.032554,234
+0.034014,236
+0.042267,236
+0.033598,236
+0.037150,236
+0.037716,236
+0.042123,236
+0.035850,236
+0.033674,236
+0.034933,236
+0.046021,236
+0.036961,236
+0.034046,236
+0.034640,236
+0.038851,236
+0.038601,236
+0.037612,236
+0.038283,236
+0.050662,236
+0.042437,236
+0.035757,236
+0.042565,236
+0.042066,236
+0.036041,236
+0.045430,236
+0.046189,236
+0.035335,236
+0.035933,236
+0.037539,236
+0.035753,236
+0.038120,236
+0.038759,236
+0.035861,236
+0.037570,236
+0.037263,236
+0.037237,236
+0.034930,236
+0.036549,236
+0.038395,236
+0.035150,236
+0.034880,236
+0.056546,236
+0.065572,236
+0.064669,236
+0.043473,236
+0.038197,236
+0.036195,236
+0.037004,236
+0.037704,236
+0.039867,236
+0.034735,236
+0.035096,236
+0.036566,236
+0.036038,236
+0.035488,236
+0.036002,236
+0.034937,236
+0.037259,236
+0.037143,236
+0.038535,236
+0.037414,236
+0.037420,236
+0.035069,236
+0.044932,236
+0.042434,236
+0.038816,236
+0.037132,236
+0.039159,236
+0.043116,236
+0.053508,236
+0.036529,236
+0.042496,236
+0.041511,236
+0.042414,236
+0.036079,236
+0.035603,236
+0.038234,236
+0.036367,236
+0.035904,236
+0.043415,236
+0.038683,236
+0.049272,236
+0.037985,236
+0.040943,236
+0.036566,236
+0.036520,236
+0.036361,236
+0.040316,236
+0.038872,236
+0.046996,236
+0.038305,236
+0.037079,236
+0.037051,236
+0.036403,236
+0.052353,236
+0.065731,236
+0.038483,236
+0.039731,236
+0.040667,236
+0.039422,236
+0.036323,236
+0.039984,238
+0.039154,238
+0.038000,238
+0.040795,238
+0.040740,238
+0.037750,238
+0.039052,238
+0.037504,238
+0.039023,238
+0.039670,238
+0.039332,238
+0.038281,238
+0.037550,238
+0.039648,238
+0.042368,238
+0.040971,238
+0.046427,238
+0.041052,238
+0.038373,238
+0.040200,238
+0.043690,238
+0.037832,238
+0.038493,238
+0.038403,238
+0.037142,238
+0.034706,238
+0.033901,238
+0.040440,238
+0.035300,238
+0.041074,238
+0.037595,238
+0.035440,238
+0.037362,238
+0.035476,238
+0.035796,238
+0.037895,238
+0.038695,238
+0.037677,238
+0.041286,238
+0.037201,238
+0.033769,238
+0.036268,238
+0.035800,238
+0.036867,238
+0.035524,238
+0.036707,238
+0.033865,238
+0.034250,238
+0.033525,238
+0.034638,238
+0.034202,238
+0.034417,238
+0.036239,238
+0.035166,238
+0.033821,238
+0.033657,238
+0.033593,238
+0.034345,238
+0.033903,238
+0.033662,238
+0.034174,238
+0.034770,238
+0.033359,238
+0.033261,238
+0.033956,238
+0.033516,238
+0.034037,238
+0.033512,238
+0.035305,238
+0.043315,238
+0.036623,238
+0.036925,238
+0.035807,238
+0.035129,238
+0.035297,238
+0.035685,238
+0.034809,238
+0.062845,238
+0.063883,238
+0.037364,238
+0.034707,238
+0.036881,238
+0.036212,238
+0.034828,238
+0.039247,238
+0.037213,238
+0.035516,238
+0.039169,238
+0.034531,238
+0.034429,238
+0.058864,238
+0.034223,238
+0.036844,238
+0.034868,238
+0.039806,238
+0.039903,238
+0.036842,238
+0.045442,238
+0.061311,238
+0.068015,238
+0.061888,240
+0.037788,240
+0.038708,240
+0.040065,240
+0.037985,240
+0.038610,240
+0.038260,240
+0.035348,240
+0.043080,240
+0.065015,240
+0.065295,240
+0.047075,240
+0.039273,240
+0.039100,240
+0.041221,240
+0.036884,240
+0.037328,240
+0.038838,240
+0.035996,240
+0.035691,240
+0.038985,240
+0.040828,240
+0.063071,240
+0.040215,240
+0.040135,240
+0.044682,240
+0.058434,240
+0.035911,240
+0.035433,240
+0.036398,240
+0.038814,240
+0.039300,240
+0.040816,240
+0.039196,240
+0.039069,240
+0.036121,240
+0.037252,240
+0.040057,240
+0.037747,240
+0.049648,240
+0.044225,240
+0.037219,240
+0.043359,240
+0.039678,240
+0.044457,240
+0.043541,240
+0.037499,240
+0.036685,240
+0.035518,240
+0.036836,240
+0.036822,240
+0.038609,240
+0.042677,240
+0.042368,240
+0.041357,240
+0.036577,240
+0.037395,240
+0.044514,240
+0.041369,240
+0.040472,240
+0.043148,240
+0.035156,240
+0.036309,240
+0.037413,240
+0.041998,240
+0.039106,240
+0.037416,240
+0.049919,240
+0.058601,240
+0.063010,240
+0.039447,240
+0.041990,240
+0.036290,240
+0.035762,240
+0.036162,240
+0.036034,240
+0.038136,240
+0.035628,240
+0.037692,240
+0.037752,240
+0.041216,240
+0.043586,240
+0.036112,240
+0.038512,240
+0.037177,240
+0.035050,240
+0.034959,240
+0.035005,240
+0.034586,240
+0.040625,240
+0.036259,240
+0.035390,240
+0.047543,240
+0.046283,240
+0.035670,240
+0.037121,240
+0.036174,240
+0.036019,240
+0.035681,240
+0.035161,240
+0.037298,242
+0.036379,242
+0.037063,242
+0.039403,242
+0.035977,242
+0.035764,242
+0.038621,242
+0.040435,242
+0.040444,242
+0.046900,242
+0.044130,242
+0.043335,242
+0.041598,242
+0.043373,242
+0.051978,242
+0.047757,242
+0.043976,242
+0.044748,242
+0.044415,242
+0.045642,242
+0.043595,242
+0.040760,242
+0.037238,242
+0.037202,242
+0.039095,242
+0.037753,242
+0.044098,242
+0.043148,242
+0.037186,242
+0.037201,242
+0.037794,242
+0.037017,242
+0.046732,242
+0.042538,242
+0.040082,242
+0.037564,242
+0.036788,242
+0.039120,242
+0.037258,242
+0.039025,242
+0.038419,242
+0.037153,242
+0.039335,242
+0.036763,242
+0.037089,242
+0.038095,242
+0.036415,242
+0.035928,242
+0.037595,242
+0.035858,242
+0.035469,242
+0.035986,242
+0.035906,242
+0.036469,242
+0.036442,242
+0.036042,242
+0.036749,242
+0.036919,242
+0.036366,242
+0.042866,242
+0.036113,242
+0.037040,242
+0.039419,242
+0.037763,242
+0.036457,242
+0.035895,242
+0.036282,242
+0.037048,242
+0.035670,242
+0.036967,242
+0.036571,242
+0.035999,242
+0.038157,242
+0.036348,242
+0.036195,242
+0.037875,242
+0.038158,242
+0.037128,242
+0.037198,242
+0.036315,242
+0.039334,242
+0.040416,242
+0.040462,242
+0.040766,242
+0.036621,242
+0.041799,242
+0.041783,242
+0.041681,242
+0.039947,242
+0.045828,242
+0.051787,242
+0.055497,242
+0.062481,242
+0.054816,242
+0.051234,242
+0.053183,242
+0.049677,242
+0.043943,242
+0.049858,242
+0.048604,242
+0.042604,244
+0.037067,244
+0.037008,244
+0.038071,244
+0.037895,244
+0.037857,244
+0.039293,244
+0.038633,244
+0.038398,244
+0.037568,244
+0.043805,244
+0.037950,244
+0.037571,244
+0.038194,244
+0.040907,244
+0.049489,244
+0.045770,244
+0.041992,244
+0.049068,244
+0.042707,244
+0.038987,244
+0.040554,244
+0.045714,244
+0.046163,244
+0.045404,244
+0.039588,244
+0.038019,244
+0.039299,244
+0.044092,244
+0.039754,244
+0.037165,244
+0.037098,244
+0.039174,244
+0.043341,244
+0.038992,244
+0.037748,244
+0.047128,244
+0.046255,244
+0.042033,244
+0.043816,244
+0.040439,244
+0.046624,244
+0.047540,244
+0.054191,244
+0.051626,244
+0.045808,244
+0.042352,244
+0.045372,244
+0.038918,244
+0.038240,244
+0.038005,244
+0.037630,244
+0.042605,244
+0.039113,244
+0.038081,244
+0.040873,244
+0.039740,244
+0.039959,244
+0.043360,244
+0.041199,244
+0.039120,244
+0.037091,244
+0.042271,244
+0.042701,244
+0.045315,244
+0.049741,244
+0.039499,244
+0.039563,244
+0.057227,244
+0.044174,244
+0.044178,244
+0.040710,244
+0.040150,244
+0.041164,244
+0.039595,244
+0.038822,244
+0.037958,244
+0.045212,244
+0.041920,244
+0.041130,244
+0.042547,244
+0.046054,244
+0.041133,244
+0.037234,244
+0.038638,244
+0.042100,244
+0.040171,244
+0.041663,244
+0.040491,244
+0.043518,244
+0.044038,244
+0.038680,244
+0.042164,244
+0.061726,244
+0.074289,244
+0.042699,244
+0.042803,244
+0.049122,244
+0.070119,244
+0.049622,244
+0.038539,246
+0.038196,246
+0.039307,246
+0.037428,246
+0.038324,246
+0.052023,246
+0.039487,246
+0.037586,246
+0.039020,246
+0.039549,246
+0.037492,246
+0.040484,246
+0.039250,246
+0.046656,246
+0.038669,246
+0.039248,246
+0.040040,246
+0.037132,246
+0.038674,246
+0.038312,246
+0.037191,246
+0.039565,246
+0.060067,246
+0.053942,246
+0.044020,246
+0.055706,246
+0.040239,246
+0.041632,246
+0.046325,246
+0.046631,246
+0.050694,246
+0.042951,246
+0.042646,246
+0.042530,246
+0.048909,246
+0.040221,246
+0.044465,246
+0.048841,246
+0.049324,246
+0.043825,246
+0.042679,246
+0.042340,246
+0.042111,246
+0.045769,246
+0.054803,246
+0.048428,246
+0.043964,246
+0.052360,246
+0.041956,246
+0.042329,246
+0.043834,246
+0.047139,246
+0.060399,246
+0.052413,246
+0.042464,246
+0.042927,246
+0.049934,246
+0.041210,246
+0.043826,246
+0.045054,246
+0.048279,246
+0.041517,246
+0.039144,246
+0.053363,246
+0.039289,246
+0.040568,246
+0.039130,246
+0.041380,246
+0.039996,246
+0.038805,246
+0.039796,246
+0.037353,246
+0.048057,246
+0.042571,246
+0.041057,246
+0.042104,246
+0.043330,246
+0.049639,246
+0.041997,246
+0.040691,246
+0.042721,246
+0.048252,246
+0.039384,246
+0.038983,246
+0.040735,246
+0.039003,246
+0.038468,246
+0.043975,246
+0.039244,246
+0.039227,246
+0.038976,246
+0.038386,246
+0.042636,246
+0.038402,246
+0.038908,246
+0.038447,246
+0.038969,246
+0.043644,246
+0.038643,246
+0.039654,246
+0.040417,248
+0.039043,248
+0.044185,248
+0.040981,248
+0.041167,248
+0.039010,248
+0.046503,248
+0.039729,248
+0.038554,248
+0.044928,248
+0.038168,248
+0.041322,248
+0.041021,248
+0.037554,248
+0.045301,248
+0.039310,248
+0.044383,248
+0.038072,248
+0.037636,248
+0.045089,248
+0.037994,248
+0.045009,248
+0.037771,248
+0.037889,248
+0.044825,248
+0.038956,248
+0.046335,248
+0.038490,248
+0.039092,248
+0.044719,248
+0.038244,248
+0.038259,248
+0.040093,248
+0.059074,248
+0.069364,248
+0.072384,248
+0.070536,248
+0.070802,248
+0.043605,248
+0.043621,248
+0.048433,248
+0.050848,248
+0.045514,248
+0.043148,248
+0.051421,248
+0.042470,248
+0.041860,248
+0.044064,248
+0.042480,248
+0.039761,248
+0.042519,248
+0.046595,248
+0.043080,248
+0.041553,248
+0.040925,248
+0.039039,248
+0.041334,248
+0.041843,248
+0.043456,248
+0.052848,248
+0.054206,248
+0.043880,248
+0.039692,248
+0.049379,248
+0.044408,248
+0.044133,248
+0.042658,248
+0.040781,248
+0.039622,248
+0.040741,248
+0.040740,248
+0.040613,248
+0.042183,248
+0.047676,248
+0.045665,248
+0.040499,248
+0.039285,248
+0.040557,248
+0.040458,248
+0.039474,248
+0.041121,248
+0.041969,248
+0.048307,248
+0.043854,248
+0.046862,248
+0.039862,248
+0.044932,248
+0.040158,248
+0.044907,248
+0.039039,248
+0.038666,248
+0.040718,248
+0.039401,248
+0.041912,248
+0.039699,248
+0.038408,248
+0.039801,248
+0.037801,248
+0.038018,248
+0.041077,248
+0.041118,250
+0.041625,250
+0.042281,250
+0.041250,250
+0.047224,250
+0.052398,250
+0.042484,250
+0.041450,250
+0.044243,250
+0.043093,250
+0.043305,250
+0.044385,250
+0.040806,250
+0.042173,250
+0.043244,250
+0.043859,250
+0.041508,250
+0.040480,250
+0.041561,250
+0.052677,250
+0.049975,250
+0.043095,250
+0.042289,250
+0.040271,250
+0.042032,250
+0.041356,250
+0.040589,250
+0.042898,250
+0.040365,250
+0.042170,250
+0.041341,250
+0.047620,250
+0.040095,250
+0.042915,250
+0.042191,250
+0.040765,250
+0.041442,250
+0.040396,250
+0.038723,250
+0.039274,250
+0.038511,250
+0.039335,250
+0.039447,250
+0.038701,250
+0.041427,250
+0.039387,250
+0.041807,250
+0.039079,250
+0.038644,250
+0.039729,250
+0.038817,250
+0.039518,250
+0.039032,250
+0.038899,250
+0.041545,250
+0.040623,250
+0.038601,250
+0.039554,250
+0.038782,250
+0.038914,250
+0.038213,250
+0.038458,250
+0.038830,250
+0.038276,250
+0.038921,250
+0.038286,250
+0.038049,250
+0.039573,250
+0.038401,250
+0.038713,250
+0.038589,250
+0.038117,250
+0.038831,250
+0.038402,250
+0.038166,250
+0.038875,250
+0.038836,250
+0.039089,250
+0.038327,250
+0.038419,250
+0.039411,250
+0.042661,250
+0.041217,250
+0.039954,250
+0.040938,250
+0.040428,250
+0.040414,250
+0.046576,250
+0.040224,250
+0.041112,250
+0.045884,250
+0.039604,250
+0.040516,250
+0.039564,250
+0.040219,250
+0.040064,250
+0.039664,250
+0.047404,250
+0.040092,250
+0.047241,250
+0.041014,252
+0.041330,252
+0.044109,252
+0.041699,252
+0.041691,252
+0.043507,252
+0.049178,252
+0.039971,252
+0.039065,252
+0.047117,252
+0.039674,252
+0.048511,252
+0.040083,252
+0.040037,252
+0.039856,252
+0.040304,252
+0.043659,252
+0.040051,252
+0.039996,252
+0.039877,252
+0.041357,252
+0.041120,252
+0.040048,252
+0.040099,252
+0.039636,252
+0.039485,252
+0.040500,252
+0.039753,252
+0.040429,252
+0.039844,252
+0.039803,252
+0.040322,252
+0.041272,252
+0.040620,252
+0.039722,252
+0.039304,252
+0.040193,252
+0.039097,252
+0.039661,252
+0.039098,252
+0.038839,252
+0.040025,252
+0.039618,252
+0.040018,252
+0.039926,252
+0.039517,252
+0.040126,252
+0.040258,252
+0.040113,252
+0.040086,252
+0.039453,252
+0.041034,252
+0.039821,252
+0.040005,252
+0.039831,252
+0.039674,252
+0.040629,252
+0.041473,252
+0.039830,252
+0.040176,252
+0.039588,252
+0.040798,252
+0.039369,252
+0.039816,252
+0.040228,252
+0.039705,252
+0.040574,252
+0.039849,252
+0.043661,252
+0.039510,252
+0.039278,252
+0.040141,252
+0.039366,252
+0.039836,252
+0.039810,252
+0.039245,252
+0.040290,252
+0.039499,252
+0.039695,252
+0.040437,252
+0.040627,252
+0.040927,252
+0.041921,252
+0.040642,252
+0.039550,252
+0.039489,252
+0.040235,252
+0.039898,252
+0.039762,252
+0.040119,252
+0.040233,252
+0.040398,252
+0.039181,252
+0.043033,252
+0.044545,252
+0.044985,252
+0.047034,252
+0.044280,252
+0.054477,252
+0.050319,252
+0.057066,254
+0.045915,254
+0.053807,254
+0.045821,254
+0.046224,254
+0.053504,254
+0.046008,254
+0.042736,254
+0.042936,254
+0.042031,254
+0.049899,254
+0.045839,254
+0.043794,254
+0.045294,254
+0.042477,254
+0.042991,254
+0.042728,254
+0.050819,254
+0.042482,254
+0.048271,254
+0.040985,254
+0.040710,254
+0.047932,254
+0.040411,254
+0.048790,254
+0.040995,254
+0.048399,254
+0.041008,254
+0.046948,254
+0.043205,254
+0.041398,254
+0.049819,254
+0.064929,254
+0.056505,254
+0.043840,254
+0.045254,254
+0.046367,254
+0.048988,254
+0.048867,254
+0.047641,254
+0.046717,254
+0.041652,254
+0.040698,254
+0.041314,254
+0.041291,254
+0.041492,254
+0.041668,254
+0.041032,254
+0.043226,254
+0.040972,254
+0.041882,254
+0.042040,254
+0.041288,254
+0.043481,254
+0.041075,254
+0.042863,254
+0.042624,254
+0.041805,254
+0.045990,254
+0.042427,254
+0.047742,254
+0.042355,254
+0.045689,254
+0.046819,254
+0.047558,254
+0.045499,254
+0.044920,254
+0.042057,254
+0.041470,254
+0.042317,254
+0.041304,254
+0.042961,254
+0.041028,254
+0.042244,254
+0.041813,254
+0.043338,254
+0.043398,254
+0.041723,254
+0.042069,254
+0.042506,254
+0.040893,254
+0.041919,254
+0.041103,254
+0.041800,254
+0.041996,254
+0.041740,254
+0.042997,254
+0.040920,254
+0.041795,254
+0.041676,254
+0.041098,254
+0.041497,254
+0.041171,254
+0.042121,254
+0.041001,254
+0.041654,254
+0.045172,254
+0.040708,254
+0.041422,254
+0.040343,254
+0.046370,256
+0.045655,256
+0.048878,256
+0.045398,256
+0.045694,256
+0.046966,256
+0.045426,256
+0.045866,256
+0.045093,256
+0.046127,256
+0.045129,256
+0.046048,256
+0.045077,256
+0.048681,256
+0.045522,256
+0.052923,256
+0.048435,256
+0.046260,256
+0.045517,256
+0.046115,256
+0.046228,256
+0.045122,256
+0.046320,256
+0.046687,256
+0.046604,256
+0.045214,256
+0.046405,256
+0.045484,256
+0.046130,256
+0.045156,256
+0.046180,256
+0.045839,256
+0.045490,256
+0.046040,256
+0.045252,256
+0.046244,256
+0.045412,256
+0.046311,256
+0.045113,256
+0.049488,256
+0.045643,256
+0.046900,256
+0.046661,256
+0.045409,256
+0.046062,256
+0.045338,256
+0.045944,256
+0.045376,256
+0.046158,256
+0.045406,256
+0.046151,256
+0.045319,256
+0.045680,256
+0.045820,256
+0.045328,256
+0.045860,256
+0.045192,256
+0.046020,256
+0.045257,256
+0.046302,256
+0.045438,256
+0.058704,256
+0.047125,256
+0.050324,256
+0.045177,256
+0.046064,256
+0.045252,256
+0.045498,256
+0.045675,256
+0.045127,256
+0.046056,256
+0.045348,256
+0.046808,256
+0.045555,256
+0.045877,256
+0.045550,256
+0.046480,256
+0.045690,256
+0.045546,256
+0.045840,256
+0.045534,256
+0.052565,256
+0.045433,256
+0.046270,256
+0.045094,256
+0.045598,256
+0.045110,256
+0.045658,256
+0.045319,256
+0.045527,256
+0.045396,256
+0.045103,256
+0.045891,256
+0.045382,256
+0.046379,256
+0.045006,256
+0.045845,256
+0.045230,256
+0.045804,256
+0.045221,256
+0.043128,258
+0.043097,258
+0.042982,258
+0.043606,258
+0.042851,258
+0.044028,258
+0.042502,258
+0.043378,258
+0.043095,258
+0.042678,258
+0.043282,258
+0.042649,258
+0.043546,258
+0.042667,258
+0.042888,258
+0.043258,258
+0.042892,258
+0.043451,258
+0.042961,258
+0.043597,258
+0.042769,258
+0.043045,258
+0.043404,258
+0.042599,258
+0.044687,258
+0.042961,258
+0.046317,258
+0.042790,258
+0.043971,258
+0.043444,258
+0.042786,258
+0.044754,258
+0.042692,258
+0.044956,258
+0.042697,258
+0.045201,258
+0.043495,258
+0.043298,258
+0.047522,258
+0.047937,258
+0.047038,258
+0.042625,258
+0.045165,258
+0.042676,258
+0.045141,258
+0.043566,258
+0.046159,258
+0.049445,258
+0.051943,258
+0.048570,258
+0.050922,258
+0.077064,258
+0.054108,258
+0.075734,258
+0.049988,258
+0.055326,258
+0.054183,258
+0.052520,258
+0.050749,258
+0.049838,258
+0.050774,258
+0.048713,258
+0.046663,258
+0.051461,258
+0.050249,258
+0.050005,258
+0.056744,258
+0.050853,258
+0.048940,258
+0.049486,258
+0.049413,258
+0.048170,258
+0.043561,258
+0.043528,258
+0.046977,258
+0.047641,258
+0.045539,258
+0.046903,258
+0.049043,258
+0.051012,258
+0.050541,258
+0.051858,258
+0.050450,258
+0.043314,258
+0.045638,258
+0.051711,258
+0.048072,258
+0.049489,258
+0.049104,258
+0.046936,258
+0.045119,258
+0.044753,258
+0.044203,258
+0.044305,258
+0.046464,258
+0.047061,258
+0.045169,258
+0.045110,258
+0.047880,258
+0.046840,258
+0.050664,260
+0.047291,260
+0.050600,260
+0.045224,260
+0.044480,260
+0.046777,260
+0.047652,260
+0.048565,260
+0.048601,260
+0.047835,260
+0.054151,260
+0.043818,260
+0.051183,260
+0.044731,260
+0.052353,260
+0.044937,260
+0.045090,260
+0.044738,260
+0.044539,260
+0.044189,260
+0.044068,260
+0.044165,260
+0.044131,260
+0.044706,260
+0.043923,260
+0.044485,260
+0.044039,260
+0.044352,260
+0.043917,260
+0.044257,260
+0.044521,260
+0.044229,260
+0.044743,260
+0.044407,260
+0.045388,260
+0.046720,260
+0.046403,260
+0.044388,260
+0.047111,260
+0.048361,260
+0.049818,260
+0.050172,260
+0.049104,260
+0.051559,260
+0.049807,260
+0.053649,260
+0.051756,260
+0.051425,260
+0.049529,260
+0.050346,260
+0.049346,260
+0.048547,260
+0.048216,260
+0.049552,260
+0.049367,260
+0.046374,260
+0.048519,260
+0.047924,260
+0.052343,260
+0.054300,260
+0.046514,260
+0.047875,260
+0.047481,260
+0.048849,260
+0.046673,260
+0.046245,260
+0.044684,260
+0.048325,260
+0.048049,260
+0.050329,260
+0.047061,260
+0.048243,260
+0.050512,260
+0.052190,260
+0.048308,260
+0.049647,260
+0.047268,260
+0.048502,260
+0.044475,260
+0.045791,260
+0.044151,260
+0.045445,260
+0.049574,260
+0.048230,260
+0.049027,260
+0.054493,260
+0.053909,260
+0.050246,260
+0.050147,260
+0.047211,260
+0.047581,260
+0.044123,260
+0.049601,260
+0.049980,260
+0.058061,260
+0.060819,260
+0.065946,260
+0.056675,260
+0.071167,260
+0.054238,260
+0.068391,262
+0.054044,262
+0.063854,262
+0.055572,262
+0.055039,262
+0.053090,262
+0.059861,262
+0.075603,262
+0.060356,262
+0.053670,262
+0.053980,262
+0.057140,262
+0.060211,262
+0.057499,262
+0.052951,262
+0.051282,262
+0.051657,262
+0.048438,262
+0.050060,262
+0.050079,262
+0.056088,262
+0.050441,262
+0.054786,262
+0.054944,262
+0.061158,262
+0.063592,262
+0.049756,262
+0.049989,262
+0.047498,262
+0.048026,262
+0.048181,262
+0.051458,262
+0.053053,262
+0.052789,262
+0.054084,262
+0.058270,262
+0.048062,262
+0.056312,262
+0.048521,262
+0.061651,262
+0.056249,262
+0.055687,262
+0.052286,262
+0.055558,262
+0.053551,262
+0.052897,262
+0.055583,262
+0.052118,262
+0.055595,262
+0.052332,262
+0.052024,262
+0.050782,262
+0.050073,262
+0.047154,262
+0.050550,262
+0.046832,262
+0.051025,262
+0.051053,262
+0.054520,262
+0.051870,262
+0.050002,262
+0.046938,262
+0.049972,262
+0.046934,262
+0.049755,262
+0.049122,262
+0.054521,262
+0.053756,262
+0.052077,262
+0.049274,262
+0.049231,262
+0.047972,262
+0.048660,262
+0.049238,262
+0.053002,262
+0.050456,262
+0.051622,262
+0.050363,262
+0.050675,262
+0.057281,262
+0.056032,262
+0.057048,262
+0.051817,262
+0.049484,262
+0.048476,262
+0.048065,262
+0.057571,262
+0.053732,262
+0.050675,262
+0.048509,262
+0.049214,262
+0.047276,262
+0.053407,262
+0.056771,262
+0.063283,262
+0.055163,262
+0.054900,262
+0.054134,262
+0.054612,262
+0.053658,262
+0.056285,264
+0.052211,264
+0.050864,264
+0.049217,264
+0.050019,264
+0.050148,264
+0.050645,264
+0.050201,264
+0.049772,264
+0.049309,264
+0.047067,264
+0.049003,264
+0.047070,264
+0.047391,264
+0.046381,264
+0.047166,264
+0.048396,264
+0.047551,264
+0.046881,264
+0.047159,264
+0.047023,264
+0.047268,264
+0.046398,264
+0.046534,264
+0.046563,264
+0.046307,264
+0.047036,264
+0.046239,264
+0.046973,264
+0.046144,264
+0.047086,264
+0.046353,264
+0.047711,264
+0.046246,264
+0.047048,264
+0.046189,264
+0.048609,264
+0.046199,264
+0.046267,264
+0.047407,264
+0.046089,264
+0.047786,264
+0.046747,264
+0.046999,264
+0.046237,264
+0.046987,264
+0.046402,264
+0.048332,264
+0.047240,264
+0.047567,264
+0.047951,264
+0.048270,264
+0.046454,264
+0.048006,264
+0.046843,264
+0.046841,264
+0.047899,264
+0.046480,264
+0.048260,264
+0.046080,264
+0.048094,264
+0.046167,264
+0.048128,264
+0.051792,264
+0.050430,264
+0.049137,264
+0.048897,264
+0.048034,264
+0.047286,264
+0.046188,264
+0.046870,264
+0.046286,264
+0.046630,264
+0.046781,264
+0.046262,264
+0.049960,264
+0.051342,264
+0.049265,264
+0.046303,264
+0.047130,264
+0.046226,264
+0.047704,264
+0.046374,264
+0.046911,264
+0.046082,264
+0.047771,264
+0.046475,264
+0.049328,264
+0.046435,264
+0.046622,264
+0.046266,264
+0.046550,264
+0.048710,264
+0.049719,264
+0.048527,264
+0.048581,264
+0.050060,264
+0.049059,264
+0.047369,264
+0.046636,264
+0.051725,266
+0.051314,266
+0.053410,266
+0.055430,266
+0.054625,266
+0.053391,266
+0.051943,266
+0.051466,266
+0.050024,266
+0.050617,266
+0.049899,266
+0.050297,266
+0.050409,266
+0.050722,266
+0.050274,266
+0.050730,266
+0.054686,266
+0.053915,266
+0.051247,266
+0.051398,266
+0.050113,266
+0.050549,266
+0.054031,266
+0.051283,266
+0.049816,266
+0.050561,266
+0.050195,266
+0.050661,266
+0.049893,266
+0.050586,266
+0.050073,266
+0.050903,266
+0.050330,266
+0.050627,266
+0.049771,266
+0.050922,266
+0.051920,266
+0.053144,266
+0.053605,266
+0.053413,266
+0.052102,266
+0.052975,266
+0.052856,266
+0.054334,266
+0.053598,266
+0.052921,266
+0.052794,266
+0.052685,266
+0.052804,266
+0.051450,266
+0.051631,266
+0.050223,266
+0.050900,266
+0.058479,266
+0.056501,266
+0.055018,266
+0.054116,266
+0.052089,266
+0.052082,266
+0.050745,266
+0.051203,266
+0.050035,266
+0.050797,266
+0.050062,266
+0.051296,266
+0.052480,266
+0.050936,266
+0.057681,266
+0.058276,266
+0.055856,266
+0.053685,266
+0.053777,266
+0.053911,266
+0.052941,266
+0.051741,266
+0.050494,266
+0.055502,266
+0.059932,266
+0.054018,266
+0.052270,266
+0.050435,266
+0.077285,266
+0.054011,266
+0.050785,266
+0.054649,266
+0.052420,266
+0.052819,266
+0.054659,266
+0.054409,266
+0.054260,266
+0.053533,266
+0.053754,266
+0.052733,266
+0.052416,266
+0.051040,266
+0.052033,266
+0.052009,266
+0.052529,266
+0.052487,266
+0.052117,266
+0.052258,268
+0.053511,268
+0.064842,268
+0.059756,268
+0.059964,268
+0.056388,268
+0.060106,268
+0.053551,268
+0.053074,268
+0.052905,268
+0.059101,268
+0.052455,268
+0.053274,268
+0.054025,268
+0.062822,268
+0.056024,268
+0.055818,268
+0.053038,268
+0.052923,268
+0.052858,268
+0.052785,268
+0.052192,268
+0.050187,268
+0.050496,268
+0.052006,268
+0.052511,268
+0.050390,268
+0.050760,268
+0.050301,268
+0.050783,268
+0.050071,268
+0.050577,268
+0.050098,268
+0.050878,268
+0.050046,268
+0.050771,268
+0.050167,268
+0.051274,268
+0.051997,268
+0.051412,268
+0.050190,268
+0.050241,268
+0.051350,268
+0.052092,268
+0.050312,268
+0.050354,268
+0.050081,268
+0.050403,268
+0.050523,268
+0.052009,268
+0.050330,268
+0.050170,268
+0.050514,268
+0.050418,268
+0.050490,268
+0.050214,268
+0.050398,268
+0.050309,268
+0.050384,268
+0.050148,268
+0.050418,268
+0.050590,268
+0.054156,268
+0.053955,268
+0.054889,268
+0.061761,268
+0.066656,268
+0.053520,268
+0.051113,268
+0.050269,268
+0.050530,268
+0.051181,268
+0.050927,268
+0.050556,268
+0.050343,268
+0.050250,268
+0.050333,268
+0.050440,268
+0.050843,268
+0.050310,268
+0.050533,268
+0.050466,268
+0.050440,268
+0.050083,268
+0.050723,268
+0.050275,268
+0.050505,268
+0.050215,268
+0.050782,268
+0.050139,268
+0.050525,268
+0.050406,268
+0.050330,268
+0.050213,268
+0.050382,268
+0.051692,268
+0.051835,268
+0.051324,268
+0.052542,268
+0.050617,268
+0.053960,270
+0.054397,270
+0.053719,270
+0.054373,270
+0.053741,270
+0.054123,270
+0.054112,270
+0.054448,270
+0.053833,270
+0.054301,270
+0.054003,270
+0.054069,270
+0.054124,270
+0.053797,270
+0.054256,270
+0.054018,270
+0.054296,270
+0.053865,270
+0.055765,270
+0.053850,270
+0.054618,270
+0.053893,270
+0.055188,270
+0.058444,270
+0.057940,270
+0.056482,270
+0.058558,270
+0.056220,270
+0.055996,270
+0.058367,270
+0.056417,270
+0.058341,270
+0.062754,270
+0.056253,270
+0.061714,270
+0.057928,270
+0.056349,270
+0.058408,270
+0.058224,270
+0.057903,270
+0.057873,270
+0.059330,270
+0.060017,270
+0.058020,270
+0.057583,270
+0.056950,270
+0.056838,270
+0.057761,270
+0.057302,270
+0.057690,270
+0.059148,270
+0.057890,270
+0.057142,270
+0.057580,270
+0.057715,270
+0.058074,270
+0.057601,270
+0.058007,270
+0.057046,270
+0.056160,270
+0.056786,270
+0.065296,270
+0.060188,270
+0.070213,270
+0.060761,270
+0.060641,270
+0.056608,270
+0.054322,270
+0.056702,270
+0.068307,270
+0.061488,270
+0.059540,270
+0.059322,270
+0.062787,270
+0.056925,270
+0.062799,270
+0.058443,270
+0.057363,270
+0.057748,270
+0.060106,270
+0.064343,270
+0.061347,270
+0.062039,270
+0.063974,270
+0.064517,270
+0.060165,270
+0.062633,270
+0.059059,270
+0.056930,270
+0.054548,270
+0.061077,270
+0.053595,270
+0.059761,270
+0.053469,270
+0.059381,270
+0.059112,270
+0.053274,270
+0.059535,270
+0.053350,270
+0.058998,270
+0.051533,272
+0.056155,272
+0.056381,272
+0.050555,272
+0.056389,272
+0.050467,272
+0.056186,272
+0.050446,272
+0.056900,272
+0.052880,272
+0.056857,272
+0.050859,272
+0.056792,272
+0.050541,272
+0.056909,272
+0.054983,272
+0.051940,272
+0.056142,272
+0.050491,272
+0.057792,272
+0.058770,272
+0.056321,272
+0.057960,272
+0.056229,272
+0.058982,272
+0.056232,272
+0.056269,272
+0.056030,272
+0.057696,272
+0.054746,272
+0.053061,272
+0.051260,272
+0.051097,272
+0.050458,272
+0.050925,272
+0.051690,272
+0.051156,272
+0.051179,272
+0.052154,272
+0.050605,272
+0.051061,272
+0.050549,272
+0.051130,272
+0.051958,272
+0.053018,272
+0.053542,272
+0.051333,272
+0.054512,272
+0.055631,272
+0.056081,272
+0.056137,272
+0.056946,272
+0.055434,272
+0.060452,272
+0.052961,272
+0.055519,272
+0.055727,272
+0.056935,272
+0.052991,272
+0.050753,272
+0.051385,272
+0.050604,272
+0.052218,272
+0.052902,272
+0.053580,272
+0.051193,272
+0.052471,272
+0.050534,272
+0.052734,272
+0.050638,272
+0.052118,272
+0.050569,272
+0.052254,272
+0.050403,272
+0.052877,272
+0.050546,272
+0.051199,272
+0.050424,272
+0.051033,272
+0.050499,272
+0.050719,272
+0.050657,272
+0.051270,272
+0.050571,272
+0.051184,272
+0.050471,272
+0.051083,272
+0.050534,272
+0.051226,272
+0.050497,272
+0.050930,272
+0.050515,272
+0.050652,272
+0.050458,272
+0.050849,272
+0.050960,272
+0.050717,272
+0.050660,272
+0.050604,272
+0.050627,272
+0.055355,274
+0.055286,274
+0.055058,274
+0.077759,274
+0.062612,274
+0.084260,274
+0.104903,274
+0.106103,274
+0.077543,274
+0.085944,274
+0.080646,274
+0.056136,274
+0.056251,274
+0.056378,274
+0.056039,274
+0.056316,274
+0.056571,274
+0.068323,274
+0.065931,274
+0.059785,274
+0.058998,274
+0.056701,274
+0.061016,274
+0.062724,274
+0.056139,274
+0.057446,274
+0.057002,274
+0.059934,274
+0.060444,274
+0.060331,274
+0.070187,274
+0.102343,274
+0.101983,274
+0.085944,274
+0.057725,274
+0.060507,274
+0.078247,274
+0.073117,274
+0.066163,274
+0.060576,274
+0.059118,274
+0.064332,274
+0.068698,274
+0.063827,274
+0.068858,274
+0.062736,274
+0.068263,274
+0.061657,274
+0.059037,274
+0.062543,274
+0.062379,274
+0.065076,274
+0.061394,274
+0.065859,274
+0.059628,274
+0.060438,274
+0.058751,274
+0.060736,274
+0.056983,274
+0.059483,274
+0.058811,274
+0.060062,274
+0.059005,274
+0.058105,274
+0.059569,274
+0.061596,274
+0.067420,274
+0.065639,274
+0.065058,274
+0.064804,274
+0.064150,274
+0.061249,274
+0.060533,274
+0.060707,274
+0.060454,274
+0.063287,274
+0.059066,274
+0.058902,274
+0.062817,274
+0.057138,274
+0.058739,274
+0.056870,274
+0.060131,274
+0.058255,274
+0.057846,274
+0.056016,274
+0.059232,274
+0.059195,274
+0.058514,274
+0.066063,274
+0.068293,274
+0.066232,274
+0.064580,274
+0.059091,274
+0.060501,274
+0.060111,274
+0.060989,274
+0.059421,274
+0.065569,274
+0.061068,274
+0.060733,276
+0.055370,276
+0.077650,276
+0.057427,276
+0.057217,276
+0.057550,276
+0.057177,276
+0.056801,276
+0.062281,276
+0.056746,276
+0.061197,276
+0.057997,276
+0.058909,276
+0.058194,276
+0.059997,276
+0.058988,276
+0.058429,276
+0.064624,276
+0.057617,276
+0.060444,276
+0.060571,276
+0.058261,276
+0.060075,276
+0.059849,276
+0.060039,276
+0.057928,276
+0.058232,276
+0.060680,276
+0.062127,276
+0.060752,276
+0.062138,276
+0.058386,276
+0.058208,276
+0.057690,276
+0.055231,276
+0.055463,276
+0.056137,276
+0.066303,276
+0.060803,276
+0.061295,276
+0.060621,276
+0.061494,276
+0.065527,276
+0.065753,276
+0.069152,276
+0.060415,276
+0.060932,276
+0.060823,276
+0.060634,276
+0.068160,276
+0.071643,276
+0.067290,276
+0.066832,276
+0.066297,276
+0.069288,276
+0.066156,276
+0.061526,276
+0.059984,276
+0.065361,276
+0.059491,276
+0.056447,276
+0.059148,276
+0.059728,276
+0.057638,276
+0.060436,276
+0.074956,276
+0.064729,276
+0.071866,276
+0.078464,276
+0.065329,276
+0.082083,276
+0.060430,276
+0.061510,276
+0.069063,276
+0.064846,276
+0.058104,276
+0.056249,276
+0.059217,276
+0.063967,276
+0.062880,276
+0.055427,276
+0.061798,276
+0.057072,276
+0.065297,276
+0.064682,276
+0.062539,276
+0.060433,276
+0.061693,276
+0.064777,276
+0.062460,276
+0.061834,276
+0.057039,276
+0.063286,276
+0.058734,276
+0.062493,276
+0.061756,276
+0.059587,276
+0.058489,276
+0.058649,276
+0.055728,276
+0.058655,278
+0.058376,278
+0.057495,278
+0.058710,278
+0.058263,278
+0.066848,278
+0.065266,278
+0.058434,278
+0.066578,278
+0.066915,278
+0.069207,278
+0.070718,278
+0.063471,278
+0.061312,278
+0.059197,278
+0.059363,278
+0.058063,278
+0.058907,278
+0.060127,278
+0.058821,278
+0.058679,278
+0.058371,278
+0.060246,278
+0.062742,278
+0.058916,278
+0.059371,278
+0.059822,278
+0.060244,278
+0.062157,278
+0.063462,278
+0.066566,278
+0.068093,278
+0.071604,278
+0.073728,278
+0.069347,278
+0.070758,278
+0.070580,278
+0.062849,278
+0.065264,278
+0.058941,278
+0.058012,278
+0.063789,278
+0.066193,278
+0.072972,278
+0.069772,278
+0.065957,278
+0.070013,278
+0.067595,278
+0.073879,278
+0.063638,278
+0.067512,278
+0.068782,278
+0.070986,278
+0.076221,278
+0.074177,278
+0.066303,278
+0.062857,278
+0.063683,278
+0.061570,278
+0.062001,278
+0.060927,278
+0.062514,278
+0.059205,278
+0.058478,278
+0.059849,278
+0.063694,278
+0.065171,278
+0.072492,278
+0.065300,278
+0.064288,278
+0.064443,278
+0.063192,278
+0.060911,278
+0.063925,278
+0.059304,278
+0.059943,278
+0.059610,278
+0.057801,278
+0.059888,278
+0.058579,278
+0.059326,278
+0.059327,278
+0.058302,278
+0.063137,278
+0.061572,278
+0.060818,278
+0.059413,278
+0.057830,278
+0.063835,278
+0.057556,278
+0.064423,278
+0.063405,278
+0.058073,278
+0.072706,278
+0.068393,278
+0.068173,278
+0.067488,278
+0.064341,278
+0.065489,278
+0.061618,278
+0.063219,280
+0.060395,280
+0.061169,280
+0.060930,280
+0.057626,280
+0.055814,280
+0.056872,280
+0.056238,280
+0.057810,280
+0.056633,280
+0.056554,280
+0.057295,280
+0.056093,280
+0.056544,280
+0.056032,280
+0.056596,280
+0.056284,280
+0.055857,280
+0.056353,280
+0.055744,280
+0.056309,280
+0.055758,280
+0.056570,280
+0.056137,280
+0.056888,280
+0.056344,280
+0.055935,280
+0.056404,280
+0.055796,280
+0.056614,280
+0.055893,280
+0.056381,280
+0.056788,280
+0.056024,280
+0.056255,280
+0.056147,280
+0.056318,280
+0.055886,280
+0.056246,280
+0.055850,280
+0.056286,280
+0.056400,280
+0.055959,280
+0.056493,280
+0.055887,280
+0.056421,280
+0.056425,280
+0.069027,280
+0.063965,280
+0.062629,280
+0.063214,280
+0.066614,280
+0.061499,280
+0.061985,280
+0.063162,280
+0.065707,280
+0.060343,280
+0.060719,280
+0.063382,280
+0.060085,280
+0.063920,280
+0.062268,280
+0.060334,280
+0.057546,280
+0.066008,280
+0.056917,280
+0.059449,280
+0.061266,280
+0.061639,280
+0.061490,280
+0.061053,280
+0.062394,280
+0.061806,280
+0.066203,280
+0.065063,280
+0.068803,280
+0.073897,280
+0.071415,280
+0.061651,280
+0.062140,280
+0.068908,280
+0.069307,280
+0.067386,280
+0.062752,280
+0.069230,280
+0.070114,280
+0.064809,280
+0.060479,280
+0.061138,280
+0.063538,280
+0.061519,280
+0.058772,280
+0.059980,280
+0.061173,280
+0.061562,280
+0.058449,280
+0.059663,280
+0.071151,280
+0.060882,280
+0.066724,280
+0.072016,282
+0.074860,282
+0.070270,282
+0.073070,282
+0.069344,282
+0.076691,282
+0.086220,282
+0.078314,282
+0.068736,282
+0.066885,282
+0.068434,282
+0.066834,282
+0.066249,282
+0.072824,282
+0.075319,282
+0.071495,282
+0.069390,282
+0.068081,282
+0.067893,282
+0.068946,282
+0.067668,282
+0.068085,282
+0.067531,282
+0.069401,282
+0.076482,282
+0.074109,282
+0.068777,282
+0.070797,282
+0.071662,282
+0.070121,282
+0.097231,282
+0.079167,282
+0.069282,282
+0.069333,282
+0.073691,282
+0.068289,282
+0.072362,282
+0.068569,282
+0.068555,282
+0.069764,282
+0.072091,282
+0.065155,282
+0.064922,282
+0.070280,282
+0.064525,282
+0.066633,282
+0.062893,282
+0.064499,282
+0.062042,282
+0.061602,282
+0.061429,282
+0.061333,282
+0.061341,282
+0.060931,282
+0.061759,282
+0.061270,282
+0.060762,282
+0.061671,282
+0.060706,282
+0.061936,282
+0.065297,282
+0.061463,282
+0.062186,282
+0.061000,282
+0.061329,282
+0.061405,282
+0.062654,282
+0.064562,282
+0.064346,282
+0.064517,282
+0.062018,282
+0.062551,282
+0.063137,282
+0.061378,282
+0.061309,282
+0.061441,282
+0.062240,282
+0.063585,282
+0.070333,282
+0.064389,282
+0.062171,282
+0.065352,282
+0.066117,282
+0.067361,282
+0.064329,282
+0.061419,282
+0.061788,282
+0.061899,282
+0.060952,282
+0.062098,282
+0.064113,282
+0.064734,282
+0.065608,282
+0.062708,282
+0.062502,282
+0.061444,282
+0.062500,282
+0.063233,282
+0.062965,282
+0.062939,282
+0.061046,284
+0.060496,284
+0.060836,284
+0.062635,284
+0.061098,284
+0.062422,284
+0.060454,284
+0.061306,284
+0.060970,284
+0.059322,284
+0.060996,284
+0.059282,284
+0.062343,284
+0.061150,284
+0.059339,284
+0.062270,284
+0.059404,284
+0.060982,284
+0.061201,284
+0.059487,284
+0.061295,284
+0.059402,284
+0.061040,284
+0.061154,284
+0.059433,284
+0.061046,284
+0.059347,284
+0.061015,284
+0.062313,284
+0.060296,284
+0.061069,284
+0.059390,284
+0.061376,284
+0.061045,284
+0.059254,284
+0.061072,284
+0.059390,284
+0.061039,284
+0.060863,284
+0.060137,284
+0.061132,284
+0.059248,284
+0.061549,284
+0.061096,284
+0.059492,284
+0.062208,284
+0.059378,284
+0.064014,284
+0.061461,284
+0.059358,284
+0.062296,284
+0.074642,284
+0.071049,284
+0.066325,284
+0.069245,284
+0.068743,284
+0.070516,284
+0.071255,284
+0.067085,284
+0.065974,284
+0.066825,284
+0.067573,284
+0.068968,284
+0.064459,284
+0.061483,284
+0.075049,284
+0.065255,284
+0.077691,284
+0.090725,284
+0.067188,284
+0.065421,284
+0.070782,284
+0.066749,284
+0.067901,284
+0.065804,284
+0.064306,284
+0.061525,284
+0.060358,284
+0.062015,284
+0.060604,284
+0.060064,284
+0.061275,284
+0.059862,284
+0.061431,284
+0.062032,284
+0.061327,284
+0.061746,284
+0.059494,284
+0.060965,284
+0.060872,284
+0.059400,284
+0.062127,284
+0.059301,284
+0.061337,284
+0.061756,284
+0.059648,284
+0.060987,284
+0.059261,284
+0.061118,284
+0.061140,284
+0.063425,286
+0.064737,286
+0.064355,286
+0.063657,286
+0.064667,286
+0.063042,286
+0.064707,286
+0.065789,286
+0.063100,286
+0.065326,286
+0.066364,286
+0.063675,286
+0.064873,286
+0.064375,286
+0.063434,286
+0.063620,286
+0.063581,286
+0.064280,286
+0.063903,286
+0.063200,286
+0.063643,286
+0.063740,286
+0.063307,286
+0.063884,286
+0.063368,286
+0.063508,286
+0.063826,286
+0.063174,286
+0.063968,286
+0.064779,286
+0.063249,286
+0.065129,286
+0.065503,286
+0.066801,286
+0.065673,286
+0.066431,286
+0.066196,286
+0.065085,286
+0.064430,286
+0.064809,286
+0.063816,286
+0.063359,286
+0.063642,286
+0.063762,286
+0.063233,286
+0.063836,286
+0.063836,286
+0.063249,286
+0.064058,286
+0.063400,286
+0.063894,286
+0.063750,286
+0.063127,286
+0.063740,286
+0.064056,286
+0.063366,286
+0.063874,286
+0.063578,286
+0.063819,286
+0.063598,286
+0.063287,286
+0.063787,286
+0.063828,286
+0.063347,286
+0.064371,286
+0.063440,286
+0.063083,286
+0.063631,286
+0.063373,286
+0.063355,286
+0.063701,286
+0.063124,286
+0.063970,286
+0.063441,286
+0.062995,286
+0.063621,286
+0.063674,286
+0.065323,286
+0.064494,286
+0.067087,286
+0.064575,286
+0.064647,286
+0.063564,286
+0.064806,286
+0.064180,286
+0.063215,286
+0.063833,286
+0.063644,286
+0.063111,286
+0.063867,286
+0.063236,286
+0.063614,286
+0.063930,286
+0.062981,286
+0.063888,286
+0.063725,286
+0.063463,286
+0.063839,286
+0.063619,286
+0.063223,286
+0.064376,288
+0.063707,288
+0.064364,288
+0.064462,288
+0.066459,288
+0.064684,288
+0.065017,288
+0.063947,288
+0.064447,288
+0.064137,288
+0.063646,288
+0.065175,288
+0.070360,288
+0.071598,288
+0.071383,288
+0.070829,288
+0.069477,288
+0.069394,288
+0.068970,288
+0.069672,288
+0.069716,288
+0.071996,288
+0.074610,288
+0.068118,288
+0.065774,288
+0.069773,288
+0.074340,288
+0.070091,288
+0.070158,288
+0.068244,288
+0.067423,288
+0.068650,288
+0.069801,288
+0.070965,288
+0.071539,288
+0.071692,288
+0.070481,288
+0.078654,288
+0.072991,288
+0.067273,288
+0.064580,288
+0.065642,288
+0.067566,288
+0.066009,288
+0.066068,288
+0.068610,288
+0.069114,288
+0.068622,288
+0.065788,288
+0.064485,288
+0.065000,288
+0.066887,288
+0.074228,288
+0.069965,288
+0.077213,288
+0.066733,288
+0.071594,288
+0.069941,288
+0.064325,288
+0.070085,288
+0.065749,288
+0.065430,288
+0.083415,288
+0.071016,288
+0.076565,288
+0.072772,288
+0.069500,288
+0.069351,288
+0.066924,288
+0.066275,288
+0.064787,288
+0.066885,288
+0.064586,288
+0.064665,288
+0.067937,288
+0.069406,288
+0.079028,288
+0.082235,288
+0.071772,288
+0.065477,288
+0.068255,288
+0.070726,288
+0.070777,288
+0.070487,288
+0.066012,288
+0.067938,288
+0.068077,288
+0.073226,288
+0.066543,288
+0.066800,288
+0.065631,288
+0.085718,288
+0.089092,288
+0.087413,288
+0.070510,288
+0.066891,288
+0.066570,288
+0.064278,288
+0.064291,288
+0.066164,288
+0.066856,290
+0.066542,290
+0.066700,290
+0.066331,290
+0.066329,290
+0.066563,290
+0.066186,290
+0.066713,290
+0.066740,290
+0.066146,290
+0.066181,290
+0.066832,290
+0.066045,290
+0.066206,290
+0.066781,290
+0.066178,290
+0.066023,290
+0.066379,290
+0.074327,290
+0.067359,290
+0.066890,290
+0.066038,290
+0.066210,290
+0.066857,290
+0.065996,290
+0.066408,290
+0.066721,290
+0.066083,290
+0.066572,290
+0.066601,290
+0.065704,290
+0.066854,290
+0.066663,290
+0.065723,290
+0.066815,290
+0.066464,290
+0.065716,290
+0.066601,290
+0.066705,290
+0.065860,290
+0.066663,290
+0.066405,290
+0.065973,290
+0.066908,290
+0.066657,290
+0.065943,290
+0.066938,290
+0.066389,290
+0.065999,290
+0.066745,290
+0.066303,290
+0.066258,290
+0.067397,290
+0.066411,290
+0.066299,290
+0.066642,290
+0.066156,290
+0.074817,290
+0.070316,290
+0.068684,290
+0.066628,290
+0.067040,290
+0.066562,290
+0.066173,290
+0.067013,290
+0.066810,290
+0.065973,290
+0.066960,290
+0.066530,290
+0.066101,290
+0.066809,290
+0.066522,290
+0.066021,290
+0.066746,290
+0.066434,290
+0.066097,290
+0.066708,290
+0.066651,290
+0.066335,290
+0.066961,290
+0.066217,290
+0.066568,290
+0.066737,290
+0.065997,290
+0.067041,290
+0.067766,290
+0.065829,290
+0.066719,290
+0.066944,290
+0.065817,290
+0.066878,290
+0.066380,290
+0.066074,290
+0.067010,290
+0.067114,290
+0.065857,290
+0.066773,290
+0.066490,290
+0.065858,290
+0.066554,290
+0.066309,292
+0.065868,292
+0.066050,292
+0.066186,292
+0.067014,292
+0.070358,292
+0.066037,292
+0.066376,292
+0.066464,292
+0.065910,292
+0.067182,292
+0.066370,292
+0.066138,292
+0.066665,292
+0.072453,292
+0.065768,292
+0.065263,292
+0.067144,292
+0.065889,292
+0.065232,292
+0.065898,292
+0.065375,292
+0.065452,292
+0.065864,292
+0.065250,292
+0.065853,292
+0.065723,292
+0.064962,292
+0.066235,292
+0.065645,292
+0.065551,292
+0.066315,292
+0.066393,292
+0.066390,292
+0.066038,292
+0.065460,292
+0.066657,292
+0.066426,292
+0.065633,292
+0.067215,292
+0.066436,292
+0.065902,292
+0.065923,292
+0.066517,292
+0.065837,292
+0.065519,292
+0.066377,292
+0.065731,292
+0.065825,292
+0.066306,292
+0.065418,292
+0.065969,292
+0.066479,292
+0.065072,292
+0.066340,292
+0.065952,292
+0.065452,292
+0.066103,292
+0.066080,292
+0.065526,292
+0.066222,292
+0.065902,292
+0.065540,292
+0.066321,292
+0.065830,292
+0.065732,292
+0.067067,292
+0.066852,292
+0.065767,292
+0.066326,292
+0.066414,292
+0.065622,292
+0.066265,292
+0.066090,292
+0.065993,292
+0.066376,292
+0.065403,292
+0.066079,292
+0.066214,292
+0.065233,292
+0.066158,292
+0.066097,292
+0.065168,292
+0.066237,292
+0.065953,292
+0.065484,292
+0.066720,292
+0.072731,292
+0.076935,292
+0.080018,292
+0.082379,292
+0.080917,292
+0.074605,292
+0.068439,292
+0.069450,292
+0.068890,292
+0.068080,292
+0.068419,292
+0.068819,292
+0.069171,292
+0.076822,294
+0.076086,294
+0.078940,294
+0.074760,294
+0.074426,294
+0.073137,294
+0.072081,294
+0.070823,294
+0.072792,294
+0.072130,294
+0.072409,294
+0.072391,294
+0.072992,294
+0.079275,294
+0.086944,294
+0.083957,294
+0.076999,294
+0.076847,294
+0.078900,294
+0.071525,294
+0.071786,294
+0.072034,294
+0.072026,294
+0.074384,294
+0.074108,294
+0.071156,294
+0.070194,294
+0.070710,294
+0.070922,294
+0.070716,294
+0.070229,294
+0.070987,294
+0.070825,294
+0.069836,294
+0.071088,294
+0.070921,294
+0.070434,294
+0.070411,294
+0.071038,294
+0.070787,294
+0.070330,294
+0.071036,294
+0.070979,294
+0.070156,294
+0.070996,294
+0.070858,294
+0.070398,294
+0.070803,294
+0.071150,294
+0.070646,294
+0.071168,294
+0.071539,294
+0.070709,294
+0.069758,294
+0.071038,294
+0.071165,294
+0.070349,294
+0.073770,294
+0.070953,294
+0.072926,294
+0.069917,294
+0.071281,294
+0.071955,294
+0.071535,294
+0.077098,294
+0.074606,294
+0.074303,294
+0.071320,294
+0.070532,294
+0.070896,294
+0.070341,294
+0.069827,294
+0.070714,294
+0.070326,294
+0.072954,294
+0.074486,294
+0.073188,294
+0.070619,294
+0.070657,294
+0.070815,294
+0.071126,294
+0.074661,294
+0.073268,294
+0.076067,294
+0.083637,294
+0.074073,294
+0.082686,294
+0.077119,294
+0.075453,294
+0.076002,294
+0.071392,294
+0.072592,294
+0.074008,294
+0.069877,294
+0.071344,294
+0.070870,294
+0.071150,294
+0.071804,294
+0.071079,294
+0.071553,294
+0.066974,296
+0.068582,296
+0.068594,296
+0.067236,296
+0.068186,296
+0.068300,296
+0.066251,296
+0.068456,296
+0.068182,296
+0.067526,296
+0.068491,296
+0.069412,296
+0.066596,296
+0.068758,296
+0.068368,296
+0.066651,296
+0.068386,296
+0.068434,296
+0.066997,296
+0.068163,296
+0.068334,296
+0.067285,296
+0.071464,296
+0.072527,296
+0.069374,296
+0.066762,296
+0.069384,296
+0.068125,296
+0.066689,296
+0.072023,296
+0.074263,296
+0.066657,296
+0.068572,296
+0.068314,296
+0.066261,296
+0.068553,296
+0.067026,296
+0.066611,296
+0.067615,296
+0.067246,296
+0.066506,296
+0.067668,296
+0.067284,296
+0.066467,296
+0.067471,296
+0.067280,296
+0.067456,296
+0.068320,296
+0.068635,296
+0.066139,296
+0.068106,296
+0.068149,296
+0.066075,296
+0.068784,296
+0.068268,296
+0.066233,296
+0.069456,296
+0.067947,296
+0.066422,296
+0.067812,296
+0.068153,296
+0.066867,296
+0.067462,296
+0.068132,296
+0.067164,296
+0.067326,296
+0.068220,296
+0.067258,296
+0.067231,296
+0.068053,296
+0.068183,296
+0.067775,296
+0.068161,296
+0.067675,296
+0.067005,296
+0.068616,296
+0.067729,296
+0.066907,296
+0.068243,296
+0.067927,296
+0.066670,296
+0.068298,296
+0.067857,296
+0.067380,296
+0.068326,296
+0.068842,296
+0.067039,296
+0.068302,296
+0.068213,296
+0.066634,296
+0.068386,296
+0.067673,296
+0.066894,296
+0.068327,296
+0.066926,296
+0.066740,296
+0.067472,296
+0.066996,296
+0.066620,296
+0.067563,296
+0.074082,298
+0.072820,298
+0.073513,298
+0.073754,298
+0.074084,298
+0.073198,298
+0.073715,298
+0.073480,298
+0.073005,298
+0.073204,298
+0.073714,298
+0.073746,298
+0.072662,298
+0.073693,298
+0.073421,298
+0.073221,298
+0.072732,298
+0.073666,298
+0.073410,298
+0.072768,298
+0.073171,298
+0.073607,298
+0.072946,298
+0.072686,298
+0.073423,298
+0.073634,298
+0.074629,298
+0.072765,298
+0.073651,298
+0.073395,298
+0.072872,298
+0.073192,298
+0.073592,298
+0.073454,298
+0.072587,298
+0.073284,298
+0.073709,298
+0.073488,298
+0.072771,298
+0.073605,298
+0.073534,298
+0.073027,298
+0.073515,298
+0.073689,298
+0.073708,298
+0.072601,298
+0.073632,298
+0.073809,298
+0.073004,298
+0.073058,298
+0.073719,298
+0.073876,298
+0.073224,298
+0.073554,298
+0.073837,298
+0.073483,298
+0.073045,298
+0.073656,298
+0.073569,298
+0.073026,298
+0.075732,298
+0.079497,298
+0.077026,298
+0.076725,298
+0.075296,298
+0.074288,298
+0.075321,298
+0.077556,298
+0.077182,298
+0.080477,298
+0.079437,298
+0.079661,298
+0.079812,298
+0.075677,298
+0.074235,298
+0.073422,298
+0.073126,298
+0.072768,298
+0.073769,298
+0.074062,298
+0.073833,298
+0.074786,298
+0.074297,298
+0.073377,298
+0.072905,298
+0.076307,298
+0.078593,298
+0.074184,298
+0.073057,298
+0.073524,298
+0.073492,298
+0.073582,298
+0.072937,298
+0.073603,298
+0.073564,298
+0.072902,298
+0.073522,298
+0.079887,298
+0.083117,298
+0.075722,298
diff --git a/buch/papers/multiplikation/code/meas/test/blas.txt b/buch/papers/multiplikation/code/meas/test/blas.txt
new file mode 100644
index 0000000..7b0a9d1
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/test/blas.txt
@@ -0,0 +1,14900 @@
+0.000001,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000000,6
+0.000001,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000001,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000010,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000010,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000010,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000010,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000010,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000001,10
+0.000002,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000001,12
+0.000003,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000013,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000002,14
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000005,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000006,18
+0.000007,18
+0.000007,18
+0.000007,18
+0.000006,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000013,18
+0.000004,18
+0.000013,18
+0.000004,18
+0.000013,18
+0.000004,18
+0.000013,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000013,18
+0.000004,18
+0.000013,18
+0.000004,18
+0.000014,18
+0.000004,18
+0.000014,18
+0.000004,18
+0.000014,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000004,18
+0.000007,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000005,20
+0.000008,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000011,22
+0.000012,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000016,22
+0.000007,22
+0.000016,22
+0.000007,22
+0.000016,22
+0.000016,22
+0.000016,22
+0.000007,22
+0.000016,22
+0.000016,22
+0.000016,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000016,22
+0.000007,22
+0.000016,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000006,22
+0.000010,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000010,24
+0.000018,24
+0.000018,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000008,24
+0.000013,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000020,26
+0.000011,26
+0.000020,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000020,26
+0.000020,26
+0.000021,26
+0.000031,26
+0.000011,26
+0.000019,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000020,26
+0.000020,26
+0.000020,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000010,26
+0.000015,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000022,28
+0.000022,28
+0.000021,28
+0.000022,28
+0.000021,28
+0.000023,28
+0.000022,28
+0.000023,28
+0.000022,28
+0.000025,28
+0.000025,28
+0.000025,28
+0.000025,28
+0.000025,28
+0.000024,28
+0.000024,28
+0.000025,28
+0.000035,28
+0.000048,28
+0.000055,28
+0.000045,28
+0.000025,28
+0.000025,28
+0.000025,28
+0.000026,28
+0.000025,28
+0.000025,28
+0.000025,28
+0.000025,28
+0.000025,28
+0.000025,28
+0.000025,28
+0.000023,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000020,28
+0.000025,28
+0.000025,28
+0.000025,28
+0.000024,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000013,28
+0.000025,28
+0.000032,30
+0.000031,30
+0.000030,30
+0.000031,30
+0.000030,30
+0.000030,30
+0.000073,30
+0.000030,30
+0.000030,30
+0.000031,30
+0.000017,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000019,30
+0.000030,30
+0.000030,30
+0.000030,30
+0.000030,30
+0.000030,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000026,30
+0.000029,30
+0.000040,30
+0.000041,30
+0.000041,30
+0.000040,30
+0.000038,30
+0.000042,30
+0.000023,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000027,30
+0.000030,30
+0.000030,30
+0.000040,30
+0.000040,30
+0.000031,30
+0.000028,30
+0.000028,30
+0.000024,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000015,30
+0.000021,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000021,32
+0.000025,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000028,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000029,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000028,32
+0.000039,32
+0.000043,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000022,32
+0.000028,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000040,32
+0.000038,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000019,32
+0.000043,32
+0.000047,32
+0.000031,32
+0.000047,34
+0.000039,34
+0.000035,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000022,34
+0.000027,34
+0.000050,34
+0.000023,34
+0.000023,34
+0.000023,34
+0.000023,34
+0.000023,34
+0.000033,34
+0.000023,34
+0.000042,36
+0.000028,36
+0.000037,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000037,36
+0.000036,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000043,36
+0.000050,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000027,36
+0.000037,36
+0.000036,36
+0.000037,36
+0.000059,36
+0.000049,36
+0.000027,36
+0.000037,36
+0.000057,36
+0.000048,36
+0.000046,36
+0.000047,36
+0.000027,36
+0.000046,36
+0.000027,36
+0.000027,36
+0.000035,38
+0.000036,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000051,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000042,38
+0.000041,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000051,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000031,38
+0.000044,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000086,40
+0.000090,40
+0.000051,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000058,40
+0.000062,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000042,40
+0.000053,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000059,42
+0.000077,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000068,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000068,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000064,42
+0.000058,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000048,42
+0.000058,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000078,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000078,44
+0.000095,44
+0.000073,44
+0.000096,44
+0.000097,44
+0.000085,44
+0.000064,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000065,44
+0.000064,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000075,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000054,44
+0.000068,46
+0.000062,46
+0.000078,46
+0.000083,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000061,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000085,46
+0.000072,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000081,46
+0.000133,46
+0.000080,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000061,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000061,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000061,46
+0.000061,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000061,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000097,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000061,46
+0.000062,46
+0.000062,46
+0.000061,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000061,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000061,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000062,46
+0.000073,48
+0.000069,48
+0.000108,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000090,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000089,48
+0.000069,48
+0.000069,48
+0.000095,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000088,48
+0.000079,48
+0.000099,48
+0.000141,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000091,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000069,48
+0.000085,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000077,50
+0.000092,50
+0.000138,50
+0.000097,50
+0.000151,50
+0.000117,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000098,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000099,50
+0.000077,50
+0.000078,50
+0.000078,50
+0.000078,50
+0.000117,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000077,50
+0.000150,50
+0.000111,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000078,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000100,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000077,50
+0.000089,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000131,52
+0.000106,52
+0.000147,52
+0.000130,52
+0.000105,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000123,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000106,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000110,52
+0.000128,52
+0.000153,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000110,52
+0.000095,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000086,52
+0.000099,54
+0.000116,54
+0.000161,54
+0.000169,54
+0.000144,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000153,54
+0.000096,54
+0.000096,54
+0.000115,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000114,54
+0.000115,54
+0.000170,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000106,54
+0.000196,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000131,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000139,54
+0.000096,54
+0.000130,54
+0.000096,54
+0.000096,54
+0.000120,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000096,54
+0.000110,56
+0.000125,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000133,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000136,56
+0.000159,56
+0.000159,56
+0.000143,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000126,56
+0.000106,56
+0.000106,56
+0.000125,56
+0.000106,56
+0.000130,56
+0.000135,56
+0.000183,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000172,56
+0.000149,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000106,56
+0.000119,56
+0.000115,56
+0.000123,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000129,58
+0.000127,58
+0.000117,58
+0.000117,58
+0.000156,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000136,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000136,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000152,58
+0.000138,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000117,58
+0.000134,58
+0.000153,60
+0.000178,60
+0.000226,60
+0.000188,60
+0.000128,60
+0.000128,60
+0.000128,60
+0.000148,60
+0.000128,60
+0.000128,60
+0.000149,60
+0.000142,60
+0.000132,60
+0.000132,60
+0.000157,60
+0.000190,60
+0.000132,60
+0.000132,60
+0.000132,60
+0.000132,60
+0.000132,60
+0.000132,60
+0.000132,60
+0.000132,60
+0.000132,60
+0.000153,60
+0.000132,60
+0.000161,60
+0.000132,60
+0.000132,60
+0.000132,60
+0.000142,60
+0.000180,60
+0.000141,60
+0.000128,60
+0.000128,60
+0.000128,60
+0.000128,60
+0.000128,60
+0.000128,60
+0.000128,60
+0.000128,60
+0.000128,60
+0.000212,60
+0.000390,60
+0.000275,60
+0.000261,60
+0.000269,60
+0.000234,60
+0.000272,60
+0.000241,60
+0.000238,60
+0.000326,60
+0.000245,60
+0.000182,60
+0.000150,60
+0.000167,60
+0.000153,60
+0.000138,60
+0.000128,60
+0.000159,60
+0.000249,60
+0.000157,60
+0.000128,60
+0.000164,60
+0.000165,60
+0.000128,60
+0.000128,60
+0.000230,60
+0.000176,60
+0.000244,60
+0.000238,60
+0.000162,60
+0.000128,60
+0.000128,60
+0.000170,60
+0.000148,60
+0.000129,60
+0.000142,60
+0.000128,60
+0.000128,60
+0.000128,60
+0.000180,60
+0.000212,60
+0.000189,60
+0.000191,60
+0.000161,60
+0.000143,60
+0.000166,60
+0.000135,60
+0.000135,60
+0.000135,60
+0.000135,60
+0.000135,60
+0.000135,60
+0.000135,60
+0.000142,60
+0.000169,60
+0.000128,60
+0.000128,60
+0.000144,62
+0.000141,62
+0.000141,62
+0.000188,62
+0.000215,62
+0.000213,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000161,62
+0.000141,62
+0.000161,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000167,62
+0.000145,62
+0.000184,62
+0.000145,62
+0.000223,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000165,62
+0.000165,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000178,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000165,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000178,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000145,62
+0.000150,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000141,62
+0.000156,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000198,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000248,64
+0.000255,64
+0.000163,64
+0.000154,64
+0.000154,64
+0.000174,64
+0.000154,64
+0.000174,64
+0.000153,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000190,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000195,64
+0.000192,64
+0.000154,64
+0.000164,64
+0.000216,64
+0.000164,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000168,64
+0.000173,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000173,64
+0.000173,64
+0.000154,64
+0.000154,64
+0.000173,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000173,64
+0.000189,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000173,64
+0.000174,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000154,64
+0.000172,66
+0.000169,66
+0.000169,66
+0.000194,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000240,66
+0.000283,66
+0.000188,66
+0.000169,66
+0.000169,66
+0.000188,66
+0.000169,66
+0.000189,66
+0.000169,66
+0.000196,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000179,66
+0.000227,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000191,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000179,66
+0.000198,66
+0.000169,66
+0.000169,66
+0.000189,66
+0.000207,66
+0.000169,66
+0.000169,66
+0.000188,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000191,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000169,66
+0.000186,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000198,68
+0.000307,68
+0.000251,68
+0.000183,68
+0.000183,68
+0.000209,68
+0.000223,68
+0.000345,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000303,68
+0.000331,68
+0.000331,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000255,68
+0.000283,68
+0.000183,68
+0.000201,68
+0.000203,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000215,68
+0.000223,68
+0.000183,68
+0.000203,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000203,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000355,68
+0.000196,68
+0.000183,68
+0.000221,68
+0.000183,68
+0.000256,68
+0.000184,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000183,68
+0.000246,68
+0.000312,68
+0.000193,68
+0.000183,68
+0.000183,68
+0.000203,68
+0.000203,68
+0.000218,70
+0.000355,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000237,70
+0.000342,70
+0.000334,70
+0.000339,70
+0.000351,70
+0.000373,70
+0.000355,70
+0.000281,70
+0.000363,70
+0.000341,70
+0.000323,70
+0.000200,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000233,70
+0.000348,70
+0.000199,70
+0.000242,70
+0.000199,70
+0.000199,70
+0.000238,70
+0.000199,70
+0.000210,70
+0.000208,70
+0.000199,70
+0.000199,70
+0.000219,70
+0.000199,70
+0.000378,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000326,70
+0.000209,70
+0.000199,70
+0.000239,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000200,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000341,70
+0.000229,70
+0.000199,70
+0.000291,70
+0.000325,70
+0.000303,70
+0.000199,70
+0.000214,70
+0.000210,70
+0.000210,70
+0.000210,70
+0.000210,70
+0.000214,70
+0.000205,70
+0.000205,70
+0.000210,70
+0.000199,70
+0.000375,70
+0.000347,70
+0.000410,70
+0.000361,70
+0.000362,70
+0.000371,70
+0.000203,70
+0.000199,70
+0.000199,70
+0.000199,70
+0.000382,70
+0.000200,70
+0.000210,70
+0.000345,70
+0.000490,70
+0.000247,70
+0.000255,70
+0.000199,70
+0.000199,70
+0.000359,70
+0.000230,70
+0.000281,70
+0.000210,70
+0.000251,70
+0.000311,72
+0.000259,72
+0.000226,72
+0.000215,72
+0.000235,72
+0.000215,72
+0.000235,72
+0.000367,72
+0.000451,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000250,72
+0.000215,72
+0.000215,72
+0.000393,72
+0.000215,72
+0.000215,72
+0.000293,72
+0.000309,72
+0.000215,72
+0.000304,72
+0.000325,72
+0.000221,72
+0.000221,72
+0.000221,72
+0.000374,72
+0.000227,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000244,72
+0.000356,72
+0.000545,72
+0.000385,72
+0.000391,72
+0.000216,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000420,72
+0.000388,72
+0.000393,72
+0.000223,72
+0.000215,72
+0.000233,72
+0.000270,72
+0.000348,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000254,72
+0.000220,72
+0.000390,72
+0.000215,72
+0.000215,72
+0.000257,72
+0.000308,72
+0.000215,72
+0.000235,72
+0.000301,72
+0.000279,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000215,72
+0.000230,72
+0.000351,72
+0.000215,72
+0.000257,72
+0.000314,72
+0.000254,72
+0.000215,72
+0.000215,72
+0.000281,72
+0.000317,72
+0.000390,72
+0.000292,72
+0.000227,72
+0.000234,72
+0.000221,72
+0.000247,72
+0.000250,72
+0.000227,72
+0.000215,72
+0.000344,74
+0.000473,74
+0.000451,74
+0.000574,74
+0.000248,74
+0.000357,74
+0.000234,74
+0.000233,74
+0.000233,74
+0.000350,74
+0.000234,74
+0.000233,74
+0.000312,74
+0.000311,74
+0.000233,74
+0.000233,74
+0.000314,74
+0.000265,74
+0.000233,74
+0.000234,74
+0.000346,74
+0.000273,74
+0.000234,74
+0.000287,74
+0.000351,74
+0.000234,74
+0.000293,74
+0.000363,74
+0.000233,74
+0.000233,74
+0.000239,74
+0.000348,74
+0.000234,74
+0.000234,74
+0.000302,74
+0.000282,74
+0.000234,74
+0.000234,74
+0.000338,74
+0.000243,74
+0.000233,74
+0.000260,74
+0.000344,74
+0.000234,74
+0.000233,74
+0.000238,74
+0.000346,74
+0.000233,74
+0.000233,74
+0.000299,74
+0.000465,74
+0.000260,74
+0.000274,74
+0.000246,74
+0.000246,74
+0.000287,74
+0.000351,74
+0.000233,74
+0.000233,74
+0.000233,74
+0.000460,74
+0.000435,74
+0.000513,74
+0.000318,74
+0.000234,74
+0.000354,74
+0.000234,74
+0.000233,74
+0.000299,74
+0.000326,74
+0.000233,74
+0.000233,74
+0.000316,74
+0.000256,74
+0.000233,74
+0.000234,74
+0.000351,74
+0.000234,74
+0.000233,74
+0.000234,74
+0.000376,74
+0.000233,74
+0.000253,74
+0.000364,74
+0.000276,74
+0.000234,74
+0.000234,74
+0.000362,74
+0.000234,74
+0.000233,74
+0.000238,74
+0.000346,74
+0.000233,74
+0.000233,74
+0.000313,74
+0.000270,74
+0.000233,74
+0.000269,74
+0.000347,74
+0.000233,74
+0.000260,76
+0.000270,76
+0.000352,76
+0.000252,76
+0.000251,76
+0.000368,76
+0.000251,76
+0.000286,76
+0.000487,76
+0.000252,76
+0.000315,76
+0.000396,76
+0.000262,76
+0.000251,76
+0.000269,76
+0.000351,76
+0.000251,76
+0.000251,76
+0.000444,76
+0.000423,76
+0.000509,76
+0.000443,76
+0.000575,76
+0.000445,76
+0.000520,76
+0.000373,76
+0.000252,76
+0.000372,76
+0.000251,76
+0.000251,76
+0.000279,76
+0.000341,76
+0.000251,76
+0.000312,76
+0.000423,76
+0.000252,76
+0.000251,76
+0.000366,76
+0.000252,76
+0.000251,76
+0.000256,76
+0.000356,76
+0.000252,76
+0.000251,76
+0.000361,76
+0.000251,76
+0.000251,76
+0.000316,76
+0.000334,76
+0.000252,76
+0.000251,76
+0.000362,76
+0.000252,76
+0.000251,76
+0.000268,76
+0.000343,76
+0.000252,76
+0.000251,76
+0.000360,76
+0.000346,76
+0.000320,76
+0.000341,76
+0.000279,76
+0.000296,76
+0.000336,76
+0.000273,76
+0.000251,76
+0.000251,76
+0.000470,76
+0.000439,76
+0.000464,76
+0.000459,76
+0.000586,76
+0.000261,76
+0.000258,76
+0.000345,76
+0.000258,76
+0.000258,76
+0.000283,76
+0.000318,76
+0.000258,76
+0.000258,76
+0.000258,76
+0.000258,76
+0.000258,76
+0.000295,76
+0.000420,76
+0.000291,76
+0.000251,76
+0.000284,76
+0.000251,76
+0.000251,76
+0.000276,76
+0.000405,76
+0.000251,76
+0.000251,76
+0.000251,76
+0.000251,76
+0.000251,76
+0.000287,76
+0.000432,78
+0.000271,78
+0.000271,78
+0.000406,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000420,78
+0.000271,78
+0.000313,78
+0.000500,78
+0.000325,78
+0.000278,78
+0.000298,78
+0.000308,78
+0.000271,78
+0.000427,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000382,78
+0.000539,78
+0.000500,78
+0.000324,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000400,78
+0.000311,78
+0.000305,78
+0.000360,78
+0.000283,78
+0.000292,78
+0.000281,78
+0.000313,78
+0.000316,78
+0.000280,78
+0.000294,78
+0.000292,78
+0.000295,78
+0.000284,78
+0.000282,78
+0.000271,78
+0.000320,78
+0.000271,78
+0.000347,78
+0.000315,78
+0.000271,78
+0.000271,78
+0.000308,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000306,78
+0.000271,78
+0.000271,78
+0.000341,78
+0.000384,78
+0.000271,78
+0.000291,78
+0.000291,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000391,78
+0.000474,78
+0.000490,78
+0.000437,78
+0.000272,78
+0.000271,78
+0.000271,78
+0.000282,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000309,78
+0.000272,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000271,78
+0.000310,78
+0.000271,78
+0.000315,78
+0.000293,80
+0.000310,80
+0.000290,80
+0.000290,80
+0.000323,80
+0.000290,80
+0.000291,80
+0.000290,80
+0.000291,80
+0.000290,80
+0.000290,80
+0.000291,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000330,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000474,80
+0.000291,80
+0.000310,80
+0.000311,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000328,80
+0.000290,80
+0.000290,80
+0.000450,80
+0.000537,80
+0.000440,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000332,80
+0.000291,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000330,80
+0.000290,80
+0.000313,80
+0.000290,80
+0.000314,80
+0.000290,80
+0.000290,80
+0.000291,80
+0.000291,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000301,80
+0.000333,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000310,80
+0.000454,80
+0.000291,80
+0.000448,80
+0.000310,80
+0.000335,80
+0.000291,80
+0.000290,80
+0.000291,80
+0.000291,80
+0.000337,80
+0.000592,80
+0.000518,80
+0.000362,80
+0.000290,80
+0.000290,80
+0.000290,80
+0.000317,80
+0.000291,80
+0.000290,80
+0.000290,80
+0.000291,80
+0.000291,80
+0.000290,80
+0.000324,82
+0.000313,82
+0.000313,82
+0.000473,82
+0.000313,82
+0.000366,82
+0.000313,82
+0.000352,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000469,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000353,82
+0.000464,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000472,82
+0.000333,82
+0.000323,82
+0.000526,82
+0.000313,82
+0.000312,82
+0.000312,82
+0.000476,82
+0.000555,82
+0.000576,82
+0.000616,82
+0.000313,82
+0.000356,82
+0.000313,82
+0.000386,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000393,82
+0.000392,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000343,82
+0.000332,82
+0.000336,82
+0.000313,82
+0.000503,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000352,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000468,82
+0.000313,82
+0.000313,82
+0.000424,82
+0.000313,82
+0.000314,82
+0.000421,82
+0.000461,82
+0.000313,82
+0.000332,82
+0.000354,82
+0.000313,82
+0.000313,82
+0.000313,82
+0.000484,82
+0.000571,82
+0.000426,82
+0.000313,82
+0.000353,82
+0.000476,82
+0.000312,82
+0.000367,82
+0.000362,82
+0.000312,82
+0.000312,82
+0.000312,82
+0.000312,82
+0.000353,82
+0.000410,82
+0.000312,82
+0.000348,82
+0.000314,82
+0.000352,82
+0.000454,82
+0.000326,82
+0.000377,84
+0.000335,84
+0.000336,84
+0.000340,84
+0.000470,84
+0.000336,84
+0.000376,84
+0.000335,84
+0.000336,84
+0.000492,84
+0.000336,84
+0.000336,84
+0.000336,84
+0.000336,84
+0.000359,84
+0.000449,84
+0.000375,84
+0.000438,84
+0.000415,84
+0.000430,84
+0.000406,84
+0.000336,84
+0.000335,84
+0.000336,84
+0.000343,84
+0.000608,84
+0.000601,84
+0.000591,84
+0.000681,84
+0.000572,84
+0.000592,84
+0.000335,84
+0.000335,84
+0.000335,84
+0.000389,84
+0.000549,84
+0.000385,84
+0.000390,84
+0.000335,84
+0.000375,84
+0.000360,84
+0.000399,84
+0.000399,84
+0.000348,84
+0.000383,84
+0.000377,84
+0.000349,84
+0.000488,84
+0.000384,84
+0.000335,84
+0.000442,84
+0.000337,84
+0.000336,84
+0.000336,84
+0.000336,84
+0.000451,84
+0.000413,84
+0.000463,84
+0.000488,84
+0.000388,84
+0.000385,84
+0.000336,84
+0.000335,84
+0.000624,84
+0.000716,84
+0.000602,84
+0.000619,84
+0.000336,84
+0.000479,84
+0.000336,84
+0.000336,84
+0.000335,84
+0.000336,84
+0.000445,84
+0.000424,84
+0.000336,84
+0.000446,84
+0.000336,84
+0.000373,84
+0.000336,84
+0.000356,84
+0.000335,84
+0.000372,84
+0.000336,84
+0.000522,84
+0.000336,84
+0.000341,84
+0.000438,84
+0.000336,84
+0.000444,84
+0.000336,84
+0.000336,84
+0.000336,84
+0.000335,84
+0.000375,84
+0.000489,84
+0.000336,84
+0.000335,84
+0.000359,84
+0.000494,84
+0.000477,86
+0.000420,86
+0.000358,86
+0.000358,86
+0.000406,86
+0.000458,86
+0.000697,86
+0.000648,86
+0.000407,86
+0.000369,86
+0.000358,86
+0.000499,86
+0.000358,86
+0.000526,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000395,86
+0.000379,86
+0.000358,86
+0.000434,86
+0.000358,86
+0.000358,86
+0.000489,86
+0.000388,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000387,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000532,86
+0.000368,86
+0.000378,86
+0.000379,86
+0.000393,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000472,86
+0.000666,86
+0.000555,86
+0.000358,86
+0.000358,86
+0.000391,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000393,86
+0.000407,86
+0.000358,86
+0.000392,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000384,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000401,86
+0.000502,86
+0.000358,86
+0.000434,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000610,86
+0.000596,86
+0.000358,86
+0.000444,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000358,86
+0.000393,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000452,88
+0.000402,88
+0.000382,88
+0.000416,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000381,88
+0.000412,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000434,88
+0.000480,88
+0.000382,88
+0.000421,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000426,88
+0.000730,88
+0.000542,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000417,88
+0.000382,88
+0.000416,88
+0.000382,88
+0.000402,88
+0.000382,88
+0.000415,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000431,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000381,88
+0.000382,88
+0.000382,88
+0.000381,88
+0.000382,88
+0.000456,88
+0.000544,88
+0.000403,88
+0.000414,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000381,88
+0.000442,88
+0.000729,88
+0.000707,88
+0.000537,88
+0.000382,88
+0.000382,88
+0.000381,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000628,88
+0.000746,88
+0.000518,88
+0.000409,88
+0.000569,88
+0.000488,88
+0.000509,88
+0.000535,88
+0.000407,88
+0.000392,88
+0.000466,88
+0.000425,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000382,88
+0.000458,90
+0.000408,90
+0.000408,90
+0.000590,90
+0.000408,90
+0.000488,90
+0.000408,90
+0.000428,90
+0.000408,90
+0.000447,90
+0.000408,90
+0.000447,90
+0.000510,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000450,90
+0.000408,90
+0.000409,90
+0.000408,90
+0.000408,90
+0.000448,90
+0.000428,90
+0.000408,90
+0.000444,90
+0.000446,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000446,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000582,90
+0.000417,90
+0.000428,90
+0.000428,90
+0.000408,90
+0.000440,90
+0.000408,90
+0.000408,90
+0.000438,90
+0.000569,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000444,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000442,90
+0.000418,90
+0.000420,90
+0.000475,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000446,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000534,90
+0.000467,90
+0.000427,90
+0.000429,90
+0.000440,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000418,90
+0.000500,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000441,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000408,90
+0.000445,92
+0.000435,92
+0.000466,92
+0.000452,92
+0.000476,92
+0.000467,92
+0.000435,92
+0.000435,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000470,92
+0.000444,92
+0.000435,92
+0.000434,92
+0.000435,92
+0.000463,92
+0.000532,92
+0.000593,92
+0.000465,92
+0.000486,92
+0.000435,92
+0.000435,92
+0.000435,92
+0.000435,92
+0.000484,92
+0.000526,92
+0.000434,92
+0.000434,92
+0.000457,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000435,92
+0.000435,92
+0.000434,92
+0.000537,92
+0.000475,92
+0.000434,92
+0.000503,92
+0.000435,92
+0.000435,92
+0.000434,92
+0.000434,92
+0.000465,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000579,92
+0.000434,92
+0.000474,92
+0.000434,92
+0.000435,92
+0.000434,92
+0.000434,92
+0.000435,92
+0.000537,92
+0.000470,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000454,92
+0.000434,92
+0.000470,92
+0.000434,92
+0.000468,92
+0.000478,92
+0.000435,92
+0.000466,92
+0.000434,92
+0.000454,92
+0.000434,92
+0.000473,92
+0.000446,92
+0.000451,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000482,92
+0.000619,92
+0.000445,92
+0.000463,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000434,92
+0.000484,94
+0.000565,94
+0.000493,94
+0.000463,94
+0.000463,94
+0.000463,94
+0.000463,94
+0.000463,94
+0.000463,94
+0.000507,94
+0.000740,94
+0.000755,94
+0.000503,94
+0.000684,94
+0.000541,94
+0.000739,94
+0.000463,94
+0.000472,94
+0.000596,94
+0.000465,94
+0.000463,94
+0.000463,94
+0.000463,94
+0.000496,94
+0.000463,94
+0.000580,94
+0.000588,94
+0.000511,94
+0.000507,94
+0.000462,94
+0.000482,94
+0.000495,94
+0.000502,94
+0.000566,94
+0.000463,94
+0.000478,94
+0.000475,94
+0.000477,94
+0.000462,94
+0.000487,94
+0.000463,94
+0.000462,94
+0.000462,94
+0.000463,94
+0.000530,94
+0.000508,94
+0.000463,94
+0.000538,94
+0.000463,94
+0.000463,94
+0.000463,94
+0.000463,94
+0.000463,94
+0.000463,94
+0.000463,94
+0.000463,94
+0.000496,94
+0.000475,94
+0.000478,94
+0.000526,94
+0.000581,94
+0.000483,94
+0.000487,94
+0.000462,94
+0.000494,94
+0.000463,94
+0.000463,94
+0.000565,94
+0.000606,94
+0.000495,94
+0.000463,94
+0.000563,94
+0.000500,94
+0.000657,94
+0.000624,94
+0.000506,94
+0.000488,94
+0.000515,94
+0.000580,94
+0.000657,94
+0.000534,94
+0.000529,94
+0.000533,94
+0.000540,94
+0.000562,94
+0.000494,94
+0.000537,94
+0.000565,94
+0.000878,94
+0.000931,94
+0.000894,94
+0.000959,94
+0.000763,94
+0.000537,94
+0.000584,94
+0.000978,94
+0.001019,94
+0.001073,94
+0.000778,94
+0.000477,94
+0.000535,96
+0.000582,96
+0.000641,96
+0.000605,96
+0.000597,96
+0.000584,96
+0.000516,96
+0.000534,96
+0.000892,96
+0.000842,96
+0.000522,96
+0.000502,96
+0.000502,96
+0.000609,96
+0.000636,96
+0.000555,96
+0.000502,96
+0.000502,96
+0.000502,96
+0.000502,96
+0.000514,96
+0.000489,96
+0.000504,96
+0.000564,96
+0.000502,96
+0.000707,96
+0.000916,96
+0.000739,96
+0.000601,96
+0.000697,96
+0.000612,96
+0.000552,96
+0.000490,96
+0.000489,96
+0.000489,96
+0.000489,96
+0.000530,96
+0.000490,96
+0.000490,96
+0.000490,96
+0.000490,96
+0.000490,96
+0.000489,96
+0.000560,96
+0.000598,96
+0.000510,96
+0.000529,96
+0.000489,96
+0.000490,96
+0.000490,96
+0.000498,96
+0.000504,96
+0.000568,96
+0.000502,96
+0.000509,96
+0.000977,96
+0.000834,96
+0.000513,96
+0.000615,96
+0.000572,96
+0.000549,96
+0.000577,96
+0.000508,96
+0.000490,96
+0.000490,96
+0.000527,96
+0.000489,96
+0.000498,96
+0.000502,96
+0.000510,96
+0.000490,96
+0.000489,96
+0.000490,96
+0.000549,96
+0.000661,96
+0.000490,96
+0.000534,96
+0.000490,96
+0.000490,96
+0.000490,96
+0.000498,96
+0.000546,96
+0.000549,96
+0.000550,96
+0.000503,96
+0.000772,96
+0.000877,96
+0.000647,96
+0.000529,96
+0.001050,96
+0.000608,96
+0.000727,96
+0.000565,96
+0.000638,96
+0.000607,96
+0.000500,96
+0.000668,96
+0.000520,96
+0.000490,96
+0.000490,96
+0.000576,98
+0.000523,98
+0.000704,98
+0.000562,98
+0.000563,98
+0.000523,98
+0.000523,98
+0.000564,98
+0.000581,98
+0.000601,98
+0.000634,98
+0.000532,98
+0.000543,98
+0.000626,98
+0.000597,98
+0.000598,98
+0.000631,98
+0.000684,98
+0.000586,98
+0.000643,98
+0.000603,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000555,98
+0.000523,98
+0.000523,98
+0.000663,98
+0.000564,98
+0.000582,98
+0.000538,98
+0.000563,98
+0.000523,98
+0.000563,98
+0.000601,98
+0.000588,98
+0.000581,98
+0.000543,98
+0.000586,98
+0.000556,98
+0.000582,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000725,98
+0.000686,98
+0.000551,98
+0.000551,98
+0.000562,98
+0.000550,98
+0.000536,98
+0.000536,98
+0.000567,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000533,98
+0.000722,98
+0.000543,98
+0.000594,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000562,98
+0.000543,98
+0.000605,98
+0.000593,98
+0.000553,98
+0.000562,98
+0.000701,98
+0.000523,98
+0.000763,98
+0.000631,98
+0.000759,98
+0.000582,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000565,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000523,98
+0.000702,98
+0.000568,98
+0.000563,98
+0.000523,98
+0.000523,98
+0.000552,98
+0.000552,98
+0.000722,98
+0.000579,98
+0.000602,98
+0.000600,100
+0.000567,100
+0.000610,100
+0.000552,100
+0.000695,100
+0.000765,100
+0.000756,100
+0.000605,100
+0.000552,100
+0.000552,100
+0.000552,100
+0.000591,100
+0.000552,100
+0.000552,100
+0.000552,100
+0.000552,100
+0.000552,100
+0.000552,100
+0.000663,100
+0.000571,100
+0.000591,100
+0.000552,100
+0.000552,100
+0.000592,100
+0.000620,100
+0.000613,100
+0.000572,100
+0.000716,100
+0.000567,100
+0.000675,100
+0.000552,100
+0.000552,100
+0.000766,100
+0.000738,100
+0.000699,100
+0.000611,100
+0.000552,100
+0.000552,100
+0.000598,100
+0.000552,100
+0.000552,100
+0.000552,100
+0.000552,100
+0.000552,100
+0.000552,100
+0.000643,100
+0.000704,100
+0.000612,100
+0.000552,100
+0.000552,100
+0.000552,100
+0.000591,100
+0.000704,100
+0.000632,100
+0.000552,100
+0.000711,100
+0.000567,100
+0.000650,100
+0.000635,100
+0.000670,100
+0.001211,100
+0.000648,100
+0.000753,100
+0.000768,100
+0.000696,100
+0.000578,100
+0.000625,100
+0.000567,100
+0.000567,100
+0.000603,100
+0.000567,100
+0.000627,100
+0.000567,100
+0.000593,100
+0.000567,100
+0.000567,100
+0.000594,100
+0.000573,100
+0.000749,100
+0.000572,100
+0.000587,100
+0.000678,100
+0.000579,100
+0.000580,100
+0.000552,100
+0.000642,100
+0.000743,100
+0.000706,100
+0.000611,100
+0.000592,100
+0.000553,100
+0.000552,100
+0.000552,100
+0.000553,100
+0.000552,100
+0.000553,100
+0.000595,100
+0.000553,100
+0.000553,100
+0.000752,100
+0.000619,102
+0.000624,102
+0.000599,102
+0.000604,102
+0.000623,102
+0.000663,102
+0.000725,102
+0.000620,102
+0.000668,102
+0.000805,102
+0.000604,102
+0.000584,102
+0.000627,102
+0.000769,102
+0.000735,102
+0.000616,102
+0.000610,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000622,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000741,102
+0.000642,102
+0.000647,102
+0.000604,102
+0.000584,102
+0.000623,102
+0.000662,102
+0.000776,102
+0.000644,102
+0.000625,102
+0.000584,102
+0.000585,102
+0.000584,102
+0.000584,102
+0.000739,102
+0.000766,102
+0.000677,102
+0.000624,102
+0.000585,102
+0.000584,102
+0.000584,102
+0.000620,102
+0.000585,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000606,102
+0.000776,102
+0.000668,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000624,102
+0.000783,102
+0.000739,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000660,102
+0.000688,102
+0.000643,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000618,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000584,102
+0.000674,102
+0.000626,102
+0.000731,102
+0.000665,102
+0.000584,102
+0.000623,102
+0.000663,102
+0.000700,102
+0.000696,102
+0.000584,102
+0.000584,102
+0.000585,102
+0.000595,102
+0.000630,102
+0.000584,102
+0.000623,102
+0.000604,102
+0.000623,102
+0.000585,102
+0.000584,102
+0.000627,102
+0.000584,102
+0.000631,104
+0.000617,104
+0.000617,104
+0.000617,104
+0.000663,104
+0.000839,104
+0.000650,104
+0.000641,104
+0.000617,104
+0.000617,104
+0.000691,104
+0.000753,104
+0.000980,104
+0.000890,104
+0.000617,104
+0.000650,104
+0.000626,104
+0.000617,104
+0.001098,104
+0.000670,104
+0.000933,104
+0.000782,104
+0.000709,104
+0.000728,104
+0.000733,104
+0.000617,104
+0.000644,104
+0.000617,104
+0.000784,104
+0.000660,104
+0.000646,104
+0.000617,104
+0.000648,104
+0.000784,104
+0.000789,104
+0.000865,104
+0.000654,104
+0.000633,104
+0.000655,104
+0.000617,104
+0.000618,104
+0.000638,104
+0.000656,104
+0.000617,104
+0.000698,104
+0.000617,104
+0.000617,104
+0.000617,104
+0.000617,104
+0.000617,104
+0.000653,104
+0.000617,104
+0.000617,104
+0.000808,104
+0.000636,104
+0.000657,104
+0.000654,104
+0.000617,104
+0.000794,104
+0.000804,104
+0.000651,104
+0.000640,104
+0.000643,104
+0.000617,104
+0.000617,104
+0.000617,104
+0.000617,104
+0.000656,104
+0.000681,104
+0.000656,104
+0.000617,104
+0.000617,104
+0.000617,104
+0.000617,104
+0.000617,104
+0.000642,104
+0.000617,104
+0.000617,104
+0.000680,104
+0.000785,104
+0.000661,104
+0.000648,104
+0.000617,104
+0.000656,104
+0.000754,104
+0.000617,104
+0.000617,104
+0.000644,104
+0.000617,104
+0.000633,104
+0.000617,104
+0.000617,104
+0.000617,104
+0.000685,104
+0.000637,104
+0.000656,104
+0.000617,104
+0.000617,104
+0.000617,104
+0.000630,104
+0.000679,106
+0.000652,106
+0.000652,106
+0.000651,106
+0.000836,106
+0.000702,106
+0.000674,106
+0.000691,106
+0.000803,106
+0.000652,106
+0.000652,106
+0.000696,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000681,106
+0.000691,106
+0.000671,106
+0.000690,106
+0.000651,106
+0.000653,106
+0.000679,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000744,106
+0.000651,106
+0.000652,106
+0.000651,106
+0.000652,106
+0.000652,106
+0.000656,106
+0.000654,106
+0.000652,106
+0.000651,106
+0.000652,106
+0.000652,106
+0.000654,106
+0.000652,106
+0.000691,106
+0.000652,106
+0.000691,106
+0.000651,106
+0.000656,106
+0.000652,106
+0.000651,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000654,106
+0.000711,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000656,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000656,106
+0.000654,106
+0.000652,106
+0.000652,106
+0.001086,106
+0.000704,106
+0.000987,106
+0.000778,106
+0.000766,106
+0.000692,106
+0.000831,106
+0.000699,106
+0.000692,106
+0.000752,106
+0.000652,106
+0.000651,106
+0.000652,106
+0.000652,106
+0.000685,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000652,106
+0.000690,106
+0.000652,106
+0.000652,106
+0.000651,106
+0.000691,106
+0.000652,106
+0.000696,106
+0.000652,106
+0.000652,106
+0.000651,106
+0.000652,106
+0.000652,106
+0.000730,108
+0.000690,108
+0.000752,108
+0.000689,108
+0.000689,108
+0.000726,108
+0.000690,108
+0.000689,108
+0.000690,108
+0.000690,108
+0.000769,108
+0.000729,108
+0.000690,108
+0.000690,108
+0.000690,108
+0.000690,108
+0.000728,108
+0.000711,108
+0.000728,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000694,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000753,108
+0.000709,108
+0.000715,108
+0.000690,108
+0.000690,108
+0.000690,108
+0.000690,108
+0.000690,108
+0.000696,108
+0.000690,108
+0.000690,108
+0.000690,108
+0.000690,108
+0.000700,108
+0.000721,108
+0.000728,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000694,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000752,108
+0.000692,108
+0.000690,108
+0.000690,108
+0.000689,108
+0.000690,108
+0.000689,108
+0.000694,108
+0.000690,108
+0.000690,108
+0.000690,108
+0.000690,108
+0.000689,108
+0.000731,108
+0.000690,108
+0.000729,108
+0.000690,108
+0.000690,108
+0.000694,108
+0.000689,108
+0.000689,108
+0.000690,108
+0.000689,108
+0.000690,108
+0.000711,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000693,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000691,108
+0.000721,108
+0.000698,108
+0.000728,108
+0.000689,108
+0.000694,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000689,108
+0.000691,108
+0.000689,108
+0.000689,108
+0.000739,110
+0.000726,110
+0.000726,110
+0.000731,110
+0.000726,110
+0.000785,110
+0.000726,110
+0.000726,110
+0.000729,110
+0.000727,110
+0.000726,110
+0.000765,110
+0.000726,110
+0.000767,110
+0.000882,110
+0.000767,110
+0.000752,110
+0.000763,110
+0.000796,110
+0.000783,110
+0.000819,110
+0.000881,110
+0.000726,110
+0.000726,110
+0.000764,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000761,110
+0.000780,110
+0.000726,110
+0.000748,110
+0.000757,110
+0.000757,110
+0.000772,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000764,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000772,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000729,110
+0.000788,110
+0.000890,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000769,110
+0.000754,110
+0.000767,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000749,110
+0.000726,110
+0.000728,110
+0.000737,110
+0.000922,110
+0.000800,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000749,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000766,110
+0.000746,110
+0.000765,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000763,110
+0.000729,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000765,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000749,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000726,110
+0.000751,110
+0.000817,112
+0.000763,112
+0.000803,112
+0.000764,112
+0.000766,112
+0.000763,112
+0.000764,112
+0.000763,112
+0.000763,112
+0.000809,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000765,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000768,112
+0.000763,112
+0.000802,112
+0.000802,112
+0.000763,112
+0.000766,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000767,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000767,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000767,112
+0.000763,112
+0.000802,112
+0.000763,112
+0.000895,112
+0.000818,112
+0.000801,112
+0.000821,112
+0.000797,112
+0.000868,112
+0.000816,112
+0.000763,112
+0.000783,112
+0.000763,112
+0.000763,112
+0.000786,112
+0.000764,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000788,112
+0.000764,112
+0.000763,112
+0.000802,112
+0.000763,112
+0.000825,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000857,112
+0.000764,112
+0.000764,112
+0.000763,112
+0.000763,112
+0.000788,112
+0.000764,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000801,112
+0.000822,112
+0.000946,112
+0.000824,112
+0.000814,112
+0.000841,112
+0.000804,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000800,112
+0.000763,112
+0.000763,112
+0.000837,112
+0.000916,112
+0.000820,112
+0.000763,112
+0.000763,112
+0.000763,112
+0.000827,114
+0.000849,114
+0.000812,114
+0.000811,114
+0.000812,114
+0.000811,114
+0.000885,114
+0.000831,114
+0.000851,114
+0.000812,114
+0.000812,114
+0.000850,114
+0.000812,114
+0.000812,114
+0.000812,114
+0.000812,114
+0.000836,114
+0.000812,114
+0.000812,114
+0.000812,114
+0.000812,114
+0.000847,114
+0.000811,114
+0.000811,114
+0.000811,114
+0.000811,114
+0.000874,114
+0.000811,114
+0.000851,114
+0.000812,114
+0.000839,114
+0.000811,114
+0.000812,114
+0.000811,114
+0.000811,114
+0.000834,114
+0.000812,114
+0.000811,114
+0.000811,114
+0.000862,114
+0.000836,114
+0.000812,114
+0.000812,114
+0.000812,114
+0.000812,114
+0.000839,114
+0.000812,114
+0.000851,114
+0.000851,114
+0.000812,114
+0.000837,114
+0.000811,114
+0.000811,114
+0.000811,114
+0.000811,114
+0.000839,114
+0.000812,114
+0.000811,114
+0.000811,114
+0.000811,114
+0.000816,114
+0.000812,114
+0.000812,114
+0.000811,114
+0.000864,114
+0.000812,114
+0.000812,114
+0.000850,114
+0.000812,114
+0.000858,114
+0.000978,114
+0.000837,114
+0.000856,114
+0.000860,114
+0.000867,114
+0.000872,114
+0.000832,114
+0.000812,114
+0.000812,114
+0.000847,114
+0.000811,114
+0.000811,114
+0.000811,114
+0.000835,114
+0.000811,114
+0.000812,114
+0.000811,114
+0.000851,114
+0.000876,114
+0.000811,114
+0.000811,114
+0.000811,114
+0.000811,114
+0.000845,114
+0.000814,114
+0.000811,114
+0.000811,114
+0.000811,114
+0.000816,114
+0.000811,114
+0.000870,116
+0.000850,116
+0.000850,116
+0.000932,116
+0.000851,116
+0.000850,116
+0.000850,116
+0.000925,116
+0.000890,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000852,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000854,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000931,116
+0.000851,116
+0.000851,116
+0.000850,116
+0.000850,116
+0.000920,116
+0.000850,116
+0.000889,116
+0.000850,116
+0.000850,116
+0.000873,116
+0.000851,116
+0.000850,116
+0.000851,116
+0.000855,116
+0.000851,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000853,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000855,116
+0.000890,116
+0.000889,116
+0.000850,116
+0.000852,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000854,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000852,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000855,116
+0.000850,116
+0.000890,116
+0.000850,116
+0.000889,116
+0.000853,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000856,116
+0.000851,116
+0.000850,116
+0.000865,116
+0.000855,116
+0.000851,116
+0.000850,116
+0.000851,116
+0.000850,116
+0.000857,116
+0.000850,116
+0.000870,116
+0.000875,116
+0.000889,116
+0.000852,116
+0.000897,116
+0.000883,116
+0.000907,116
+0.000925,116
+0.000870,116
+0.000907,116
+0.000859,116
+0.000850,116
+0.000873,116
+0.000850,116
+0.000850,116
+0.000850,116
+0.000932,118
+0.000889,118
+0.000890,118
+0.000928,118
+0.000889,118
+0.000951,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000925,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000891,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000919,118
+0.000971,118
+0.000889,118
+0.000889,118
+0.000950,118
+0.000928,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000894,118
+0.000889,118
+0.000890,118
+0.000889,118
+0.000891,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000894,118
+0.000889,118
+0.000890,118
+0.000889,118
+0.000951,118
+0.000889,118
+0.000929,118
+0.000889,118
+0.000889,118
+0.000893,118
+0.000889,118
+0.000913,118
+0.000889,118
+0.000897,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000897,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000895,118
+0.000928,118
+0.000889,118
+0.000928,118
+0.000895,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000895,118
+0.000889,118
+0.000889,118
+0.000906,118
+0.000898,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000900,118
+0.000889,118
+0.000928,118
+0.000928,118
+0.000891,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000893,118
+0.000889,118
+0.000888,118
+0.000889,118
+0.000891,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000889,118
+0.000894,118
+0.000889,118
+0.000933,118
+0.000889,118
+0.000930,118
+0.000889,118
+0.000995,120
+0.000992,120
+0.001008,120
+0.000973,120
+0.000965,120
+0.001004,120
+0.000957,120
+0.000935,120
+0.000935,120
+0.000935,120
+0.000935,120
+0.000964,120
+0.000935,120
+0.000937,120
+0.000974,120
+0.001011,120
+0.000935,120
+0.000937,120
+0.000935,120
+0.000958,120
+0.000935,120
+0.000936,120
+0.000935,120
+0.000940,120
+0.000936,120
+0.000935,120
+0.000935,120
+0.000935,120
+0.000973,120
+0.001014,120
+0.000936,120
+0.000975,120
+0.000969,120
+0.000974,120
+0.000936,120
+0.000935,120
+0.000969,120
+0.000935,120
+0.000935,120
+0.000935,120
+0.000940,120
+0.000935,120
+0.000935,120
+0.000935,120
+0.000958,120
+0.000935,120
+0.000935,120
+0.000965,120
+0.000935,120
+0.001004,120
+0.000975,120
+0.000935,120
+0.000935,120
+0.000997,120
+0.000935,120
+0.000935,120
+0.000935,120
+0.000941,120
+0.000935,120
+0.000937,120
+0.000935,120
+0.000937,120
+0.000935,120
+0.000937,120
+0.000935,120
+0.000935,120
+0.000937,120
+0.000974,120
+0.000974,120
+0.000935,120
+0.000940,120
+0.000935,120
+0.000935,120
+0.000935,120
+0.000937,120
+0.000935,120
+0.000935,120
+0.000935,120
+0.000940,120
+0.000935,120
+0.000935,120
+0.000935,120
+0.000934,120
+0.000937,120
+0.000974,120
+0.000935,120
+0.000974,120
+0.000940,120
+0.000935,120
+0.000961,120
+0.000936,120
+0.000941,120
+0.000938,120
+0.000935,120
+0.000938,120
+0.000941,120
+0.000936,120
+0.000936,120
+0.000995,120
+0.000941,120
+0.001005,122
+0.000983,122
+0.001022,122
+0.001049,122
+0.000983,122
+0.000983,122
+0.001040,122
+0.001136,122
+0.001051,122
+0.001031,122
+0.001070,122
+0.001012,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.001006,122
+0.000983,122
+0.000984,122
+0.001022,122
+0.001019,122
+0.001012,122
+0.000983,122
+0.000983,122
+0.001006,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000988,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.001006,122
+0.001090,122
+0.001003,122
+0.000983,122
+0.001051,122
+0.001022,122
+0.000983,122
+0.000983,122
+0.000985,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000985,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000988,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000985,122
+0.001027,122
+0.001022,122
+0.000983,122
+0.000987,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000985,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000987,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000985,122
+0.000983,122
+0.001022,122
+0.001022,122
+0.000988,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000990,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.001009,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000986,122
+0.001022,122
+0.000983,122
+0.001022,122
+0.000989,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000985,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.000985,122
+0.000983,122
+0.000983,122
+0.000983,122
+0.001059,124
+0.001033,124
+0.001073,124
+0.001073,124
+0.001036,124
+0.001033,124
+0.001033,124
+0.001158,124
+0.001078,124
+0.001099,124
+0.001071,124
+0.001124,124
+0.001057,124
+0.001033,124
+0.001033,124
+0.001057,124
+0.001034,124
+0.001034,124
+0.001072,124
+0.001098,124
+0.001034,124
+0.001034,124
+0.001057,124
+0.001034,124
+0.001034,124
+0.001034,124
+0.001038,124
+0.001034,124
+0.001034,124
+0.001034,124
+0.001068,124
+0.001092,124
+0.001033,124
+0.001033,124
+0.001109,124
+0.001073,124
+0.001033,124
+0.001033,124
+0.001036,124
+0.001033,124
+0.001033,124
+0.001033,124
+0.001038,124
+0.001033,124
+0.001033,124
+0.001036,124
+0.001034,124
+0.001033,124
+0.001033,124
+0.001038,124
+0.001072,124
+0.001072,124
+0.001034,124
+0.001036,124
+0.001034,124
+0.001034,124
+0.001034,124
+0.001038,124
+0.001034,124
+0.001034,124
+0.001034,124
+0.001036,124
+0.001033,124
+0.001034,124
+0.001034,124
+0.001038,124
+0.001073,124
+0.001073,124
+0.001036,124
+0.001034,124
+0.001034,124
+0.001034,124
+0.001061,124
+0.001033,124
+0.001033,124
+0.001033,124
+0.001036,124
+0.001033,124
+0.001033,124
+0.001033,124
+0.001059,124
+0.001033,124
+0.001073,124
+0.001072,124
+0.001067,124
+0.001033,124
+0.001033,124
+0.001033,124
+0.001038,124
+0.001033,124
+0.001033,124
+0.001036,124
+0.001033,124
+0.001033,124
+0.001033,124
+0.001038,124
+0.001033,124
+0.001033,124
+0.001073,124
+0.001075,124
+0.001105,126
+0.001084,126
+0.001175,126
+0.001258,126
+0.001130,126
+0.001150,126
+0.001208,126
+0.001215,126
+0.001107,126
+0.001083,126
+0.001121,126
+0.001168,126
+0.001122,126
+0.001185,126
+0.001123,126
+0.001111,126
+0.001149,126
+0.001120,126
+0.001168,126
+0.001139,126
+0.001147,126
+0.001169,126
+0.001084,126
+0.001149,126
+0.001201,126
+0.001249,126
+0.001189,126
+0.001217,126
+0.001123,126
+0.001168,126
+0.001228,126
+0.001204,126
+0.001151,126
+0.001149,126
+0.001206,126
+0.001173,126
+0.001381,126
+0.001185,126
+0.001208,126
+0.001172,126
+0.001250,126
+0.001249,126
+0.001187,126
+0.001148,126
+0.001207,126
+0.001239,126
+0.001200,126
+0.001223,126
+0.001148,126
+0.001199,126
+0.001234,126
+0.001242,126
+0.001171,126
+0.001173,126
+0.001230,126
+0.001272,126
+0.001191,126
+0.001209,126
+0.001169,126
+0.001210,126
+0.001245,126
+0.001253,126
+0.001148,126
+0.001197,126
+0.001235,126
+0.001149,126
+0.001150,126
+0.001207,126
+0.001209,126
+0.001245,126
+0.001266,126
+0.001189,126
+0.001210,126
+0.001300,126
+0.001375,126
+0.001252,126
+0.001221,126
+0.001355,126
+0.001453,126
+0.001288,126
+0.001281,126
+0.001253,126
+0.001228,126
+0.001283,126
+0.001296,126
+0.001215,126
+0.001245,126
+0.001442,126
+0.001202,126
+0.001205,126
+0.001170,126
+0.001228,126
+0.001194,126
+0.001167,126
+0.001169,126
+0.001238,126
+0.001135,126
+0.001112,126
+0.001131,126
+0.001218,126
+0.001382,128
+0.001331,128
+0.001270,128
+0.001313,128
+0.001256,128
+0.001326,128
+0.001293,128
+0.001140,128
+0.001395,128
+0.001199,128
+0.001249,128
+0.001276,128
+0.001238,128
+0.001316,128
+0.001350,128
+0.001339,128
+0.001203,128
+0.001262,128
+0.001302,128
+0.001210,128
+0.001162,128
+0.001297,128
+0.001271,128
+0.001223,128
+0.001257,128
+0.001159,128
+0.001138,128
+0.001228,128
+0.001189,128
+0.001330,128
+0.001185,128
+0.001196,128
+0.001140,128
+0.001139,128
+0.001293,128
+0.001178,128
+0.001178,128
+0.001178,128
+0.001139,128
+0.001138,128
+0.001139,128
+0.001262,128
+0.001179,128
+0.001139,128
+0.001172,128
+0.001140,128
+0.001139,128
+0.001139,128
+0.001178,128
+0.001179,128
+0.001158,128
+0.001211,128
+0.001139,128
+0.001139,128
+0.001139,128
+0.001175,128
+0.001139,128
+0.001140,128
+0.001161,128
+0.001139,128
+0.001139,128
+0.001138,128
+0.001183,128
+0.001139,128
+0.001178,128
+0.001173,128
+0.001139,128
+0.001240,128
+0.001419,128
+0.001814,128
+0.001751,128
+0.001291,128
+0.001630,128
+0.001826,128
+0.001257,128
+0.001138,128
+0.001217,128
+0.001177,128
+0.001138,128
+0.001137,128
+0.001177,128
+0.001278,128
+0.001591,128
+0.001900,128
+0.001170,128
+0.001295,128
+0.001161,128
+0.001207,128
+0.001140,128
+0.001270,128
+0.001356,128
+0.001140,128
+0.001186,128
+0.001140,128
+0.001188,128
+0.001189,128
+0.001161,128
+0.001139,128
+0.001160,128
+0.001239,128
+0.001271,130
+0.001282,130
+0.001341,130
+0.001218,130
+0.001237,130
+0.001244,130
+0.001288,130
+0.001208,130
+0.001301,130
+0.001274,130
+0.001237,130
+0.001239,130
+0.001224,130
+0.001258,130
+0.001198,130
+0.001244,130
+0.001263,130
+0.001237,130
+0.001243,130
+0.001323,130
+0.001227,130
+0.001264,130
+0.001210,130
+0.001232,130
+0.001414,130
+0.001217,130
+0.001218,130
+0.001241,130
+0.001198,130
+0.001239,130
+0.001235,130
+0.001243,130
+0.001323,130
+0.001197,130
+0.001231,130
+0.001198,130
+0.001264,130
+0.001457,130
+0.001198,130
+0.001198,130
+0.001387,130
+0.001198,130
+0.001232,130
+0.001277,130
+0.001321,130
+0.001276,130
+0.001322,130
+0.001198,130
+0.001198,130
+0.001263,130
+0.001405,130
+0.001230,130
+0.001230,130
+0.001298,130
+0.001347,130
+0.001305,130
+0.001444,130
+0.001218,130
+0.001217,130
+0.001365,130
+0.001294,130
+0.001370,130
+0.001236,130
+0.001350,130
+0.001473,130
+0.001258,130
+0.001375,130
+0.001332,130
+0.001422,130
+0.001261,130
+0.001310,130
+0.001338,130
+0.001298,130
+0.001352,130
+0.001393,130
+0.001251,130
+0.001344,130
+0.001407,130
+0.001295,130
+0.001275,130
+0.001400,130
+0.001198,130
+0.001439,130
+0.001305,130
+0.001198,130
+0.001288,130
+0.001342,130
+0.001197,130
+0.001290,130
+0.001473,130
+0.001198,130
+0.001307,130
+0.001305,130
+0.001238,130
+0.001395,130
+0.001226,130
+0.001198,130
+0.001313,130
+0.001309,130
+0.001307,130
+0.001281,132
+0.001541,132
+0.001270,132
+0.001248,132
+0.001384,132
+0.001249,132
+0.001442,132
+0.001331,132
+0.001250,132
+0.001361,132
+0.001277,132
+0.001374,132
+0.001268,132
+0.001442,132
+0.001249,132
+0.001249,132
+0.001248,132
+0.001292,132
+0.001249,132
+0.001328,132
+0.001322,132
+0.001249,132
+0.001248,132
+0.001282,132
+0.001376,132
+0.001268,132
+0.001433,132
+0.001352,132
+0.001316,132
+0.001407,132
+0.001313,132
+0.001351,132
+0.001462,132
+0.001270,132
+0.001269,132
+0.001285,132
+0.001357,132
+0.001288,132
+0.001282,132
+0.001390,132
+0.001249,132
+0.001288,132
+0.001248,132
+0.001332,132
+0.001302,132
+0.001329,132
+0.001249,132
+0.001287,132
+0.001249,132
+0.001353,132
+0.001323,132
+0.001249,132
+0.001250,132
+0.001285,132
+0.001249,132
+0.001249,132
+0.001282,132
+0.001268,132
+0.001332,132
+0.001249,132
+0.001284,132
+0.001248,132
+0.001249,132
+0.001282,132
+0.001249,132
+0.001250,132
+0.001276,132
+0.001249,132
+0.001249,132
+0.001272,132
+0.001268,132
+0.001288,132
+0.001274,132
+0.001249,132
+0.001249,132
+0.001271,132
+0.001249,132
+0.001248,132
+0.001249,132
+0.001254,132
+0.001248,132
+0.001249,132
+0.001272,132
+0.001249,132
+0.001268,132
+0.001338,132
+0.001249,132
+0.001248,132
+0.001272,132
+0.001249,132
+0.001249,132
+0.001254,132
+0.001249,132
+0.001249,132
+0.001251,132
+0.001249,132
+0.001249,132
+0.001268,132
+0.001313,132
+0.001249,132
+0.001338,134
+0.001311,134
+0.001308,134
+0.001308,134
+0.001524,134
+0.001376,134
+0.001356,134
+0.001469,134
+0.001308,134
+0.001395,134
+0.001349,134
+0.001330,134
+0.001510,134
+0.001382,134
+0.001308,134
+0.001352,134
+0.001347,134
+0.001410,134
+0.001334,134
+0.001391,134
+0.001308,134
+0.001364,134
+0.001347,134
+0.001308,134
+0.001433,134
+0.001308,134
+0.001411,134
+0.001380,134
+0.001308,134
+0.001411,134
+0.001345,134
+0.001361,134
+0.001307,134
+0.001344,134
+0.001372,134
+0.001346,134
+0.001334,134
+0.001307,134
+0.001413,134
+0.001371,134
+0.001308,134
+0.001404,134
+0.001348,134
+0.001328,134
+0.001308,134
+0.001344,134
+0.001359,134
+0.001355,134
+0.001334,134
+0.001307,134
+0.001307,134
+0.001416,134
+0.001328,134
+0.001409,134
+0.001343,134
+0.001365,134
+0.001308,134
+0.001346,134
+0.001327,134
+0.001388,134
+0.001335,134
+0.001308,134
+0.001308,134
+0.001449,134
+0.001348,134
+0.001340,134
+0.001449,134
+0.001307,134
+0.001322,134
+0.001437,134
+0.001322,134
+0.001406,134
+0.001347,134
+0.001307,134
+0.001464,134
+0.001407,134
+0.001348,134
+0.001368,134
+0.001487,134
+0.001438,134
+0.001416,134
+0.001460,134
+0.001642,134
+0.001396,134
+0.001350,134
+0.001414,134
+0.001494,134
+0.001531,134
+0.001366,134
+0.001430,134
+0.001381,134
+0.001490,134
+0.001450,134
+0.001369,134
+0.001503,134
+0.001601,134
+0.001517,134
+0.001411,134
+0.001652,134
+0.001479,134
+0.001538,136
+0.001451,136
+0.001496,136
+0.001529,136
+0.001574,136
+0.001464,136
+0.001494,136
+0.001499,136
+0.001571,136
+0.001559,136
+0.001518,136
+0.001445,136
+0.001431,136
+0.001540,136
+0.001456,136
+0.001468,136
+0.001405,136
+0.001430,136
+0.001429,136
+0.001392,136
+0.001369,136
+0.001417,136
+0.001369,136
+0.001514,136
+0.001561,136
+0.001406,136
+0.001490,136
+0.001528,136
+0.001512,136
+0.001735,136
+0.001451,136
+0.001446,136
+0.001588,136
+0.001405,136
+0.001478,136
+0.001445,136
+0.001426,136
+0.001501,136
+0.001555,136
+0.001631,136
+0.001559,136
+0.001444,136
+0.001439,136
+0.001472,136
+0.001405,136
+0.002002,136
+0.001684,136
+0.001495,136
+0.001602,136
+0.001464,136
+0.001550,136
+0.001497,136
+0.001465,136
+0.001462,136
+0.001777,136
+0.002520,136
+0.002108,136
+0.001403,136
+0.001556,136
+0.001532,136
+0.001485,136
+0.001530,136
+0.001473,136
+0.001464,136
+0.001452,136
+0.001369,136
+0.002016,136
+0.001433,136
+0.001533,136
+0.001503,136
+0.001523,136
+0.001506,136
+0.001492,136
+0.001368,136
+0.001444,136
+0.001471,136
+0.001368,136
+0.001980,136
+0.001405,136
+0.001533,136
+0.001496,136
+0.001527,136
+0.001513,136
+0.001481,136
+0.001369,136
+0.001475,136
+0.001472,136
+0.001369,136
+0.002042,136
+0.001405,136
+0.001531,136
+0.001522,136
+0.001476,136
+0.001575,136
+0.001431,136
+0.001369,136
+0.001482,136
+0.001431,136
+0.001368,136
+0.002021,136
+0.001514,138
+0.001650,138
+0.001551,138
+0.001637,138
+0.001606,138
+0.001429,138
+0.001473,138
+0.001531,138
+0.001468,138
+0.001802,138
+0.001543,138
+0.001567,138
+0.001600,138
+0.001570,138
+0.001761,138
+0.001498,138
+0.001508,138
+0.001505,138
+0.001777,138
+0.002262,138
+0.001464,138
+0.001616,138
+0.001670,138
+0.001590,138
+0.001705,138
+0.001457,138
+0.001458,138
+0.001426,138
+0.001721,138
+0.001468,138
+0.001848,138
+0.001652,138
+0.001651,138
+0.001635,138
+0.001545,138
+0.001519,138
+0.001486,138
+0.001428,138
+0.001640,138
+0.001514,138
+0.001677,138
+0.001697,138
+0.001626,138
+0.001468,138
+0.001502,138
+0.001592,138
+0.001525,138
+0.001428,138
+0.001428,138
+0.001586,138
+0.001448,138
+0.001775,138
+0.001582,138
+0.001572,138
+0.001489,138
+0.001526,138
+0.001542,138
+0.001500,138
+0.001429,138
+0.001462,138
+0.001708,138
+0.001428,138
+0.001802,138
+0.001744,138
+0.001468,138
+0.001454,138
+0.001551,138
+0.001566,138
+0.001428,138
+0.001448,138
+0.001684,138
+0.001488,138
+0.001535,138
+0.001780,138
+0.001649,138
+0.001484,138
+0.001455,138
+0.001677,138
+0.001542,138
+0.001429,138
+0.001722,138
+0.001618,138
+0.001505,138
+0.001809,138
+0.001637,138
+0.001648,138
+0.001510,138
+0.001488,138
+0.001589,138
+0.001429,138
+0.001472,138
+0.001452,138
+0.001738,138
+0.001428,138
+0.001784,138
+0.001685,138
+0.001426,138
+0.001426,138
+0.001519,138
+0.001512,138
+0.001563,140
+0.001492,140
+0.001726,140
+0.001577,140
+0.001791,140
+0.001657,140
+0.001654,140
+0.001508,140
+0.001534,140
+0.001586,140
+0.001572,140
+0.001492,140
+0.001492,140
+0.001694,140
+0.001491,140
+0.001866,140
+0.001774,140
+0.001491,140
+0.001550,140
+0.001545,140
+0.001579,140
+0.001511,140
+0.001491,140
+0.001779,140
+0.001515,140
+0.001853,140
+0.001671,140
+0.001677,140
+0.001491,140
+0.001491,140
+0.001635,140
+0.001491,140
+0.001491,140
+0.001702,140
+0.001624,140
+0.001690,140
+0.001754,140
+0.001662,140
+0.001551,140
+0.001553,140
+0.001698,140
+0.001552,140
+0.001530,140
+0.001492,140
+0.001767,140
+0.001529,140
+0.001832,140
+0.001804,140
+0.001491,140
+0.001536,140
+0.001573,140
+0.001594,140
+0.001522,140
+0.001492,140
+0.001757,140
+0.001588,140
+0.001795,140
+0.001798,140
+0.001491,140
+0.001553,140
+0.001522,140
+0.001627,140
+0.001520,140
+0.001492,140
+0.001721,140
+0.001573,140
+0.001679,140
+0.001630,140
+0.001491,140
+0.001491,140
+0.001515,140
+0.001663,140
+0.001605,140
+0.001488,140
+0.001488,140
+0.001664,140
+0.001777,140
+0.001624,140
+0.001492,140
+0.001653,140
+0.001681,140
+0.001615,140
+0.001893,140
+0.001503,140
+0.001758,140
+0.001751,140
+0.001726,140
+0.001625,140
+0.001786,140
+0.001747,140
+0.001649,140
+0.001676,140
+0.001830,140
+0.001711,140
+0.001648,140
+0.001767,140
+0.001934,140
+0.002862,140
+0.002059,140
+0.001580,140
+0.001746,142
+0.001996,142
+0.001840,142
+0.001968,142
+0.002185,142
+0.002980,142
+0.001803,142
+0.001790,142
+0.001804,142
+0.001690,142
+0.001770,142
+0.001839,142
+0.001808,142
+0.002382,142
+0.002844,142
+0.001718,142
+0.001732,142
+0.001741,142
+0.001729,142
+0.001723,142
+0.001685,142
+0.001658,142
+0.002594,142
+0.002747,142
+0.001830,142
+0.001847,142
+0.001883,142
+0.001670,142
+0.001867,142
+0.001723,142
+0.002894,142
+0.002569,142
+0.001765,142
+0.001787,142
+0.001901,142
+0.001879,142
+0.002013,142
+0.001895,142
+0.001922,142
+0.002034,142
+0.001923,142
+0.001942,142
+0.001998,142
+0.002005,142
+0.002019,142
+0.001986,142
+0.001897,142
+0.001892,142
+0.001736,142
+0.001796,142
+0.001669,142
+0.001709,142
+0.001752,142
+0.001864,142
+0.001761,142
+0.002032,142
+0.001679,142
+0.001722,142
+0.001687,142
+0.001759,142
+0.001791,142
+0.001981,142
+0.002008,142
+0.002015,142
+0.002084,142
+0.002184,142
+0.002038,142
+0.002001,142
+0.002046,142
+0.002055,142
+0.002038,142
+0.001952,142
+0.001788,142
+0.002505,142
+0.001885,142
+0.001688,142
+0.001738,142
+0.001726,142
+0.001853,142
+0.001762,142
+0.001856,142
+0.001809,142
+0.002486,142
+0.001766,142
+0.001758,142
+0.001725,142
+0.001789,142
+0.001824,142
+0.001703,142
+0.001824,142
+0.001721,142
+0.002387,142
+0.001682,142
+0.001762,142
+0.001794,142
+0.001795,142
+0.001745,142
+0.001700,142
+0.001879,142
+0.001720,142
+0.001862,144
+0.001783,144
+0.001818,144
+0.001788,144
+0.001835,144
+0.001743,144
+0.001714,144
+0.001984,144
+0.001873,144
+0.002296,144
+0.001929,144
+0.001804,144
+0.001860,144
+0.001873,144
+0.002026,144
+0.001922,144
+0.001990,144
+0.001850,144
+0.001841,144
+0.001818,144
+0.001828,144
+0.001869,144
+0.001881,144
+0.001881,144
+0.001819,144
+0.001855,144
+0.001772,144
+0.001820,144
+0.001894,144
+0.001840,144
+0.001848,144
+0.001992,144
+0.001875,144
+0.001749,144
+0.001878,144
+0.001840,144
+0.001868,144
+0.001814,144
+0.001870,144
+0.001820,144
+0.001867,144
+0.001851,144
+0.001843,144
+0.001905,144
+0.001859,144
+0.001851,144
+0.001825,144
+0.001843,144
+0.001842,144
+0.001934,144
+0.001805,144
+0.001837,144
+0.001922,144
+0.001871,144
+0.001777,144
+0.001845,144
+0.001885,144
+0.001735,144
+0.001769,144
+0.001764,144
+0.001813,144
+0.001879,144
+0.001738,144
+0.001768,144
+0.001809,144
+0.001720,144
+0.001778,144
+0.001797,144
+0.001730,144
+0.001760,144
+0.001766,144
+0.001806,144
+0.001822,144
+0.001879,144
+0.001857,144
+0.001858,144
+0.001913,144
+0.002014,144
+0.001948,144
+0.001844,144
+0.001948,144
+0.001865,144
+0.001881,144
+0.001819,144
+0.001908,144
+0.001920,144
+0.002060,144
+0.001885,144
+0.002011,144
+0.001915,144
+0.001939,144
+0.001870,144
+0.001824,144
+0.001755,144
+0.001816,144
+0.001959,144
+0.001760,144
+0.001881,144
+0.001774,144
+0.001748,144
+0.001905,146
+0.001885,146
+0.001791,146
+0.001961,146
+0.001898,146
+0.001862,146
+0.001960,146
+0.001887,146
+0.001832,146
+0.001839,146
+0.001875,146
+0.001855,146
+0.001900,146
+0.001870,146
+0.001909,146
+0.001862,146
+0.001840,146
+0.001859,146
+0.001834,146
+0.001819,146
+0.001862,146
+0.002148,146
+0.002027,146
+0.001807,146
+0.001939,146
+0.001817,146
+0.001863,146
+0.001835,146
+0.001857,146
+0.001835,146
+0.001915,146
+0.001869,146
+0.001875,146
+0.001886,146
+0.001841,146
+0.001889,146
+0.001834,146
+0.001888,146
+0.001857,146
+0.001886,146
+0.001835,146
+0.001885,146
+0.001837,146
+0.001852,146
+0.001886,146
+0.001918,146
+0.001821,146
+0.001919,146
+0.001934,146
+0.001846,146
+0.001958,146
+0.001918,146
+0.001878,146
+0.001852,146
+0.001881,146
+0.001852,146
+0.001906,146
+0.001880,146
+0.001850,146
+0.001868,146
+0.001860,146
+0.001854,146
+0.001806,146
+0.001794,146
+0.001779,146
+0.001919,146
+0.001855,146
+0.001830,146
+0.002055,146
+0.001954,146
+0.002077,146
+0.001872,146
+0.001821,146
+0.001880,146
+0.001840,146
+0.001889,146
+0.001818,146
+0.001952,146
+0.001826,146
+0.001766,146
+0.001839,146
+0.001794,146
+0.001780,146
+0.001905,146
+0.002034,146
+0.001896,146
+0.001952,146
+0.001833,146
+0.001926,146
+0.002057,146
+0.001924,146
+0.001887,146
+0.001996,146
+0.001829,146
+0.001916,146
+0.001874,146
+0.001916,146
+0.001858,146
+0.001760,146
+0.001866,146
+0.001911,148
+0.001937,148
+0.001896,148
+0.001991,148
+0.001954,148
+0.001922,148
+0.001847,148
+0.001874,148
+0.001895,148
+0.001870,148
+0.001988,148
+0.002018,148
+0.001926,148
+0.001982,148
+0.001928,148
+0.001948,148
+0.001908,148
+0.001924,148
+0.001959,148
+0.001879,148
+0.001966,148
+0.002189,148
+0.001985,148
+0.001938,148
+0.001946,148
+0.001902,148
+0.002000,148
+0.001996,148
+0.001961,148
+0.002127,148
+0.002068,148
+0.001933,148
+0.001979,148
+0.001960,148
+0.002116,148
+0.001997,148
+0.001877,148
+0.002011,148
+0.001897,148
+0.001895,148
+0.001912,148
+0.001844,148
+0.001869,148
+0.001946,148
+0.002006,148
+0.001886,148
+0.001975,148
+0.001852,148
+0.001875,148
+0.001893,148
+0.001875,148
+0.001826,148
+0.001950,148
+0.001973,148
+0.001922,148
+0.001887,148
+0.001872,148
+0.001906,148
+0.001862,148
+0.001892,148
+0.001886,148
+0.002109,148
+0.002104,148
+0.002171,148
+0.002114,148
+0.002102,148
+0.002161,148
+0.002132,148
+0.001975,148
+0.001950,148
+0.001905,148
+0.001915,148
+0.002150,148
+0.001955,148
+0.001946,148
+0.001897,148
+0.001895,148
+0.001987,148
+0.001925,148
+0.001853,148
+0.001973,148
+0.001946,148
+0.001916,148
+0.001968,148
+0.001909,148
+0.001935,148
+0.002010,148
+0.002004,148
+0.001991,148
+0.002028,148
+0.001887,148
+0.001935,148
+0.001936,148
+0.001911,148
+0.001951,148
+0.002074,148
+0.001929,148
+0.001922,148
+0.001936,148
+0.001940,148
+0.002027,150
+0.002057,150
+0.001981,150
+0.002110,150
+0.002039,150
+0.002057,150
+0.002001,150
+0.002028,150
+0.002001,150
+0.002032,150
+0.001992,150
+0.002110,150
+0.001971,150
+0.002019,150
+0.001990,150
+0.002015,150
+0.001988,150
+0.002021,150
+0.001989,150
+0.002062,150
+0.002077,150
+0.001940,150
+0.001878,150
+0.002521,150
+0.002403,150
+0.002418,150
+0.002415,150
+0.002567,150
+0.002108,150
+0.002078,150
+0.002005,150
+0.001971,150
+0.002000,150
+0.001971,150
+0.001997,150
+0.002000,150
+0.002029,150
+0.002118,150
+0.002058,150
+0.002057,150
+0.002034,150
+0.002066,150
+0.002027,150
+0.002163,150
+0.002074,150
+0.002055,150
+0.002094,150
+0.002064,150
+0.002016,150
+0.002077,150
+0.002030,150
+0.002068,150
+0.002005,150
+0.002058,150
+0.002059,150
+0.002117,150
+0.001977,150
+0.001992,150
+0.001878,150
+0.002084,150
+0.001979,150
+0.001900,150
+0.001888,150
+0.002066,150
+0.001897,150
+0.001901,150
+0.001878,150
+0.002055,150
+0.002006,150
+0.001984,150
+0.001986,150
+0.001984,150
+0.002203,150
+0.002178,150
+0.002021,150
+0.001956,150
+0.002305,150
+0.002120,150
+0.002166,150
+0.002037,150
+0.001950,150
+0.002068,150
+0.002040,150
+0.002059,150
+0.002266,150
+0.002048,150
+0.002175,150
+0.002061,150
+0.002094,150
+0.002019,150
+0.002019,150
+0.001992,150
+0.002071,150
+0.001998,150
+0.002128,150
+0.001998,150
+0.002015,150
+0.001990,150
+0.002015,150
+0.001970,150
+0.002200,152
+0.002076,152
+0.002105,152
+0.002039,152
+0.002095,152
+0.002090,152
+0.002091,152
+0.002069,152
+0.002131,152
+0.002110,152
+0.002183,152
+0.002061,152
+0.002054,152
+0.002089,152
+0.002094,152
+0.002085,152
+0.002159,152
+0.002121,152
+0.002076,152
+0.002097,152
+0.002164,152
+0.002036,152
+0.002078,152
+0.002105,152
+0.002139,152
+0.002058,152
+0.002102,152
+0.002118,152
+0.002106,152
+0.002109,152
+0.002084,152
+0.002113,152
+0.002190,152
+0.002055,152
+0.002096,152
+0.002005,152
+0.002036,152
+0.002107,152
+0.002181,152
+0.002116,152
+0.002285,152
+0.002039,152
+0.002262,152
+0.002090,152
+0.002231,152
+0.002144,152
+0.002184,152
+0.002273,152
+0.002246,152
+0.002231,152
+0.002192,152
+0.002114,152
+0.002050,152
+0.002106,152
+0.002111,152
+0.002076,152
+0.002286,152
+0.002248,152
+0.002134,152
+0.002184,152
+0.002176,152
+0.002189,152
+0.002162,152
+0.002302,152
+0.002142,152
+0.002109,152
+0.002065,152
+0.002287,152
+0.002049,152
+0.002108,152
+0.002177,152
+0.002280,152
+0.002104,152
+0.002209,152
+0.002108,152
+0.002147,152
+0.002118,152
+0.002184,152
+0.002196,152
+0.002164,152
+0.002194,152
+0.002148,152
+0.002143,152
+0.002141,152
+0.002147,152
+0.002101,152
+0.002256,152
+0.002117,152
+0.002181,152
+0.002088,152
+0.002180,152
+0.002101,152
+0.002134,152
+0.002111,152
+0.002216,152
+0.002035,152
+0.002099,152
+0.002077,152
+0.002105,152
+0.002024,152
+0.002205,154
+0.002190,154
+0.002186,154
+0.002065,154
+0.002048,154
+0.002059,154
+0.002026,154
+0.002009,154
+0.001975,154
+0.002009,154
+0.002163,154
+0.002015,154
+0.002106,154
+0.002094,154
+0.001976,154
+0.002104,154
+0.002224,154
+0.002124,154
+0.002059,154
+0.002012,154
+0.002226,154
+0.001976,154
+0.001998,154
+0.001976,154
+0.001989,154
+0.001985,154
+0.002102,154
+0.001976,154
+0.002004,154
+0.001975,154
+0.001980,154
+0.001975,154
+0.001976,154
+0.001998,154
+0.001995,154
+0.002019,154
+0.002007,154
+0.002143,154
+0.001982,154
+0.001975,154
+0.001977,154
+0.001975,154
+0.002017,154
+0.002015,154
+0.001980,154
+0.001975,154
+0.001978,154
+0.001976,154
+0.001975,154
+0.001980,154
+0.001976,154
+0.002051,154
+0.002339,154
+0.002092,154
+0.002002,154
+0.002347,154
+0.002136,154
+0.001975,154
+0.002238,154
+0.002441,154
+0.002197,154
+0.002141,154
+0.002148,154
+0.002398,154
+0.002253,154
+0.002308,154
+0.002461,154
+0.002718,154
+0.002731,154
+0.002189,154
+0.002179,154
+0.002139,154
+0.002173,154
+0.002120,154
+0.002183,154
+0.002250,154
+0.002336,154
+0.002298,154
+0.002206,154
+0.002207,154
+0.002210,154
+0.002277,154
+0.002222,154
+0.002231,154
+0.002267,154
+0.002106,154
+0.002195,154
+0.002223,154
+0.002300,154
+0.002120,154
+0.002334,154
+0.002182,154
+0.002288,154
+0.002189,154
+0.002181,154
+0.002210,154
+0.002194,154
+0.002154,154
+0.002150,154
+0.002142,154
+0.002376,156
+0.002262,156
+0.002311,156
+0.002263,156
+0.002213,156
+0.002254,156
+0.002220,156
+0.002106,156
+0.002391,156
+0.002241,156
+0.002224,156
+0.002339,156
+0.002249,156
+0.002301,156
+0.002222,156
+0.002229,156
+0.002243,156
+0.002346,156
+0.002434,156
+0.002223,156
+0.002353,156
+0.002201,156
+0.002275,156
+0.002206,156
+0.002239,156
+0.002356,156
+0.002366,156
+0.002641,156
+0.002381,156
+0.002473,156
+0.002343,156
+0.002298,156
+0.002497,156
+0.002293,156
+0.002359,156
+0.002295,156
+0.002125,156
+0.002263,156
+0.002106,156
+0.002339,156
+0.002133,156
+0.002147,156
+0.002106,156
+0.002135,156
+0.002081,156
+0.002091,156
+0.002085,156
+0.002130,156
+0.002126,156
+0.002204,156
+0.002221,156
+0.002126,156
+0.002280,156
+0.002198,156
+0.002085,156
+0.002255,156
+0.002091,156
+0.002327,156
+0.002051,156
+0.002094,156
+0.002051,156
+0.002077,156
+0.002052,156
+0.002180,156
+0.002051,156
+0.002089,156
+0.002052,156
+0.002074,156
+0.002052,156
+0.002077,156
+0.002051,156
+0.002152,156
+0.002051,156
+0.002076,156
+0.002104,156
+0.002080,156
+0.002051,156
+0.002227,156
+0.002463,156
+0.002595,156
+0.002532,156
+0.003101,156
+0.002759,156
+0.002161,156
+0.002417,156
+0.002332,156
+0.002852,156
+0.002693,156
+0.002307,156
+0.002412,156
+0.002374,156
+0.002192,156
+0.002388,156
+0.002278,156
+0.003178,156
+0.002101,156
+0.002126,156
+0.002054,156
+0.002092,156
+0.002539,156
+0.002303,158
+0.002466,158
+0.002339,158
+0.002641,158
+0.002272,158
+0.002744,158
+0.003238,158
+0.002335,158
+0.002136,158
+0.002323,158
+0.002201,158
+0.002193,158
+0.002135,158
+0.002461,158
+0.002361,158
+0.002260,158
+0.003240,158
+0.002305,158
+0.002172,158
+0.002209,158
+0.002263,158
+0.002313,158
+0.002137,158
+0.002317,158
+0.002133,158
+0.002175,158
+0.002191,158
+0.002377,158
+0.002175,158
+0.002267,158
+0.002179,158
+0.002133,158
+0.002176,158
+0.002133,158
+0.002209,158
+0.002266,158
+0.002210,158
+0.002161,158
+0.002142,158
+0.002178,158
+0.002133,158
+0.002160,158
+0.002271,158
+0.002217,158
+0.002173,158
+0.002162,158
+0.002133,158
+0.002167,158
+0.002149,158
+0.002142,158
+0.002248,158
+0.002133,158
+0.002205,158
+0.002133,158
+0.002195,158
+0.002154,158
+0.002170,158
+0.002215,158
+0.002360,158
+0.002375,158
+0.002395,158
+0.002297,158
+0.002173,158
+0.002307,158
+0.002133,158
+0.002237,158
+0.002158,158
+0.002175,158
+0.002201,158
+0.002134,158
+0.002160,158
+0.002134,158
+0.002178,158
+0.002211,158
+0.002206,158
+0.002133,158
+0.002575,158
+0.002161,158
+0.002392,158
+0.002265,158
+0.002695,158
+0.002399,158
+0.002348,158
+0.002369,158
+0.002395,158
+0.002360,158
+0.002311,158
+0.002464,158
+0.002301,158
+0.002392,158
+0.002272,158
+0.002316,158
+0.002278,158
+0.002309,158
+0.002581,158
+0.002331,158
+0.002421,158
+0.002307,158
+0.002320,158
+0.002327,158
+0.002463,160
+0.002505,160
+0.002359,160
+0.002524,160
+0.002461,160
+0.002479,160
+0.002418,160
+0.002422,160
+0.002452,160
+0.002601,160
+0.002474,160
+0.002475,160
+0.002478,160
+0.002396,160
+0.002523,160
+0.002472,160
+0.002613,160
+0.002480,160
+0.002518,160
+0.002428,160
+0.002499,160
+0.002458,160
+0.002499,160
+0.002613,160
+0.002459,160
+0.002426,160
+0.002437,160
+0.002506,160
+0.002578,160
+0.002446,160
+0.002623,160
+0.002540,160
+0.002366,160
+0.002348,160
+0.002400,160
+0.002920,160
+0.004547,160
+0.004423,160
+0.003569,160
+0.003106,160
+0.003154,160
+0.003011,160
+0.003072,160
+0.002556,160
+0.002439,160
+0.002655,160
+0.002619,160
+0.002688,160
+0.002485,160
+0.002435,160
+0.002441,160
+0.002513,160
+0.002632,160
+0.002688,160
+0.003292,160
+0.002384,160
+0.002356,160
+0.002372,160
+0.002708,160
+0.002480,160
+0.002963,160
+0.002525,160
+0.002414,160
+0.002482,160
+0.002506,160
+0.003104,160
+0.002652,160
+0.002795,160
+0.002947,160
+0.002402,160
+0.003490,160
+0.004557,160
+0.004375,160
+0.002576,160
+0.002360,160
+0.002570,160
+0.002459,160
+0.002533,160
+0.002415,160
+0.002338,160
+0.002298,160
+0.002332,160
+0.002609,160
+0.002467,160
+0.002602,160
+0.002552,160
+0.002393,160
+0.002369,160
+0.002540,160
+0.002677,160
+0.002618,160
+0.002612,160
+0.002328,160
+0.002444,160
+0.002353,160
+0.002467,160
+0.002377,160
+0.002676,160
+0.002682,160
+0.002423,160
+0.002458,162
+0.002465,162
+0.002565,162
+0.002438,162
+0.002644,162
+0.002481,162
+0.002587,162
+0.002390,162
+0.002430,162
+0.002528,162
+0.002642,162
+0.002521,162
+0.002361,162
+0.002344,162
+0.002378,162
+0.002534,162
+0.002318,162
+0.003067,162
+0.002505,162
+0.002380,162
+0.002328,162
+0.002320,162
+0.002513,162
+0.002474,162
+0.002453,162
+0.002954,162
+0.002338,162
+0.002295,162
+0.002423,162
+0.002627,162
+0.002587,162
+0.002435,162
+0.002342,162
+0.002335,162
+0.002330,162
+0.002354,162
+0.002589,162
+0.002554,162
+0.002455,162
+0.002357,162
+0.002449,162
+0.002420,162
+0.002573,162
+0.002431,162
+0.002588,162
+0.002398,162
+0.002329,162
+0.002333,162
+0.002294,162
+0.002598,162
+0.002323,162
+0.002690,162
+0.002464,162
+0.002294,162
+0.002771,162
+0.002616,162
+0.002931,162
+0.003634,162
+0.002846,162
+0.002458,162
+0.002573,162
+0.002642,162
+0.002514,162
+0.003737,162
+0.003512,162
+0.003035,162
+0.003066,162
+0.002736,162
+0.002737,162
+0.002603,162
+0.002509,162
+0.002611,162
+0.002552,162
+0.002661,162
+0.002711,162
+0.002889,162
+0.003110,162
+0.002515,162
+0.002469,162
+0.002588,162
+0.002489,162
+0.002732,162
+0.002544,162
+0.002478,162
+0.002470,162
+0.002426,162
+0.002709,162
+0.002556,162
+0.003016,162
+0.002833,162
+0.002612,162
+0.002586,162
+0.003024,162
+0.003874,162
+0.003492,162
+0.002413,162
+0.002456,162
+0.002437,162
+0.002531,162
+0.002685,162
+0.002841,164
+0.002593,164
+0.002665,164
+0.002604,164
+0.002649,164
+0.002738,164
+0.003488,164
+0.002777,164
+0.002709,164
+0.002529,164
+0.002603,164
+0.002617,164
+0.003292,164
+0.002670,164
+0.002666,164
+0.002505,164
+0.002738,164
+0.002864,164
+0.003250,164
+0.002514,164
+0.002488,164
+0.002493,164
+0.002708,164
+0.002615,164
+0.002986,164
+0.002846,164
+0.002503,164
+0.002438,164
+0.002594,164
+0.002479,164
+0.002857,164
+0.002583,164
+0.002393,164
+0.002433,164
+0.002428,164
+0.002610,164
+0.002759,164
+0.002656,164
+0.002452,164
+0.002440,164
+0.002392,164
+0.002609,164
+0.002540,164
+0.002820,164
+0.002591,164
+0.002432,164
+0.002392,164
+0.002440,164
+0.002621,164
+0.002605,164
+0.002709,164
+0.002562,164
+0.002392,164
+0.002479,164
+0.002531,164
+0.002717,164
+0.002825,164
+0.002509,164
+0.002443,164
+0.002438,164
+0.002413,164
+0.002588,164
+0.002580,164
+0.002837,164
+0.002538,164
+0.002570,164
+0.002403,164
+0.002497,164
+0.002969,164
+0.004485,164
+0.003401,164
+0.002712,164
+0.002849,164
+0.002621,164
+0.003173,164
+0.002910,164
+0.002450,164
+0.002395,164
+0.002477,164
+0.002771,164
+0.002645,164
+0.003699,164
+0.003640,164
+0.002623,164
+0.002579,164
+0.002465,164
+0.002700,164
+0.003043,164
+0.002441,164
+0.002434,164
+0.002557,164
+0.002601,164
+0.002718,164
+0.002494,164
+0.002504,164
+0.002392,164
+0.002434,164
+0.002742,164
+0.002516,164
+0.002553,164
+0.002738,166
+0.002476,166
+0.002514,166
+0.002703,166
+0.002657,166
+0.002698,166
+0.003604,166
+0.002634,166
+0.002706,166
+0.002551,166
+0.002656,166
+0.002929,166
+0.002677,166
+0.002507,166
+0.002471,166
+0.002623,166
+0.002824,166
+0.002874,166
+0.002632,166
+0.002579,166
+0.002471,166
+0.002507,166
+0.002705,166
+0.002622,166
+0.002675,166
+0.002678,166
+0.002513,166
+0.002505,166
+0.002617,166
+0.002702,166
+0.002998,166
+0.002612,166
+0.002503,166
+0.002504,166
+0.002470,166
+0.002719,166
+0.002926,166
+0.002678,166
+0.002527,166
+0.002514,166
+0.002471,166
+0.002740,166
+0.002619,166
+0.002670,166
+0.002584,166
+0.002524,166
+0.002471,166
+0.002555,166
+0.002610,166
+0.002841,166
+0.002664,166
+0.002538,166
+0.002503,166
+0.002506,166
+0.002670,166
+0.002847,166
+0.002579,166
+0.002567,166
+0.002508,166
+0.002510,166
+0.002541,166
+0.002613,166
+0.002932,166
+0.002606,166
+0.002507,166
+0.002521,166
+0.002587,166
+0.002757,166
+0.002953,166
+0.002857,166
+0.002527,166
+0.002512,166
+0.002471,166
+0.002696,166
+0.002884,166
+0.002576,166
+0.002886,166
+0.002597,166
+0.002490,166
+0.002935,166
+0.003359,166
+0.003268,166
+0.002690,166
+0.002614,166
+0.002847,166
+0.002813,166
+0.002894,166
+0.002733,166
+0.002573,166
+0.002665,166
+0.002583,166
+0.002776,166
+0.002903,166
+0.002703,166
+0.002711,166
+0.002610,166
+0.002714,166
+0.002732,166
+0.002941,166
+0.002962,166
+0.002736,168
+0.002825,168
+0.002639,168
+0.002875,168
+0.002828,168
+0.002788,168
+0.002643,168
+0.002624,168
+0.002544,168
+0.002716,168
+0.002653,168
+0.002544,168
+0.002551,168
+0.002544,168
+0.002881,168
+0.002690,168
+0.002870,168
+0.002913,168
+0.002768,168
+0.002799,168
+0.002712,168
+0.002900,168
+0.002896,168
+0.002720,168
+0.002800,168
+0.002811,168
+0.002858,168
+0.002821,168
+0.002969,168
+0.002816,168
+0.002808,168
+0.002847,168
+0.002900,168
+0.002948,168
+0.002776,168
+0.002771,168
+0.003002,168
+0.003304,168
+0.002708,168
+0.002777,168
+0.002802,168
+0.002781,168
+0.002704,168
+0.002751,168
+0.002722,168
+0.003114,168
+0.002848,168
+0.002933,168
+0.002750,168
+0.002655,168
+0.002786,168
+0.002758,168
+0.002819,168
+0.002703,168
+0.002546,168
+0.002857,168
+0.002661,168
+0.003118,168
+0.002598,168
+0.002592,168
+0.002546,168
+0.002840,168
+0.002623,168
+0.002816,168
+0.002566,168
+0.002572,168
+0.002546,168
+0.002573,168
+0.002557,168
+0.002585,168
+0.002585,168
+0.002764,168
+0.002634,168
+0.002619,168
+0.002578,168
+0.002627,168
+0.002832,168
+0.002795,168
+0.002843,168
+0.002642,168
+0.002729,168
+0.002546,168
+0.002848,168
+0.002600,168
+0.002840,168
+0.002853,168
+0.002670,168
+0.002753,168
+0.003022,168
+0.002839,168
+0.002700,168
+0.002935,168
+0.002957,168
+0.002801,168
+0.002843,168
+0.002698,168
+0.002752,168
+0.002640,168
+0.002613,168
+0.002647,168
+0.003061,170
+0.002651,170
+0.002658,170
+0.002652,170
+0.002647,170
+0.002654,170
+0.002785,170
+0.002689,170
+0.002653,170
+0.002655,170
+0.002646,170
+0.002654,170
+0.002727,170
+0.002850,170
+0.002827,170
+0.002848,170
+0.002685,170
+0.002646,170
+0.002706,170
+0.002687,170
+0.002646,170
+0.002678,170
+0.002681,170
+0.002695,170
+0.002732,170
+0.002667,170
+0.002646,170
+0.002651,170
+0.002661,170
+0.002646,170
+0.002715,170
+0.002683,170
+0.002646,170
+0.002788,170
+0.002699,170
+0.002647,170
+0.002671,170
+0.002750,170
+0.002646,170
+0.002657,170
+0.003080,170
+0.002791,170
+0.002717,170
+0.003166,170
+0.002987,170
+0.002883,170
+0.002937,170
+0.002889,170
+0.002878,170
+0.002980,170
+0.003034,170
+0.003052,170
+0.002931,170
+0.002900,170
+0.003430,170
+0.004351,170
+0.003347,170
+0.002914,170
+0.002895,170
+0.002961,170
+0.003166,170
+0.002951,170
+0.002805,170
+0.002811,170
+0.002858,170
+0.002897,170
+0.003924,170
+0.003026,170
+0.003066,170
+0.003075,170
+0.003396,170
+0.002965,170
+0.002926,170
+0.002870,170
+0.002842,170
+0.002817,170
+0.002862,170
+0.002790,170
+0.002856,170
+0.002864,170
+0.002897,170
+0.002913,170
+0.002899,170
+0.002927,170
+0.002776,170
+0.002737,170
+0.002863,170
+0.003196,170
+0.003169,170
+0.003174,170
+0.002972,170
+0.002853,170
+0.002820,170
+0.002859,170
+0.003361,170
+0.003052,170
+0.002939,170
+0.002847,170
+0.002919,170
+0.003103,170
+0.003902,172
+0.003090,172
+0.003185,172
+0.003100,172
+0.003481,172
+0.003511,172
+0.002919,172
+0.002885,172
+0.002846,172
+0.002990,172
+0.003973,172
+0.003140,172
+0.003148,172
+0.003481,172
+0.004020,172
+0.003712,172
+0.003309,172
+0.004044,172
+0.003654,172
+0.003374,172
+0.003559,172
+0.003092,172
+0.003741,172
+0.003325,172
+0.003688,172
+0.003125,172
+0.002883,172
+0.002962,172
+0.003089,172
+0.003673,172
+0.003146,172
+0.002918,172
+0.002874,172
+0.003277,172
+0.003582,172
+0.003203,172
+0.002840,172
+0.002826,172
+0.002969,172
+0.002873,172
+0.003742,172
+0.002978,172
+0.002747,172
+0.002790,172
+0.002956,172
+0.003446,172
+0.003046,172
+0.003076,172
+0.002815,172
+0.002822,172
+0.003267,172
+0.003442,172
+0.003169,172
+0.002880,172
+0.003011,172
+0.002947,172
+0.003491,172
+0.003078,172
+0.003057,172
+0.002833,172
+0.002914,172
+0.003242,172
+0.003967,172
+0.003268,172
+0.003196,172
+0.003737,172
+0.003576,172
+0.003445,172
+0.003383,172
+0.003298,172
+0.003517,172
+0.003472,172
+0.003764,172
+0.003244,172
+0.003295,172
+0.003393,172
+0.004356,172
+0.002991,172
+0.003097,172
+0.002999,172
+0.003230,172
+0.003457,172
+0.003304,172
+0.003088,172
+0.003121,172
+0.003199,172
+0.003288,172
+0.003158,172
+0.003051,172
+0.003034,172
+0.003097,172
+0.003490,172
+0.003527,172
+0.003157,172
+0.003086,172
+0.003062,172
+0.003758,172
+0.003198,172
+0.003024,172
+0.003026,172
+0.003241,174
+0.003326,174
+0.003523,174
+0.003166,174
+0.003049,174
+0.002951,174
+0.003015,174
+0.003492,174
+0.003125,174
+0.003071,174
+0.002934,174
+0.003152,174
+0.003262,174
+0.003171,174
+0.002934,174
+0.002902,174
+0.002950,174
+0.003223,174
+0.003100,174
+0.003020,174
+0.002920,174
+0.002898,174
+0.003007,174
+0.003383,174
+0.003026,174
+0.002891,174
+0.002854,174
+0.002931,174
+0.003208,174
+0.003114,174
+0.003021,174
+0.002915,174
+0.002917,174
+0.003070,174
+0.003445,174
+0.003060,174
+0.002881,174
+0.002894,174
+0.002915,174
+0.003362,174
+0.003250,174
+0.003025,174
+0.003080,174
+0.002871,174
+0.003250,174
+0.003490,174
+0.003080,174
+0.002888,174
+0.002854,174
+0.003048,174
+0.003322,174
+0.003161,174
+0.002920,174
+0.002912,174
+0.002892,174
+0.003085,174
+0.003400,174
+0.003015,174
+0.002890,174
+0.002886,174
+0.003020,174
+0.003468,174
+0.003093,174
+0.002877,174
+0.002899,174
+0.002854,174
+0.003218,174
+0.002946,174
+0.003106,174
+0.002854,174
+0.002877,174
+0.002981,174
+0.003005,174
+0.003079,174
+0.003046,174
+0.003034,174
+0.002933,174
+0.003010,174
+0.003004,174
+0.002890,174
+0.002854,174
+0.002896,174
+0.002927,174
+0.003026,174
+0.002854,174
+0.002879,174
+0.002907,174
+0.002924,174
+0.002894,174
+0.002987,174
+0.002896,174
+0.002855,174
+0.002856,174
+0.002856,174
+0.002995,174
+0.002946,174
+0.004948,174
+0.002848,174
+0.002884,174
+0.002914,174
+0.003203,176
+0.003099,176
+0.002981,176
+0.003032,176
+0.002989,176
+0.003070,176
+0.003019,176
+0.003216,176
+0.003142,176
+0.002963,176
+0.003031,176
+0.003067,176
+0.002967,176
+0.002943,176
+0.002967,176
+0.002990,176
+0.003060,176
+0.002943,176
+0.002949,176
+0.002953,176
+0.002950,176
+0.002994,176
+0.003031,176
+0.002969,176
+0.002945,176
+0.002943,176
+0.002947,176
+0.003173,176
+0.002968,176
+0.002944,176
+0.002946,176
+0.002950,176
+0.002985,176
+0.003058,176
+0.002969,176
+0.002945,176
+0.002946,176
+0.002943,176
+0.002997,176
+0.003061,176
+0.003302,176
+0.003073,176
+0.003229,176
+0.003052,176
+0.003085,176
+0.002981,176
+0.002943,176
+0.002989,176
+0.002990,176
+0.003089,176
+0.002975,176
+0.002985,176
+0.002972,176
+0.002969,176
+0.002983,176
+0.003100,176
+0.002970,176
+0.002974,176
+0.002973,176
+0.002974,176
+0.003029,176
+0.003057,176
+0.002944,176
+0.002946,176
+0.002946,176
+0.002983,176
+0.003064,176
+0.002967,176
+0.002949,176
+0.002943,176
+0.002946,176
+0.003116,176
+0.003328,176
+0.003176,176
+0.003190,176
+0.003030,176
+0.003068,176
+0.003127,176
+0.002944,176
+0.002978,176
+0.002968,176
+0.002979,176
+0.002988,176
+0.003028,176
+0.002983,176
+0.002976,176
+0.002943,176
+0.003021,176
+0.003105,176
+0.002970,176
+0.003105,176
+0.002968,176
+0.002970,176
+0.003030,176
+0.003230,176
+0.002944,176
+0.002966,176
+0.002977,176
+0.002982,176
+0.003142,176
+0.003227,178
+0.003164,178
+0.003159,178
+0.003164,178
+0.003305,178
+0.003147,178
+0.003396,178
+0.003352,178
+0.003144,178
+0.003265,178
+0.003232,178
+0.003124,178
+0.003167,178
+0.003149,178
+0.003172,178
+0.003259,178
+0.003167,178
+0.003154,178
+0.003137,178
+0.003170,178
+0.003277,178
+0.003146,178
+0.003123,178
+0.003121,178
+0.003156,178
+0.003296,178
+0.003127,178
+0.003123,178
+0.003121,178
+0.003126,178
+0.003172,178
+0.003277,178
+0.003134,178
+0.003121,178
+0.003148,178
+0.003178,178
+0.003252,178
+0.003293,178
+0.003244,178
+0.003292,178
+0.003203,178
+0.003303,178
+0.003163,178
+0.003120,178
+0.003144,178
+0.003205,178
+0.003268,178
+0.003182,178
+0.003121,178
+0.003144,178
+0.003146,178
+0.003319,178
+0.003147,178
+0.003180,178
+0.003282,178
+0.003147,178
+0.003277,178
+0.003407,178
+0.003121,178
+0.003155,178
+0.003144,178
+0.003228,178
+0.003333,178
+0.003121,178
+0.003161,178
+0.003155,178
+0.003195,178
+0.003336,178
+0.003121,178
+0.003438,178
+0.003315,178
+0.003203,178
+0.003288,178
+0.003128,178
+0.003120,178
+0.003143,178
+0.003150,178
+0.003320,178
+0.003161,178
+0.003120,178
+0.003125,178
+0.003127,178
+0.003172,178
+0.003242,178
+0.003126,178
+0.003123,178
+0.003132,178
+0.003182,178
+0.003343,178
+0.003130,178
+0.003122,178
+0.003124,178
+0.003168,178
+0.003281,178
+0.003143,178
+0.003134,178
+0.003125,178
+0.003134,178
+0.003321,178
+0.003504,178
+0.003532,180
+0.003527,180
+0.003495,180
+0.004005,180
+0.003884,180
+0.003513,180
+0.003805,180
+0.004142,180
+0.003700,180
+0.003624,180
+0.003559,180
+0.003563,180
+0.004337,180
+0.003487,180
+0.003685,180
+0.003598,180
+0.003867,180
+0.003445,180
+0.003491,180
+0.003522,180
+0.003481,180
+0.003945,180
+0.003953,180
+0.004146,180
+0.004174,180
+0.004212,180
+0.004009,180
+0.003485,180
+0.003538,180
+0.003646,180
+0.003549,180
+0.003461,180
+0.003395,180
+0.003463,180
+0.003542,180
+0.003426,180
+0.003518,180
+0.003413,180
+0.003602,180
+0.003509,180
+0.003408,180
+0.003412,180
+0.003377,180
+0.003336,180
+0.003671,180
+0.003293,180
+0.003453,180
+0.003358,180
+0.003344,180
+0.003603,180
+0.003481,180
+0.003429,180
+0.003489,180
+0.003376,180
+0.003597,180
+0.003199,180
+0.006071,180
+0.004131,180
+0.003369,180
+0.003196,180
+0.003210,180
+0.003194,180
+0.003199,180
+0.003336,180
+0.003196,180
+0.003194,180
+0.003187,180
+0.003171,180
+0.003301,180
+0.003201,180
+0.003163,180
+0.003162,180
+0.003171,180
+0.003267,180
+0.003166,180
+0.003167,180
+0.003166,180
+0.003159,180
+0.003270,180
+0.003200,180
+0.003164,180
+0.003162,180
+0.003159,180
+0.003192,180
+0.003267,180
+0.003193,180
+0.005630,180
+0.004376,180
+0.003275,180
+0.003530,180
+0.003186,180
+0.003178,180
+0.003557,180
+0.003336,180
+0.003194,180
+0.003186,180
+0.003168,180
+0.003224,180
+0.003370,180
+0.003219,180
+0.003419,182
+0.003360,182
+0.003445,182
+0.003421,182
+0.003299,182
+0.003305,182
+0.003301,182
+0.003343,182
+0.003424,182
+0.003325,182
+0.003298,182
+0.003322,182
+0.003373,182
+0.003489,182
+0.003304,182
+0.005269,182
+0.005044,182
+0.003425,182
+0.003322,182
+0.003903,182
+0.003365,182
+0.003537,182
+0.003340,182
+0.003298,182
+0.003336,182
+0.003341,182
+0.003955,182
+0.003324,182
+0.003321,182
+0.003531,182
+0.003343,182
+0.003573,182
+0.003330,182
+0.003325,182
+0.003301,182
+0.003342,182
+0.003532,182
+0.003298,182
+0.003303,182
+0.003549,182
+0.003413,182
+0.003438,182
+0.003696,182
+0.003524,182
+0.003702,182
+0.003760,182
+0.003347,182
+0.003355,182
+0.003342,182
+0.003384,182
+0.003610,182
+0.003367,182
+0.003298,182
+0.003330,182
+0.003324,182
+0.003480,182
+0.003303,182
+0.003301,182
+0.003298,182
+0.003307,182
+0.003458,182
+0.003303,182
+0.003301,182
+0.003303,182
+0.003298,182
+0.003439,182
+0.003310,182
+0.003300,182
+0.003303,182
+0.003300,182
+0.003435,182
+0.003303,182
+0.003391,182
+0.003518,182
+0.003521,182
+0.003498,182
+0.003325,182
+0.003298,182
+0.003301,182
+0.003323,182
+0.003512,182
+0.003333,182
+0.003322,182
+0.003591,182
+0.003476,182
+0.004173,182
+0.003645,182
+0.003635,182
+0.003644,182
+0.003882,182
+0.003617,182
+0.003687,182
+0.003340,182
+0.003958,182
+0.003804,182
+0.003327,182
+0.003628,182
+0.003332,182
+0.003860,182
+0.003440,182
+0.003478,184
+0.003872,184
+0.003574,184
+0.003834,184
+0.003615,184
+0.003471,184
+0.003375,184
+0.003846,184
+0.003612,184
+0.003411,184
+0.003410,184
+0.003546,184
+0.003638,184
+0.003450,184
+0.003373,184
+0.003526,184
+0.003471,184
+0.003868,184
+0.003409,184
+0.003431,184
+0.003712,184
+0.003757,184
+0.003919,184
+0.003743,184
+0.003877,184
+0.004446,184
+0.003781,184
+0.003494,184
+0.003574,184
+0.003515,184
+0.003843,184
+0.003487,184
+0.003726,184
+0.003475,184
+0.003640,184
+0.003964,184
+0.003477,184
+0.003568,184
+0.003411,184
+0.003638,184
+0.003699,184
+0.003571,184
+0.003672,184
+0.003516,184
+0.004054,184
+0.003407,184
+0.003674,184
+0.003867,184
+0.003679,184
+0.003599,184
+0.003693,184
+0.003736,184
+0.003553,184
+0.003677,184
+0.003643,184
+0.003409,184
+0.003831,184
+0.003547,184
+0.003797,184
+0.003437,184
+0.003663,184
+0.003375,184
+0.003873,184
+0.003873,184
+0.003577,184
+0.003461,184
+0.003798,184
+0.003677,184
+0.003596,184
+0.003566,184
+0.003559,184
+0.003469,184
+0.003993,184
+0.003479,184
+0.003687,184
+0.003701,184
+0.003874,184
+0.003523,184
+0.003456,184
+0.003757,184
+0.003408,184
+0.003917,184
+0.003623,184
+0.003624,184
+0.003523,184
+0.003855,184
+0.003613,184
+0.003494,184
+0.003663,184
+0.003490,184
+0.003807,184
+0.003417,184
+0.003416,184
+0.003683,184
+0.003648,184
+0.003582,184
+0.003410,184
+0.003647,184
+0.003441,184
+0.003741,184
+0.003845,186
+0.003610,186
+0.003840,186
+0.003755,186
+0.003996,186
+0.003626,186
+0.003662,186
+0.003616,186
+0.003837,186
+0.003807,186
+0.003575,186
+0.003698,186
+0.003855,186
+0.004090,186
+0.003746,186
+0.003654,186
+0.003662,186
+0.003753,186
+0.003679,186
+0.003729,186
+0.003555,186
+0.004084,186
+0.003842,186
+0.004042,186
+0.003867,186
+0.003646,186
+0.004074,186
+0.003782,186
+0.003805,186
+0.003689,186
+0.004057,186
+0.003623,186
+0.003747,186
+0.003948,186
+0.003816,186
+0.003689,186
+0.003701,186
+0.004021,186
+0.003745,186
+0.004078,186
+0.003749,186
+0.003831,186
+0.003884,186
+0.003938,186
+0.003788,186
+0.003805,186
+0.003843,186
+0.003815,186
+0.004775,186
+0.003963,186
+0.003874,186
+0.003864,186
+0.003969,186
+0.003972,186
+0.003923,186
+0.003896,186
+0.003969,186
+0.003879,186
+0.003893,186
+0.003916,186
+0.004147,186
+0.003865,186
+0.004189,186
+0.004018,186
+0.003830,186
+0.004140,186
+0.003803,186
+0.003855,186
+0.003847,186
+0.003834,186
+0.003831,186
+0.003836,186
+0.003793,186
+0.003835,186
+0.003768,186
+0.003816,186
+0.003799,186
+0.003921,186
+0.003870,186
+0.004070,186
+0.003696,186
+0.003704,186
+0.003752,186
+0.003701,186
+0.003696,186
+0.003698,186
+0.003802,186
+0.003829,186
+0.003843,186
+0.003912,186
+0.003834,186
+0.003880,186
+0.003977,186
+0.003990,186
+0.003975,186
+0.004196,186
+0.003918,186
+0.003972,186
+0.003786,186
+0.003989,186
+0.004024,188
+0.003897,188
+0.004031,188
+0.004214,188
+0.004064,188
+0.004241,188
+0.004052,188
+0.004212,188
+0.003884,188
+0.003797,188
+0.003846,188
+0.004174,188
+0.003773,188
+0.003844,188
+0.003915,188
+0.003933,188
+0.003868,188
+0.004128,188
+0.003906,188
+0.003799,188
+0.004139,188
+0.003761,188
+0.003768,188
+0.003649,188
+0.004111,188
+0.003630,188
+0.003623,188
+0.003623,188
+0.004186,188
+0.003697,188
+0.003625,188
+0.003631,188
+0.003623,188
+0.003940,188
+0.003590,188
+0.003624,188
+0.003612,188
+0.004065,188
+0.003658,188
+0.003619,188
+0.004117,188
+0.003771,188
+0.003812,188
+0.004109,188
+0.004308,188
+0.004025,188
+0.004218,188
+0.004310,188
+0.004067,188
+0.004055,188
+0.004184,188
+0.003942,188
+0.003944,188
+0.003933,188
+0.004197,188
+0.003830,188
+0.003792,188
+0.003786,188
+0.003824,188
+0.003799,188
+0.004284,188
+0.004693,188
+0.004667,188
+0.004699,188
+0.004437,188
+0.004234,188
+0.004512,188
+0.004764,188
+0.003925,188
+0.003896,188
+0.003828,188
+0.003627,188
+0.003622,188
+0.004032,188
+0.003930,188
+0.003808,188
+0.003687,188
+0.003625,188
+0.004004,188
+0.004522,188
+0.003834,188
+0.003986,188
+0.003676,188
+0.004082,188
+0.003910,188
+0.003707,188
+0.004000,188
+0.003937,188
+0.003630,188
+0.003981,188
+0.004197,188
+0.004261,188
+0.004293,188
+0.003882,188
+0.003632,188
+0.003609,188
+0.003895,188
+0.003628,188
+0.003638,188
+0.003625,188
+0.004031,190
+0.003732,190
+0.003713,190
+0.004069,190
+0.003967,190
+0.003814,190
+0.003748,190
+0.003742,190
+0.003794,190
+0.003921,190
+0.003743,190
+0.003948,190
+0.003822,190
+0.003917,190
+0.004039,190
+0.003837,190
+0.003886,190
+0.004334,190
+0.004670,190
+0.003918,190
+0.003767,190
+0.003926,190
+0.004045,190
+0.003812,190
+0.003883,190
+0.004148,190
+0.003789,190
+0.003733,190
+0.003982,190
+0.003831,190
+0.004218,190
+0.003887,190
+0.004065,190
+0.003829,190
+0.004073,190
+0.003854,190
+0.003864,190
+0.004040,190
+0.003908,190
+0.003708,190
+0.003750,190
+0.003847,190
+0.003919,190
+0.004953,190
+0.003872,190
+0.003915,190
+0.003805,190
+0.003935,190
+0.003760,190
+0.003736,190
+0.003736,190
+0.003952,190
+0.003751,190
+0.003966,190
+0.003744,190
+0.004105,190
+0.004057,190
+0.003848,190
+0.004103,190
+0.004007,190
+0.003991,190
+0.003958,190
+0.003858,190
+0.003898,190
+0.004309,190
+0.003779,190
+0.004400,190
+0.003842,190
+0.004690,190
+0.004212,190
+0.003952,190
+0.003825,190
+0.004132,190
+0.003949,190
+0.003970,190
+0.003901,190
+0.004336,190
+0.004022,190
+0.004203,190
+0.004286,190
+0.004137,190
+0.003975,190
+0.004159,190
+0.004018,190
+0.004249,190
+0.003971,190
+0.004063,190
+0.004069,190
+0.004161,190
+0.004036,190
+0.004065,190
+0.004090,190
+0.004051,190
+0.005002,190
+0.004184,190
+0.004001,190
+0.004155,190
+0.004062,190
+0.004114,190
+0.003998,190
+0.004504,192
+0.004226,192
+0.004231,192
+0.004154,192
+0.004391,192
+0.004256,192
+0.004164,192
+0.004621,192
+0.004542,192
+0.004177,192
+0.004269,192
+0.004290,192
+0.004861,192
+0.004628,192
+0.004849,192
+0.004740,192
+0.005128,192
+0.004511,192
+0.004285,192
+0.004344,192
+0.004368,192
+0.004324,192
+0.004270,192
+0.004247,192
+0.004214,192
+0.004177,192
+0.004196,192
+0.004271,192
+0.004291,192
+0.004231,192
+0.004307,192
+0.004301,192
+0.004323,192
+0.004325,192
+0.004395,192
+0.004233,192
+0.004210,192
+0.004187,192
+0.004353,192
+0.004866,192
+0.004385,192
+0.004047,192
+0.004525,192
+0.003945,192
+0.004156,192
+0.004179,192
+0.004386,192
+0.003930,192
+0.004117,192
+0.004327,192
+0.004368,192
+0.004014,192
+0.003910,192
+0.003904,192
+0.004190,192
+0.003906,192
+0.003925,192
+0.004126,192
+0.004216,192
+0.003886,192
+0.004132,192
+0.003998,192
+0.004251,192
+0.004098,192
+0.004112,192
+0.004504,192
+0.004272,192
+0.003909,192
+0.004141,192
+0.003941,192
+0.004337,192
+0.003940,192
+0.004117,192
+0.003910,192
+0.004424,192
+0.003919,192
+0.003898,192
+0.003902,192
+0.004022,192
+0.004072,192
+0.004431,192
+0.003967,192
+0.003941,192
+0.004591,192
+0.003937,192
+0.003917,192
+0.004209,192
+0.004130,192
+0.004293,192
+0.004051,192
+0.003910,192
+0.004307,192
+0.004201,192
+0.004005,192
+0.003908,192
+0.004203,192
+0.003900,192
+0.003901,192
+0.003943,192
+0.004501,192
+0.004094,194
+0.003974,194
+0.003975,194
+0.004121,194
+0.003976,194
+0.003980,194
+0.004015,194
+0.004034,194
+0.003976,194
+0.003973,194
+0.004004,194
+0.004086,194
+0.004075,194
+0.004420,194
+0.004343,194
+0.004312,194
+0.004001,194
+0.004387,194
+0.004344,194
+0.004544,194
+0.004207,194
+0.004339,194
+0.004008,194
+0.004578,194
+0.004317,194
+0.004009,194
+0.004012,194
+0.004546,194
+0.004054,194
+0.004310,194
+0.004004,194
+0.004506,194
+0.004113,194
+0.004008,194
+0.004088,194
+0.004520,194
+0.004227,194
+0.004167,194
+0.004084,194
+0.004735,194
+0.004056,194
+0.004024,194
+0.004008,194
+0.004922,194
+0.004059,194
+0.004162,194
+0.004479,194
+0.004472,194
+0.004063,194
+0.004017,194
+0.004182,194
+0.004476,194
+0.004032,194
+0.004005,194
+0.004184,194
+0.004252,194
+0.004021,194
+0.004021,194
+0.004307,194
+0.004103,194
+0.004144,194
+0.004259,194
+0.004192,194
+0.004050,194
+0.003998,194
+0.004037,194
+0.004022,194
+0.004178,194
+0.003980,194
+0.003993,194
+0.003995,194
+0.004106,194
+0.004053,194
+0.003975,194
+0.003972,194
+0.004192,194
+0.003993,194
+0.004004,194
+0.003973,194
+0.004068,194
+0.003973,194
+0.003975,194
+0.003972,194
+0.004128,194
+0.003974,194
+0.004098,194
+0.004575,194
+0.004296,194
+0.004130,194
+0.004183,194
+0.004120,194
+0.004470,194
+0.004030,194
+0.004261,194
+0.004005,194
+0.004232,194
+0.004353,194
+0.004020,194
+0.004014,194
+0.004370,194
+0.004545,196
+0.004109,196
+0.004114,196
+0.004780,196
+0.004173,196
+0.004120,196
+0.004174,196
+0.004525,196
+0.004153,196
+0.004320,196
+0.004240,196
+0.004641,196
+0.004273,196
+0.004153,196
+0.004230,196
+0.005091,196
+0.004129,196
+0.004116,196
+0.004529,196
+0.004654,196
+0.004161,196
+0.004103,196
+0.004477,196
+0.004167,196
+0.004105,196
+0.004087,196
+0.004363,196
+0.004107,196
+0.004086,196
+0.004084,196
+0.004302,196
+0.004159,196
+0.004212,196
+0.004335,196
+0.004361,196
+0.004112,196
+0.004103,196
+0.004086,196
+0.004496,196
+0.004112,196
+0.004112,196
+0.004083,196
+0.004287,196
+0.004234,196
+0.004107,196
+0.004129,196
+0.004353,196
+0.004115,196
+0.004112,196
+0.004107,196
+0.004223,196
+0.004106,196
+0.004081,196
+0.004080,196
+0.004291,196
+0.004178,196
+0.004245,196
+0.004458,196
+0.004203,196
+0.004119,196
+0.004101,196
+0.004108,196
+0.004204,196
+0.004112,196
+0.004143,196
+0.004096,196
+0.004264,196
+0.004084,196
+0.004080,196
+0.004083,196
+0.004164,196
+0.004152,196
+0.004085,196
+0.004126,196
+0.004152,196
+0.004085,196
+0.004088,196
+0.004084,196
+0.004290,196
+0.004087,196
+0.004122,196
+0.004348,196
+0.004431,196
+0.004117,196
+0.004116,196
+0.004105,196
+0.004325,196
+0.004107,196
+0.004109,196
+0.004101,196
+0.004195,196
+0.004197,196
+0.004107,196
+0.004083,196
+0.004143,196
+0.004084,196
+0.004081,196
+0.004082,196
+0.004170,196
+0.004112,196
+0.004318,198
+0.004213,198
+0.004337,198
+0.004214,198
+0.004221,198
+0.004428,198
+0.004661,198
+0.004246,198
+0.004222,198
+0.004220,198
+0.004276,198
+0.004216,198
+0.004216,198
+0.004216,198
+0.004276,198
+0.004217,198
+0.004213,198
+0.004215,198
+0.004296,198
+0.004217,198
+0.004212,198
+0.004212,198
+0.004280,198
+0.004213,198
+0.004212,198
+0.004426,198
+0.004250,198
+0.004213,198
+0.004275,198
+0.004559,198
+0.004351,198
+0.004217,198
+0.004215,198
+0.004253,198
+0.004269,198
+0.004281,198
+0.004236,198
+0.004277,198
+0.004218,198
+0.004223,198
+0.004214,198
+0.004282,198
+0.004261,198
+0.004236,198
+0.004212,198
+0.004287,198
+0.004214,198
+0.004212,198
+0.004216,198
+0.004355,198
+0.004310,198
+0.004226,198
+0.004401,198
+0.004622,198
+0.004228,198
+0.004243,198
+0.004255,198
+0.004280,198
+0.004212,198
+0.004213,198
+0.004215,198
+0.004380,198
+0.004283,198
+0.004212,198
+0.004255,198
+0.004258,198
+0.004219,198
+0.004212,198
+0.004250,198
+0.004269,198
+0.004219,198
+0.004212,198
+0.004329,198
+0.004275,198
+0.004237,198
+0.004275,198
+0.004463,198
+0.004471,198
+0.004213,198
+0.004217,198
+0.004276,198
+0.004217,198
+0.004242,198
+0.004213,198
+0.004380,198
+0.004281,198
+0.004233,198
+0.004236,198
+0.004297,198
+0.004251,198
+0.004215,198
+0.004216,198
+0.004283,198
+0.004217,198
+0.004213,198
+0.004256,198
+0.004317,198
+0.004218,198
+0.004213,198
+0.004384,198
+0.004875,200
+0.004366,200
+0.004361,200
+0.004399,200
+0.004415,200
+0.004386,200
+0.004407,200
+0.004432,200
+0.004415,200
+0.004395,200
+0.004359,200
+0.004429,200
+0.004360,200
+0.004360,200
+0.004363,200
+0.004422,200
+0.004364,200
+0.004360,200
+0.004365,200
+0.004492,200
+0.004363,200
+0.004359,200
+0.004645,200
+0.004694,200
+0.004384,200
+0.004401,200
+0.004458,200
+0.004390,200
+0.004361,200
+0.004362,200
+0.004420,200
+0.004363,200
+0.004360,200
+0.004362,200
+0.004421,200
+0.004365,200
+0.004360,200
+0.004395,200
+0.004394,200
+0.004364,200
+0.004419,200
+0.004473,200
+0.004394,200
+0.004363,200
+0.004360,200
+0.004659,200
+0.004696,200
+0.004363,200
+0.004363,200
+0.004435,200
+0.004360,200
+0.004365,200
+0.004362,200
+0.004423,200
+0.004365,200
+0.004360,200
+0.004391,200
+0.004401,200
+0.004360,200
+0.004360,200
+0.004427,200
+0.004361,200
+0.004364,200
+0.004360,200
+0.004512,200
+0.004462,200
+0.004412,200
+0.004441,200
+0.004719,200
+0.004610,200
+0.004381,200
+0.004391,200
+0.004394,200
+0.004364,200
+0.004359,200
+0.004427,200
+0.004363,200
+0.004368,200
+0.004362,200
+0.004423,200
+0.004364,200
+0.004360,200
+0.004360,200
+0.004427,200
+0.004361,200
+0.004359,200
+0.004365,200
+0.004485,200
+0.004360,200
+0.004359,200
+0.004434,200
+0.004607,200
+0.004493,200
+0.004360,200
+0.004424,200
+0.004388,200
+0.004379,200
+0.004362,200
+0.004463,200
+0.004364,200
+0.004613,202
+0.004510,202
+0.004569,202
+0.004569,202
+0.004556,202
+0.004572,202
+0.004568,202
+0.004506,202
+0.004510,202
+0.004647,202
+0.004511,202
+0.004512,202
+0.004506,202
+0.004837,202
+0.004759,202
+0.004527,202
+0.004569,202
+0.004513,202
+0.004506,202
+0.004507,202
+0.004567,202
+0.004573,202
+0.004506,202
+0.004505,202
+0.004572,202
+0.004508,202
+0.004508,202
+0.004534,202
+0.004607,202
+0.004505,202
+0.004505,202
+0.004670,202
+0.004512,202
+0.004506,202
+0.004507,202
+0.004731,202
+0.004904,202
+0.004541,202
+0.004570,202
+0.004554,202
+0.004550,202
+0.004508,202
+0.004588,202
+0.004510,202
+0.004506,202
+0.004534,202
+0.004548,202
+0.004505,202
+0.004509,202
+0.004566,202
+0.004510,202
+0.004506,202
+0.004505,202
+0.004651,202
+0.004515,202
+0.004506,202
+0.004507,202
+0.004745,202
+0.004779,202
+0.004541,202
+0.005156,202
+0.004703,202
+0.004594,202
+0.004549,202
+0.004622,202
+0.004536,202
+0.004507,202
+0.004540,202
+0.004541,202
+0.004506,202
+0.004577,202
+0.004567,202
+0.004510,202
+0.004508,202
+0.004508,202
+0.004650,202
+0.004569,202
+0.004506,202
+0.004534,202
+0.004766,202
+0.004821,202
+0.004531,202
+0.004595,202
+0.004530,202
+0.004506,202
+0.004537,202
+0.004541,202
+0.004552,202
+0.004505,202
+0.004571,202
+0.004506,202
+0.004541,202
+0.004512,202
+0.004737,202
+0.004575,202
+0.005103,202
+0.004676,202
+0.004671,202
+0.004511,202
+0.004506,202
+0.005009,204
+0.004842,204
+0.004876,204
+0.004731,204
+0.004710,204
+0.004678,204
+0.004683,204
+0.004779,204
+0.004634,204
+0.004630,204
+0.004762,204
+0.004729,204
+0.004662,204
+0.004660,204
+0.004727,204
+0.004658,204
+0.004705,204
+0.004630,204
+0.004776,204
+0.004630,204
+0.004630,204
+0.004693,204
+0.004734,204
+0.004899,204
+0.004656,204
+0.004711,204
+0.004653,204
+0.004658,204
+0.004669,204
+0.004662,204
+0.004720,204
+0.004629,204
+0.004696,204
+0.004633,204
+0.004635,204
+0.004657,204
+0.004666,204
+0.004630,204
+0.004630,204
+0.004703,204
+0.004710,204
+0.004629,204
+0.004632,204
+0.004732,204
+0.004913,204
+0.004954,204
+0.004754,204
+0.004660,204
+0.004650,204
+0.004663,204
+0.004727,204
+0.004678,204
+0.004629,204
+0.004697,204
+0.004631,204
+0.004630,204
+0.004633,204
+0.004696,204
+0.004629,204
+0.004630,204
+0.004660,204
+0.004747,204
+0.004632,204
+0.004634,204
+0.004871,204
+0.004808,204
+0.004954,204
+0.004905,204
+0.004718,204
+0.004630,204
+0.004633,204
+0.004883,204
+0.004657,204
+0.004652,204
+0.004680,204
+0.004664,204
+0.004670,204
+0.004635,204
+0.004735,204
+0.004636,204
+0.004629,204
+0.004642,204
+0.004760,204
+0.004714,204
+0.004629,204
+0.004696,204
+0.004633,204
+0.004911,204
+0.004861,204
+0.004721,204
+0.004634,204
+0.004653,204
+0.004802,204
+0.004630,204
+0.004630,204
+0.004633,204
+0.004692,204
+0.004636,204
+0.004629,204
+0.004660,204
+0.004924,206
+0.004774,206
+0.004782,206
+0.004954,206
+0.004774,206
+0.004768,206
+0.004833,206
+0.004776,206
+0.005023,206
+0.005055,206
+0.004881,206
+0.004827,206
+0.004799,206
+0.004937,206
+0.004790,206
+0.004772,206
+0.004799,206
+0.004842,206
+0.004774,206
+0.004841,206
+0.004854,206
+0.004783,206
+0.004769,206
+0.004809,206
+0.004883,206
+0.004772,206
+0.004780,206
+0.004834,206
+0.004769,206
+0.005048,206
+0.005067,206
+0.004833,206
+0.004809,206
+0.004795,206
+0.004867,206
+0.004885,206
+0.004772,206
+0.004829,206
+0.004773,206
+0.004769,206
+0.004774,206
+0.004830,206
+0.004772,206
+0.004769,206
+0.004840,206
+0.004875,206
+0.004769,206
+0.004771,206
+0.004831,206
+0.004773,206
+0.005113,206
+0.007995,206
+0.008452,206
+0.008079,206
+0.004899,206
+0.004804,206
+0.004890,206
+0.004867,206
+0.004817,206
+0.004849,206
+0.004793,206
+0.004769,206
+0.004773,206
+0.004853,206
+0.004848,206
+0.004771,206
+0.004855,206
+0.004816,206
+0.004872,206
+0.005138,206
+0.004869,206
+0.004817,206
+0.004909,206
+0.004867,206
+0.004769,206
+0.004772,206
+0.004822,206
+0.004817,206
+0.004771,206
+0.004769,206
+0.004853,206
+0.004775,206
+0.004769,206
+0.004810,206
+0.004889,206
+0.004830,206
+0.004773,206
+0.004847,206
+0.004771,206
+0.004953,206
+0.005091,206
+0.004828,206
+0.004772,206
+0.004789,206
+0.004878,206
+0.004794,206
+0.004769,206
+0.004853,206
+0.004769,206
+0.004771,206
+0.005036,208
+0.005039,208
+0.004925,208
+0.004919,208
+0.005021,208
+0.005021,208
+0.004919,208
+0.004978,208
+0.004968,208
+0.004918,208
+0.005219,208
+0.005136,208
+0.004977,208
+0.005095,208
+0.005023,208
+0.004945,208
+0.004943,208
+0.005017,208
+0.004997,208
+0.004923,208
+0.004930,208
+0.005022,208
+0.004922,208
+0.004961,208
+0.004998,208
+0.004979,208
+0.004918,208
+0.004960,208
+0.004986,208
+0.004919,208
+0.005191,208
+0.005119,208
+0.004947,208
+0.004944,208
+0.004981,208
+0.004919,208
+0.005006,208
+0.004949,208
+0.004951,208
+0.004922,208
+0.004920,208
+0.004983,208
+0.004919,208
+0.004918,208
+0.004981,208
+0.005008,208
+0.004927,208
+0.004949,208
+0.004953,208
+0.004924,208
+0.005130,208
+0.005277,208
+0.004958,208
+0.004919,208
+0.005014,208
+0.004946,208
+0.004918,208
+0.004952,208
+0.004955,208
+0.004919,208
+0.004920,208
+0.004986,208
+0.004918,208
+0.004918,208
+0.004971,208
+0.004995,208
+0.004938,208
+0.005102,208
+0.005016,208
+0.004951,208
+0.005049,208
+0.005315,208
+0.004940,208
+0.004971,208
+0.005001,208
+0.004947,208
+0.004945,208
+0.004969,208
+0.005006,208
+0.004923,208
+0.004919,208
+0.004984,208
+0.004922,208
+0.004919,208
+0.004948,208
+0.005040,208
+0.005027,208
+0.004921,208
+0.004980,208
+0.004925,208
+0.004918,208
+0.005315,208
+0.005033,208
+0.004925,208
+0.004946,208
+0.004956,208
+0.004919,208
+0.004922,208
+0.004980,208
+0.004922,208
+0.005214,210
+0.005162,210
+0.005099,210
+0.005105,210
+0.005186,210
+0.005162,210
+0.005276,210
+0.005236,210
+0.005176,210
+0.005095,210
+0.005244,210
+0.005476,210
+0.005100,210
+0.005196,210
+0.005180,210
+0.005102,210
+0.005095,210
+0.005179,210
+0.005141,210
+0.005170,210
+0.005148,210
+0.005152,210
+0.005102,210
+0.005099,210
+0.005162,210
+0.005164,210
+0.005137,210
+0.005179,210
+0.005100,210
+0.005098,210
+0.005395,210
+0.005238,210
+0.005161,210
+0.005177,210
+0.005125,210
+0.005229,210
+0.005146,210
+0.005129,210
+0.005099,210
+0.005098,210
+0.005160,210
+0.005096,210
+0.005100,210
+0.005157,210
+0.005181,210
+0.005095,210
+0.005163,210
+0.005100,210
+0.005097,210
+0.005175,210
+0.005415,210
+0.005359,210
+0.005202,210
+0.005224,210
+0.005125,210
+0.005177,210
+0.005315,210
+0.005119,210
+0.005096,210
+0.005162,210
+0.005102,210
+0.005095,210
+0.005125,210
+0.005134,210
+0.005175,210
+0.005097,210
+0.005196,210
+0.005098,210
+0.005097,210
+0.005353,210
+0.005342,210
+0.005119,210
+0.005177,210
+0.005102,210
+0.005146,210
+0.005160,210
+0.005101,210
+0.005107,210
+0.005126,210
+0.005128,210
+0.005100,210
+0.005098,210
+0.005166,210
+0.005230,210
+0.005131,210
+0.005158,210
+0.005099,210
+0.005097,210
+0.005200,210
+0.005421,210
+0.005113,210
+0.005148,210
+0.005129,210
+0.005099,210
+0.005100,210
+0.005155,210
+0.005172,210
+0.005104,210
+0.005160,210
+0.005100,210
+0.005338,212
+0.005299,212
+0.005295,212
+0.005210,212
+0.005338,212
+0.005213,212
+0.005208,212
+0.005261,212
+0.005489,212
+0.005501,212
+0.005398,212
+0.005309,212
+0.005229,212
+0.005254,212
+0.005347,212
+0.005216,212
+0.005218,212
+0.005280,212
+0.005212,212
+0.005255,212
+0.005271,212
+0.005316,212
+0.005210,212
+0.005294,212
+0.005210,212
+0.005210,212
+0.005296,212
+0.005481,212
+0.005432,212
+0.005325,212
+0.005243,212
+0.005295,212
+0.005212,212
+0.005296,212
+0.005209,212
+0.005213,212
+0.005270,212
+0.005212,212
+0.005210,212
+0.005275,212
+0.005297,212
+0.005215,212
+0.005271,212
+0.005213,212
+0.005209,212
+0.005241,212
+0.005435,212
+0.005482,212
+0.005306,212
+0.005241,212
+0.005210,212
+0.005216,212
+0.005293,212
+0.005209,212
+0.005214,212
+0.005270,212
+0.005212,212
+0.005214,212
+0.005270,212
+0.005257,212
+0.005216,212
+0.005388,212
+0.005245,212
+0.005221,212
+0.005250,212
+0.005424,212
+0.005478,212
+0.005264,212
+0.005265,212
+0.005257,212
+0.005250,212
+0.005272,212
+0.005208,212
+0.005213,212
+0.005271,212
+0.005214,212
+0.005270,212
+0.005321,212
+0.005319,212
+0.005250,212
+0.005280,212
+0.005211,212
+0.005216,212
+0.005238,212
+0.005358,212
+0.005522,212
+0.005261,212
+0.005268,212
+0.005213,212
+0.005252,212
+0.005271,212
+0.005213,212
+0.005221,212
+0.005293,212
+0.005210,212
+0.005214,212
+0.005291,212
+0.005254,212
+0.005251,212
+0.005415,212
+0.005511,214
+0.005377,214
+0.005431,214
+0.005497,214
+0.005634,214
+0.005582,214
+0.005380,214
+0.005369,214
+0.005434,214
+0.005454,214
+0.005416,214
+0.005450,214
+0.005415,214
+0.005371,214
+0.005402,214
+0.005410,214
+0.005471,214
+0.005407,214
+0.005401,214
+0.005369,214
+0.005376,214
+0.005434,214
+0.005608,214
+0.005504,214
+0.005458,214
+0.005459,214
+0.005456,214
+0.005460,214
+0.005475,214
+0.005412,214
+0.005440,214
+0.005371,214
+0.005371,214
+0.005431,214
+0.005435,214
+0.005369,214
+0.005473,214
+0.005393,214
+0.005372,214
+0.005430,214
+0.005473,214
+0.005797,214
+0.005643,214
+0.005410,214
+0.005420,214
+0.005513,214
+0.005400,214
+0.005405,214
+0.005477,214
+0.005369,214
+0.005369,214
+0.005436,214
+0.005374,214
+0.005494,214
+0.005534,214
+0.005442,214
+0.005402,214
+0.005645,214
+0.005529,214
+0.005776,214
+0.005501,214
+0.005429,214
+0.005412,214
+0.005443,214
+0.005445,214
+0.005392,214
+0.005399,214
+0.005408,214
+0.005370,214
+0.005399,214
+0.005412,214
+0.005515,214
+0.005474,214
+0.005406,214
+0.005369,214
+0.005374,214
+0.005431,214
+0.005568,214
+0.005725,214
+0.005470,214
+0.005413,214
+0.005427,214
+0.005471,214
+0.005412,214
+0.005399,214
+0.005446,214
+0.005378,214
+0.005411,214
+0.005457,214
+0.005401,214
+0.005452,214
+0.005452,214
+0.005376,214
+0.005369,214
+0.005473,214
+0.005397,214
+0.005785,214
+0.005732,214
+0.005391,214
+0.005625,214
+0.006151,216
+0.005788,216
+0.006171,216
+0.006296,216
+0.006094,216
+0.006567,216
+0.008187,216
+0.006341,216
+0.006257,216
+0.006222,216
+0.006249,216
+0.006635,216
+0.007265,216
+0.006322,216
+0.006406,216
+0.006345,216
+0.006161,216
+0.006079,216
+0.007007,216
+0.006613,216
+0.006141,216
+0.006247,216
+0.006074,216
+0.007351,216
+0.005990,216
+0.006103,216
+0.007244,216
+0.007006,216
+0.008089,216
+0.006477,216
+0.007051,216
+0.007433,216
+0.007063,216
+0.006501,216
+0.006232,216
+0.006415,216
+0.006916,216
+0.007117,216
+0.007403,216
+0.006350,216
+0.007760,216
+0.006184,216
+0.005968,216
+0.007188,216
+0.006074,216
+0.007077,216
+0.005790,216
+0.006115,216
+0.008246,216
+0.007490,216
+0.007457,216
+0.005645,216
+0.006889,216
+0.006281,216
+0.006042,216
+0.006582,216
+0.006166,216
+0.006802,216
+0.006558,216
+0.006041,216
+0.006568,216
+0.006179,216
+0.006179,216
+0.006787,216
+0.007046,216
+0.008044,216
+0.006161,216
+0.006380,216
+0.006220,216
+0.005972,216
+0.007988,216
+0.006318,216
+0.007219,216
+0.007577,216
+0.007820,216
+0.006773,216
+0.006201,216
+0.006750,216
+0.006430,216
+0.006074,216
+0.006347,216
+0.005806,216
+0.006344,216
+0.006285,216
+0.006094,216
+0.006686,216
+0.005977,216
+0.005836,216
+0.006300,216
+0.007047,216
+0.006276,216
+0.006208,216
+0.005685,216
+0.006487,216
+0.006019,216
+0.005781,216
+0.007648,216
+0.005997,216
+0.007177,216
+0.006766,216
+0.006210,218
+0.007256,218
+0.005898,218
+0.006264,218
+0.009736,218
+0.005934,218
+0.006642,218
+0.005758,218
+0.006376,218
+0.006204,218
+0.005705,218
+0.006358,218
+0.005827,218
+0.005790,218
+0.006412,218
+0.005781,218
+0.006085,218
+0.006048,218
+0.005698,218
+0.006003,218
+0.006033,218
+0.005719,218
+0.005811,218
+0.005729,218
+0.005720,218
+0.005784,218
+0.005733,218
+0.005670,218
+0.005820,218
+0.005687,218
+0.005769,218
+0.005788,218
+0.005663,218
+0.005668,218
+0.005807,218
+0.005668,218
+0.005742,218
+0.006086,218
+0.005812,218
+0.005815,218
+0.005765,218
+0.005701,218
+0.005771,218
+0.005702,218
+0.005669,218
+0.005714,218
+0.005747,218
+0.005663,218
+0.005804,218
+0.005729,218
+0.005664,218
+0.005859,218
+0.005708,218
+0.005690,218
+0.005978,218
+0.006048,218
+0.005702,218
+0.005724,218
+0.005713,218
+0.005784,218
+0.006000,218
+0.005901,218
+0.005784,218
+0.006205,218
+0.005706,218
+0.005842,218
+0.005730,218
+0.005667,218
+0.005869,218
+0.005789,218
+0.005679,218
+0.005993,218
+0.006072,218
+0.005793,218
+0.005816,218
+0.006076,218
+0.005689,218
+0.005872,218
+0.006006,218
+0.005817,218
+0.005734,218
+0.005828,218
+0.005804,218
+0.005768,218
+0.005742,218
+0.005726,218
+0.005716,218
+0.005692,218
+0.005666,218
+0.006121,218
+0.005762,218
+0.005669,218
+0.005726,218
+0.005705,218
+0.005708,218
+0.005705,218
+0.005665,218
+0.005668,218
+0.005781,218
+0.005691,218
+0.006165,220
+0.005818,220
+0.005839,220
+0.005879,220
+0.005838,220
+0.005813,220
+0.006274,220
+0.005964,220
+0.005843,220
+0.005911,220
+0.005859,220
+0.005875,220
+0.005888,220
+0.005807,220
+0.005817,220
+0.005982,220
+0.005889,220
+0.006092,220
+0.005858,220
+0.005828,220
+0.005898,220
+0.005814,220
+0.005815,220
+0.006025,220
+0.005997,220
+0.005881,220
+0.005914,220
+0.005823,220
+0.005818,220
+0.005881,220
+0.005815,220
+0.005816,220
+0.005895,220
+0.005814,220
+0.005960,220
+0.005851,220
+0.005817,220
+0.005895,220
+0.005836,220
+0.005965,220
+0.006084,220
+0.005981,220
+0.005879,220
+0.005960,220
+0.005945,220
+0.005819,220
+0.005910,220
+0.005815,220
+0.006064,220
+0.005851,220
+0.005837,220
+0.006360,220
+0.005851,220
+0.005961,220
+0.006022,220
+0.005815,220
+0.005884,220
+0.006152,220
+0.006042,220
+0.005933,220
+0.005918,220
+0.005819,220
+0.005834,220
+0.005856,220
+0.005812,220
+0.005853,220
+0.005851,220
+0.005817,220
+0.005985,220
+0.005819,220
+0.005813,220
+0.005885,220
+0.005815,220
+0.005817,220
+0.006085,220
+0.006280,220
+0.005859,220
+0.005925,220
+0.005816,220
+0.005828,220
+0.005856,220
+0.005813,220
+0.005826,220
+0.005852,220
+0.005817,220
+0.005921,220
+0.005824,220
+0.005839,220
+0.005873,220
+0.005821,220
+0.005856,220
+0.006110,220
+0.006147,220
+0.005837,220
+0.005921,220
+0.005834,220
+0.005838,220
+0.005865,220
+0.005813,220
+0.005827,220
+0.006199,222
+0.006047,222
+0.006113,222
+0.005991,222
+0.005998,222
+0.006044,222
+0.005992,222
+0.005992,222
+0.006332,222
+0.006240,222
+0.006050,222
+0.006050,222
+0.006035,222
+0.006060,222
+0.006039,222
+0.006035,222
+0.006087,222
+0.005991,222
+0.006057,222
+0.006044,222
+0.005994,222
+0.006002,222
+0.006035,222
+0.006061,222
+0.006153,222
+0.006487,222
+0.006039,222
+0.006085,222
+0.006020,222
+0.006097,222
+0.006120,222
+0.006067,222
+0.006035,222
+0.006069,222
+0.005991,222
+0.006187,222
+0.005994,222
+0.005995,222
+0.006040,222
+0.005995,222
+0.005993,222
+0.006250,222
+0.006297,222
+0.006125,222
+0.006036,222
+0.006073,222
+0.006072,222
+0.005997,222
+0.005991,222
+0.006043,222
+0.005993,222
+0.006054,222
+0.006039,222
+0.005995,222
+0.006002,222
+0.006036,222
+0.005991,222
+0.006044,222
+0.006302,222
+0.006241,222
+0.006090,222
+0.006012,222
+0.006042,222
+0.006062,222
+0.005993,222
+0.006003,222
+0.006059,222
+0.005991,222
+0.006520,222
+0.005994,222
+0.006099,222
+0.006051,222
+0.006056,222
+0.006015,222
+0.006136,222
+0.006390,222
+0.006093,222
+0.006011,222
+0.006018,222
+0.006080,222
+0.006039,222
+0.006015,222
+0.006043,222
+0.005996,222
+0.006123,222
+0.006034,222
+0.005996,222
+0.006089,222
+0.005991,222
+0.005995,222
+0.006039,222
+0.006226,222
+0.006255,222
+0.006094,222
+0.006012,222
+0.006004,222
+0.006030,222
+0.005996,222
+0.006041,222
+0.005995,222
+0.006544,224
+0.006214,224
+0.006159,224
+0.006201,224
+0.006209,224
+0.006269,224
+0.006196,224
+0.006284,224
+0.006576,224
+0.006228,224
+0.006259,224
+0.006181,224
+0.006204,224
+0.006160,224
+0.006206,224
+0.006182,224
+0.006215,224
+0.006209,224
+0.006159,224
+0.006160,224
+0.006209,224
+0.006219,224
+0.006184,224
+0.006200,224
+0.006813,224
+0.006231,224
+0.006438,224
+0.006208,224
+0.006394,224
+0.006190,224
+0.006206,224
+0.006190,224
+0.006220,224
+0.006259,224
+0.006164,224
+0.006159,224
+0.006209,224
+0.006155,224
+0.006170,224
+0.006197,224
+0.006456,224
+0.006614,224
+0.006198,224
+0.006202,224
+0.006229,224
+0.006181,224
+0.006217,224
+0.006183,224
+0.006216,224
+0.006229,224
+0.006287,224
+0.006185,224
+0.006209,224
+0.006493,224
+0.006197,224
+0.006170,224
+0.006525,224
+0.006446,224
+0.006177,224
+0.006217,224
+0.006214,224
+0.006162,224
+0.006206,224
+0.006165,224
+0.006261,224
+0.006237,224
+0.006162,224
+0.006220,224
+0.006216,224
+0.006155,224
+0.006170,224
+0.006198,224
+0.006455,224
+0.006439,224
+0.006188,224
+0.006182,224
+0.006247,224
+0.006160,224
+0.006166,224
+0.006200,224
+0.006179,224
+0.006269,224
+0.006159,224
+0.006158,224
+0.006210,224
+0.006179,224
+0.006262,224
+0.006195,224
+0.006400,224
+0.006445,224
+0.006241,224
+0.006192,224
+0.006266,224
+0.006244,224
+0.006168,224
+0.006225,224
+0.006156,224
+0.006312,224
+0.006159,224
+0.006161,224
+0.006549,226
+0.006319,226
+0.006334,226
+0.006360,226
+0.006602,226
+0.006872,226
+0.006318,226
+0.006371,226
+0.006378,226
+0.006344,226
+0.006397,226
+0.006370,226
+0.006379,226
+0.006397,226
+0.006319,226
+0.006400,226
+0.006359,226
+0.006319,226
+0.006389,226
+0.006320,226
+0.006569,226
+0.006630,226
+0.006340,226
+0.006420,226
+0.006365,226
+0.006322,226
+0.006366,226
+0.006323,226
+0.006906,226
+0.006387,226
+0.006637,226
+0.006371,226
+0.006345,226
+0.006332,226
+0.006357,226
+0.006324,226
+0.006945,226
+0.006377,226
+0.006349,226
+0.006376,226
+0.006559,226
+0.006351,226
+0.006320,226
+0.006376,226
+0.006434,226
+0.006335,226
+0.006330,226
+0.006359,226
+0.006322,226
+0.006369,226
+0.006323,226
+0.006419,226
+0.006789,226
+0.006450,226
+0.006401,226
+0.006351,226
+0.006318,226
+0.006375,226
+0.006323,226
+0.006379,226
+0.006371,226
+0.006317,226
+0.006370,226
+0.006323,226
+0.006361,226
+0.006372,226
+0.006318,226
+0.006571,226
+0.006741,226
+0.006366,226
+0.006431,226
+0.006340,226
+0.006364,226
+0.006402,226
+0.006318,226
+0.006461,226
+0.006320,226
+0.006319,226
+0.006371,226
+0.006320,226
+0.006330,226
+0.006366,226
+0.006392,226
+0.006721,226
+0.006562,226
+0.006344,226
+0.006403,226
+0.006320,226
+0.006370,226
+0.006322,226
+0.006342,226
+0.006452,226
+0.006320,226
+0.006332,226
+0.006359,226
+0.006359,226
+0.006367,226
+0.006324,226
+0.006318,226
+0.006649,226
+0.007106,228
+0.006580,228
+0.006485,228
+0.006484,228
+0.006534,228
+0.006483,228
+0.006636,228
+0.006547,228
+0.006541,228
+0.006579,228
+0.006543,228
+0.006496,228
+0.006526,228
+0.006482,228
+0.006787,228
+0.006789,228
+0.006515,228
+0.006587,228
+0.006502,228
+0.006544,228
+0.006491,228
+0.006656,228
+0.006526,228
+0.006488,228
+0.006556,228
+0.006483,228
+0.006483,228
+0.006536,228
+0.006488,228
+0.006665,228
+0.006857,228
+0.006545,228
+0.006555,228
+0.006531,228
+0.006544,228
+0.006483,228
+0.006527,228
+0.006643,228
+0.006481,228
+0.006529,228
+0.006496,228
+0.006636,228
+0.006586,228
+0.006502,228
+0.006495,228
+0.007019,228
+0.006552,228
+0.006599,228
+0.006554,228
+0.006495,228
+0.006529,228
+0.006485,228
+0.006610,228
+0.006486,228
+0.006483,228
+0.006535,228
+0.006484,228
+0.006531,228
+0.006488,228
+0.006585,228
+0.006792,228
+0.006762,228
+0.006576,228
+0.006481,228
+0.006486,228
+0.006535,228
+0.006481,228
+0.006615,228
+0.006484,228
+0.006499,228
+0.006538,228
+0.006495,228
+0.006501,228
+0.006530,228
+0.006481,228
+0.006686,228
+0.006840,228
+0.006519,228
+0.006612,228
+0.006503,228
+0.006565,228
+0.006530,228
+0.006877,228
+0.006551,228
+0.006489,228
+0.006533,228
+0.006620,228
+0.006507,228
+0.006530,228
+0.006486,228
+0.006534,228
+0.006951,228
+0.006530,228
+0.006585,228
+0.006482,228
+0.006564,228
+0.006488,228
+0.006579,228
+0.006645,228
+0.006481,228
+0.006906,230
+0.006664,230
+0.006654,230
+0.006708,230
+0.006732,230
+0.007061,230
+0.007030,230
+0.007347,230
+0.007360,230
+0.007459,230
+0.007354,230
+0.007573,230
+0.007686,230
+0.007985,230
+0.007109,230
+0.007216,230
+0.007353,230
+0.008097,230
+0.009631,230
+0.007771,230
+0.009133,230
+0.007343,230
+0.008509,230
+0.007966,230
+0.007210,230
+0.008854,230
+0.008231,230
+0.007544,230
+0.008028,230
+0.007625,230
+0.007927,230
+0.008986,230
+0.008489,230
+0.009163,230
+0.011969,230
+0.011834,230
+0.008479,230
+0.007426,230
+0.007346,230
+0.008399,230
+0.008797,230
+0.007532,230
+0.007414,230
+0.006996,230
+0.007756,230
+0.006975,230
+0.007077,230
+0.007386,230
+0.007467,230
+0.007776,230
+0.007609,230
+0.007568,230
+0.007361,230
+0.007952,230
+0.007071,230
+0.008761,230
+0.007205,230
+0.008618,230
+0.007297,230
+0.007950,230
+0.007024,230
+0.008121,230
+0.007081,230
+0.007821,230
+0.007059,230
+0.006998,230
+0.007775,230
+0.007005,230
+0.008090,230
+0.007026,230
+0.007915,230
+0.007400,230
+0.007968,230
+0.007076,230
+0.006918,230
+0.007954,230
+0.006799,230
+0.008414,230
+0.006951,230
+0.008150,230
+0.007105,230
+0.008124,230
+0.006950,230
+0.006990,230
+0.008277,230
+0.006900,230
+0.007570,230
+0.007040,230
+0.007710,230
+0.007099,230
+0.006936,230
+0.007400,230
+0.006832,230
+0.006759,230
+0.006929,230
+0.006787,230
+0.006863,230
+0.006921,230
+0.007279,230
+0.008303,230
+0.007663,232
+0.008658,232
+0.006971,232
+0.007331,232
+0.007265,232
+0.007715,232
+0.008007,232
+0.007884,232
+0.007827,232
+0.008317,232
+0.007851,232
+0.008945,232
+0.008069,232
+0.008027,232
+0.008219,232
+0.010375,232
+0.009157,232
+0.007510,232
+0.008506,232
+0.007659,232
+0.007794,232
+0.008050,232
+0.007744,232
+0.008130,232
+0.008074,232
+0.009084,232
+0.007656,232
+0.007832,232
+0.007544,232
+0.007925,232
+0.007558,232
+0.008052,232
+0.007596,232
+0.007857,232
+0.007764,232
+0.008353,232
+0.007662,232
+0.007970,232
+0.007488,232
+0.007856,232
+0.007517,232
+0.007807,232
+0.007618,232
+0.007640,232
+0.007767,232
+0.007442,232
+0.008778,232
+0.008466,232
+0.009341,232
+0.007269,232
+0.007878,232
+0.007136,232
+0.007985,232
+0.007516,232
+0.008181,232
+0.007519,232
+0.007891,232
+0.007465,232
+0.008925,232
+0.007472,232
+0.007641,232
+0.008206,232
+0.007339,232
+0.008165,232
+0.007036,232
+0.008310,232
+0.007241,232
+0.007607,232
+0.007111,232
+0.007456,232
+0.007123,232
+0.007018,232
+0.007113,232
+0.006921,232
+0.007212,232
+0.007295,232
+0.006936,232
+0.006939,232
+0.007001,232
+0.006917,232
+0.006998,232
+0.006892,232
+0.006963,232
+0.006877,232
+0.006901,232
+0.006871,232
+0.006835,232
+0.006900,232
+0.006971,232
+0.007192,232
+0.006898,232
+0.006905,232
+0.006866,232
+0.006936,232
+0.007135,232
+0.006877,232
+0.006894,232
+0.006838,232
+0.006897,232
+0.006900,232
+0.007237,234
+0.007229,234
+0.007226,234
+0.007570,234
+0.007112,234
+0.007043,234
+0.007135,234
+0.007101,234
+0.007239,234
+0.007078,234
+0.007109,234
+0.007069,234
+0.007125,234
+0.007131,234
+0.007047,234
+0.007088,234
+0.007028,234
+0.007460,234
+0.007143,234
+0.007030,234
+0.007112,234
+0.007027,234
+0.007208,234
+0.007024,234
+0.007050,234
+0.007111,234
+0.007026,234
+0.007117,234
+0.007020,234
+0.007249,234
+0.007210,234
+0.007394,234
+0.007278,234
+0.007165,234
+0.007221,234
+0.007963,234
+0.009203,234
+0.008000,234
+0.007206,234
+0.007376,234
+0.007202,234
+0.007165,234
+0.007109,234
+0.007178,234
+0.007352,234
+0.007577,234
+0.007112,234
+0.007174,234
+0.007093,234
+0.007694,234
+0.007190,234
+0.007050,234
+0.007141,234
+0.007084,234
+0.007142,234
+0.007064,234
+0.007727,234
+0.007223,234
+0.007325,234
+0.007454,234
+0.007197,234
+0.007191,234
+0.007104,234
+0.007222,234
+0.007170,234
+0.007125,234
+0.007088,234
+0.007044,234
+0.007124,234
+0.007086,234
+0.007128,234
+0.007025,234
+0.007278,234
+0.007411,234
+0.007062,234
+0.007125,234
+0.007030,234
+0.007122,234
+0.007101,234
+0.007102,234
+0.007911,234
+0.007742,234
+0.008329,234
+0.010380,234
+0.008026,234
+0.008500,234
+0.008256,234
+0.008138,234
+0.008184,234
+0.008851,234
+0.008628,234
+0.009289,234
+0.008313,234
+0.007911,234
+0.007843,234
+0.008029,234
+0.007784,234
+0.007991,234
+0.008368,234
+0.008967,234
+0.008834,236
+0.008266,236
+0.008228,236
+0.008136,236
+0.007759,236
+0.007821,236
+0.007737,236
+0.008175,236
+0.007579,236
+0.007759,236
+0.007853,236
+0.008212,236
+0.007521,236
+0.007879,236
+0.007829,236
+0.008431,236
+0.007612,236
+0.007583,236
+0.007709,236
+0.007579,236
+0.007473,236
+0.007549,236
+0.007520,236
+0.007821,236
+0.007461,236
+0.007356,236
+0.007291,236
+0.007332,236
+0.007349,236
+0.007236,236
+0.007218,236
+0.007238,236
+0.007243,236
+0.007231,236
+0.007609,236
+0.007350,236
+0.007396,236
+0.007753,236
+0.007261,236
+0.007650,236
+0.007419,236
+0.007379,236
+0.007389,236
+0.007298,236
+0.007704,236
+0.007321,236
+0.007505,236
+0.007313,236
+0.007608,236
+0.007351,236
+0.007657,236
+0.007536,236
+0.007321,236
+0.008096,236
+0.007385,236
+0.007427,236
+0.007215,236
+0.007849,236
+0.007234,236
+0.007367,236
+0.007348,236
+0.007299,236
+0.007194,236
+0.007443,236
+0.007902,236
+0.007590,236
+0.007554,236
+0.007431,236
+0.007748,236
+0.007674,236
+0.007683,236
+0.007500,236
+0.007520,236
+0.007672,236
+0.007701,236
+0.007689,236
+0.007781,236
+0.007872,236
+0.007630,236
+0.007828,236
+0.007667,236
+0.008095,236
+0.008005,236
+0.007886,236
+0.011243,236
+0.008679,236
+0.007297,236
+0.007512,236
+0.007207,236
+0.007647,236
+0.007748,236
+0.007369,236
+0.007605,236
+0.007382,236
+0.008036,236
+0.007378,236
+0.007765,236
+0.007261,236
+0.008214,236
+0.007343,236
+0.008624,238
+0.007429,238
+0.008038,238
+0.007670,238
+0.007491,238
+0.007370,238
+0.007469,238
+0.007570,238
+0.007449,238
+0.007586,238
+0.007496,238
+0.007464,238
+0.007847,238
+0.007520,238
+0.007370,238
+0.007655,238
+0.007782,238
+0.007511,238
+0.007451,238
+0.007444,238
+0.007455,238
+0.007374,238
+0.007449,238
+0.007378,238
+0.007449,238
+0.007370,238
+0.007508,238
+0.007370,238
+0.007410,238
+0.007805,238
+0.007561,238
+0.007425,238
+0.007431,238
+0.007451,238
+0.007467,238
+0.007449,238
+0.007414,238
+0.007432,238
+0.007401,238
+0.007409,238
+0.007371,238
+0.007368,238
+0.007521,238
+0.007874,238
+0.007490,238
+0.007442,238
+0.007476,238
+0.007785,238
+0.007454,238
+0.007751,238
+0.007405,238
+0.007598,238
+0.007370,238
+0.007409,238
+0.007369,238
+0.007427,238
+0.008021,238
+0.007421,238
+0.007365,238
+0.007567,238
+0.008946,238
+0.008478,238
+0.010571,238
+0.009349,238
+0.011127,238
+0.009461,238
+0.008439,238
+0.008230,238
+0.008482,238
+0.009090,238
+0.008313,238
+0.008916,238
+0.009600,238
+0.009170,238
+0.008555,238
+0.008817,238
+0.008428,238
+0.008248,238
+0.008378,238
+0.008190,238
+0.008983,238
+0.010074,238
+0.009864,238
+0.009125,238
+0.008735,238
+0.007859,238
+0.007874,238
+0.007669,238
+0.007687,238
+0.007573,238
+0.008210,238
+0.008295,238
+0.008358,238
+0.007898,238
+0.008410,238
+0.007990,238
+0.007957,238
+0.008097,238
+0.008056,238
+0.007972,238
+0.008653,240
+0.008411,240
+0.009443,240
+0.010387,240
+0.009186,240
+0.009200,240
+0.008355,240
+0.008307,240
+0.008691,240
+0.009048,240
+0.009448,240
+0.008462,240
+0.010544,240
+0.009193,240
+0.010076,240
+0.008931,240
+0.008495,240
+0.008309,240
+0.008280,240
+0.008282,240
+0.008086,240
+0.008305,240
+0.008257,240
+0.008537,240
+0.007775,240
+0.008803,240
+0.008156,240
+0.008703,240
+0.007829,240
+0.009971,240
+0.010236,240
+0.011200,240
+0.008115,240
+0.009301,240
+0.007973,240
+0.008482,240
+0.007937,240
+0.008784,240
+0.013206,240
+0.008126,240
+0.008587,240
+0.008093,240
+0.008492,240
+0.007942,240
+0.008638,240
+0.007867,240
+0.008002,240
+0.007985,240
+0.008097,240
+0.008768,240
+0.008668,240
+0.007959,240
+0.008045,240
+0.007915,240
+0.007964,240
+0.009017,240
+0.010591,240
+0.010042,240
+0.011167,240
+0.010816,240
+0.008555,240
+0.010858,240
+0.009223,240
+0.010121,240
+0.008837,240
+0.008203,240
+0.008618,240
+0.008413,240
+0.008477,240
+0.008723,240
+0.008598,240
+0.008431,240
+0.008652,240
+0.008653,240
+0.008365,240
+0.008711,240
+0.008385,240
+0.008926,240
+0.008361,240
+0.008319,240
+0.008091,240
+0.008054,240
+0.008121,240
+0.008434,240
+0.010000,240
+0.011078,240
+0.009180,240
+0.008554,240
+0.008533,240
+0.008538,240
+0.008345,240
+0.008361,240
+0.009772,240
+0.009039,240
+0.008347,240
+0.010383,240
+0.011302,240
+0.009205,240
+0.012062,240
+0.009639,240
+0.010181,242
+0.009269,242
+0.009006,242
+0.009717,242
+0.008504,242
+0.010585,242
+0.008997,242
+0.011064,242
+0.010893,242
+0.009848,242
+0.010563,242
+0.009299,242
+0.010176,242
+0.009776,242
+0.013347,242
+0.009719,242
+0.009009,242
+0.009491,242
+0.009756,242
+0.008917,242
+0.009300,242
+0.008440,242
+0.009133,242
+0.008241,242
+0.008374,242
+0.008364,242
+0.008505,242
+0.008798,242
+0.008924,242
+0.009366,242
+0.009250,242
+0.008463,242
+0.008386,242
+0.009386,242
+0.008959,242
+0.008696,242
+0.008675,242
+0.009764,242
+0.008470,242
+0.008959,242
+0.008126,242
+0.008964,242
+0.007957,242
+0.008368,242
+0.007936,242
+0.008271,242
+0.007890,242
+0.008236,242
+0.008135,242
+0.008964,242
+0.007986,242
+0.008580,242
+0.008036,242
+0.008817,242
+0.007993,242
+0.008811,242
+0.008000,242
+0.008834,242
+0.007999,242
+0.008670,242
+0.008321,242
+0.008742,242
+0.008018,242
+0.008544,242
+0.007957,242
+0.008447,242
+0.008035,242
+0.008698,242
+0.007998,242
+0.009916,242
+0.008943,242
+0.008820,242
+0.008849,242
+0.008685,242
+0.009261,242
+0.010206,242
+0.009261,242
+0.008096,242
+0.008463,242
+0.007979,242
+0.008195,242
+0.007949,242
+0.008773,242
+0.008035,242
+0.009100,242
+0.008042,242
+0.008596,242
+0.008102,242
+0.008360,242
+0.008007,242
+0.008242,242
+0.007991,242
+0.008185,242
+0.007931,242
+0.008300,242
+0.007946,242
+0.009118,242
+0.008265,242
+0.008771,242
+0.008246,242
+0.008730,244
+0.008402,244
+0.009118,244
+0.008417,244
+0.009298,244
+0.008481,244
+0.009313,244
+0.008668,244
+0.008875,244
+0.008600,244
+0.008772,244
+0.009428,244
+0.008755,244
+0.009235,244
+0.009010,244
+0.010082,244
+0.008771,244
+0.010093,244
+0.008906,244
+0.009613,244
+0.009461,244
+0.009210,244
+0.010194,244
+0.009208,244
+0.011270,244
+0.009555,244
+0.009779,244
+0.010409,244
+0.009468,244
+0.009655,244
+0.008584,244
+0.008506,244
+0.008732,244
+0.008071,244
+0.008374,244
+0.008024,244
+0.008208,244
+0.008216,244
+0.008539,244
+0.008170,244
+0.008311,244
+0.009333,244
+0.010456,244
+0.009038,244
+0.009488,244
+0.008646,244
+0.008772,244
+0.008282,244
+0.008996,244
+0.013515,244
+0.011108,244
+0.009122,244
+0.009141,244
+0.010592,244
+0.012973,244
+0.010900,244
+0.008776,244
+0.008599,244
+0.008271,244
+0.008535,244
+0.008380,244
+0.008547,244
+0.008541,244
+0.009122,244
+0.009425,244
+0.009985,244
+0.008869,244
+0.009671,244
+0.008826,244
+0.009167,244
+0.009475,244
+0.010463,244
+0.008845,244
+0.009068,244
+0.009923,244
+0.008686,244
+0.009351,244
+0.008841,244
+0.009443,244
+0.009230,244
+0.009117,244
+0.009444,244
+0.008598,244
+0.011855,244
+0.013583,244
+0.009072,244
+0.009092,244
+0.009185,244
+0.014677,244
+0.011672,244
+0.009429,244
+0.008713,244
+0.008714,244
+0.009273,244
+0.010116,244
+0.009393,244
+0.010491,244
+0.008408,244
+0.009318,244
+0.008508,244
+0.009858,246
+0.009395,246
+0.008938,246
+0.011050,246
+0.008977,246
+0.009164,246
+0.009213,246
+0.009397,246
+0.009276,246
+0.009221,246
+0.009539,246
+0.008873,246
+0.009992,246
+0.009103,246
+0.009691,246
+0.010062,246
+0.009052,246
+0.009601,246
+0.009269,246
+0.009436,246
+0.008698,246
+0.008780,246
+0.008658,246
+0.008635,246
+0.009383,246
+0.008811,246
+0.009192,246
+0.008760,246
+0.009154,246
+0.008547,246
+0.009660,246
+0.010609,246
+0.009080,246
+0.009131,246
+0.009144,246
+0.009341,246
+0.013315,246
+0.009230,246
+0.009309,246
+0.009871,246
+0.008865,246
+0.008572,246
+0.010704,246
+0.008672,246
+0.009686,246
+0.011265,246
+0.009018,246
+0.009531,246
+0.008655,246
+0.010740,246
+0.008935,246
+0.008863,246
+0.008870,246
+0.009304,246
+0.009020,246
+0.008978,246
+0.009087,246
+0.008751,246
+0.009580,246
+0.008960,246
+0.009217,246
+0.008830,246
+0.009173,246
+0.008646,246
+0.009105,246
+0.009314,246
+0.008384,246
+0.009238,246
+0.008834,246
+0.009322,246
+0.008750,246
+0.009035,246
+0.008676,246
+0.009955,246
+0.008648,246
+0.009108,246
+0.008685,246
+0.008831,246
+0.009185,246
+0.009365,246
+0.009642,246
+0.008500,246
+0.009377,246
+0.008589,246
+0.008932,246
+0.008653,246
+0.008815,246
+0.008795,246
+0.009015,246
+0.008711,246
+0.009558,246
+0.009287,246
+0.008655,246
+0.008782,246
+0.008563,246
+0.010632,246
+0.008627,246
+0.009575,246
+0.008599,246
+0.009215,246
+0.009130,248
+0.009244,248
+0.009282,248
+0.008789,248
+0.009308,248
+0.008727,248
+0.009762,248
+0.008719,248
+0.008883,248
+0.008873,248
+0.008978,248
+0.008867,248
+0.010259,248
+0.009395,248
+0.008633,248
+0.009338,248
+0.008758,248
+0.009328,248
+0.009498,248
+0.008909,248
+0.009063,248
+0.009817,248
+0.009740,248
+0.009207,248
+0.009438,248
+0.012479,248
+0.010154,248
+0.009249,248
+0.009299,248
+0.010087,248
+0.009723,248
+0.009695,248
+0.010362,248
+0.010546,248
+0.010629,248
+0.010528,248
+0.015329,248
+0.012274,248
+0.011152,248
+0.009396,248
+0.009280,248
+0.009034,248
+0.012744,248
+0.015582,248
+0.015658,248
+0.015078,248
+0.010024,248
+0.009239,248
+0.009943,248
+0.009773,248
+0.014537,248
+0.017530,248
+0.015920,248
+0.011957,248
+0.009105,248
+0.009083,248
+0.009202,248
+0.009940,248
+0.010099,248
+0.009476,248
+0.009598,248
+0.010707,248
+0.009195,248
+0.009424,248
+0.008605,248
+0.009276,248
+0.008892,248
+0.009204,248
+0.008877,248
+0.009213,248
+0.011625,248
+0.009214,248
+0.009382,248
+0.009043,248
+0.009214,248
+0.008909,248
+0.010248,248
+0.009246,248
+0.009236,248
+0.009438,248
+0.008784,248
+0.011077,248
+0.010114,248
+0.009304,248
+0.009221,248
+0.008766,248
+0.009307,248
+0.008864,248
+0.009873,248
+0.008852,248
+0.009311,248
+0.008867,248
+0.009239,248
+0.009388,248
+0.009156,248
+0.009197,248
+0.008510,248
+0.009130,248
+0.008669,248
+0.009244,248
+0.009025,250
+0.009350,250
+0.008872,250
+0.009456,250
+0.009317,250
+0.008936,250
+0.009422,250
+0.008982,250
+0.009744,250
+0.008988,250
+0.009696,250
+0.009359,250
+0.009167,250
+0.012349,250
+0.009517,250
+0.009812,250
+0.009119,250
+0.009061,250
+0.009260,250
+0.009456,250
+0.009952,250
+0.008818,250
+0.009474,250
+0.008798,250
+0.009091,250
+0.009133,250
+0.009540,250
+0.009433,250
+0.009249,250
+0.010214,250
+0.008713,250
+0.010148,250
+0.008962,250
+0.009849,250
+0.009456,250
+0.009602,250
+0.009677,250
+0.008792,250
+0.009677,250
+0.008841,250
+0.009685,250
+0.009485,250
+0.008924,250
+0.009592,250
+0.008825,250
+0.009603,250
+0.009132,250
+0.009784,250
+0.009045,250
+0.009499,250
+0.009518,250
+0.009109,250
+0.009879,250
+0.008919,250
+0.009706,250
+0.008915,250
+0.009780,250
+0.009812,250
+0.009038,250
+0.009642,250
+0.009030,250
+0.009746,250
+0.008882,250
+0.009732,250
+0.009126,250
+0.009544,250
+0.009785,250
+0.009096,250
+0.009853,250
+0.008885,250
+0.009660,250
+0.009002,250
+0.009631,250
+0.009679,250
+0.008955,250
+0.009704,250
+0.008887,250
+0.013027,250
+0.010948,250
+0.008987,250
+0.009630,250
+0.008881,250
+0.009727,250
+0.009298,250
+0.009833,250
+0.009567,250
+0.009455,250
+0.010065,250
+0.009454,250
+0.010091,250
+0.009412,250
+0.009077,250
+0.009636,250
+0.009303,250
+0.009526,250
+0.008877,250
+0.009605,250
+0.009191,250
+0.010011,250
+0.009709,250
+0.010231,252
+0.012990,252
+0.009854,252
+0.010859,252
+0.014675,252
+0.015726,252
+0.012810,252
+0.014456,252
+0.009736,252
+0.010464,252
+0.010532,252
+0.012710,252
+0.010361,252
+0.009999,252
+0.009827,252
+0.013812,252
+0.010463,252
+0.010301,252
+0.009966,252
+0.009810,252
+0.009776,252
+0.009550,252
+0.009727,252
+0.009798,252
+0.009014,252
+0.011330,252
+0.010802,252
+0.009600,252
+0.010121,252
+0.011557,252
+0.009966,252
+0.010390,252
+0.009430,252
+0.009848,252
+0.010062,252
+0.012363,252
+0.012036,252
+0.009869,252
+0.009844,252
+0.010969,252
+0.011726,252
+0.011246,252
+0.011567,252
+0.009282,252
+0.010693,252
+0.010142,252
+0.009920,252
+0.012229,252
+0.010075,252
+0.009732,252
+0.010298,252
+0.009082,252
+0.010190,252
+0.009417,252
+0.009715,252
+0.015873,252
+0.016372,252
+0.016583,252
+0.015830,252
+0.016000,252
+0.011421,252
+0.010158,252
+0.010739,252
+0.009456,252
+0.012964,252
+0.012191,252
+0.012941,252
+0.011451,252
+0.011859,252
+0.013485,252
+0.011426,252
+0.011688,252
+0.016568,252
+0.016182,252
+0.016828,252
+0.016195,252
+0.016573,252
+0.016100,252
+0.010000,252
+0.009507,252
+0.010536,252
+0.010492,252
+0.009154,252
+0.013518,252
+0.010619,252
+0.012216,252
+0.010740,252
+0.009764,252
+0.009365,252
+0.009776,252
+0.010528,252
+0.009679,252
+0.009761,252
+0.009547,252
+0.010305,252
+0.012599,252
+0.011673,252
+0.009893,252
+0.010159,252
+0.009324,252
+0.010555,254
+0.009937,254
+0.010597,254
+0.010326,254
+0.009800,254
+0.010106,254
+0.009499,254
+0.010620,254
+0.010066,254
+0.009924,254
+0.011003,254
+0.009747,254
+0.009786,254
+0.009392,254
+0.010399,254
+0.011080,254
+0.009258,254
+0.010474,254
+0.009610,254
+0.010054,254
+0.011508,254
+0.009480,254
+0.009833,254
+0.009961,254
+0.009436,254
+0.012692,254
+0.009641,254
+0.010464,254
+0.011081,254
+0.009649,254
+0.010144,254
+0.010091,254
+0.009405,254
+0.009991,254
+0.010172,254
+0.010449,254
+0.010108,254
+0.010207,254
+0.010032,254
+0.009369,254
+0.010225,254
+0.009678,254
+0.016870,254
+0.016472,254
+0.010452,254
+0.011093,254
+0.010473,254
+0.009599,254
+0.014770,254
+0.016677,254
+0.017813,254
+0.017380,254
+0.016409,254
+0.017041,254
+0.016572,254
+0.016370,254
+0.016605,254
+0.016964,254
+0.017444,254
+0.017205,254
+0.016628,254
+0.013205,254
+0.010322,254
+0.009270,254
+0.009769,254
+0.009492,254
+0.009941,254
+0.010107,254
+0.010101,254
+0.010084,254
+0.010374,254
+0.012121,254
+0.012037,254
+0.009778,254
+0.010571,254
+0.009853,254
+0.009496,254
+0.009743,254
+0.009096,254
+0.009745,254
+0.009021,254
+0.010155,254
+0.010309,254
+0.009889,254
+0.011350,254
+0.010828,254
+0.010240,254
+0.009932,254
+0.009917,254
+0.010543,254
+0.010089,254
+0.013366,254
+0.016995,254
+0.017477,254
+0.016690,254
+0.016894,254
+0.018866,254
+0.014139,254
+0.010406,254
+0.009661,254
+0.009779,256
+0.010680,256
+0.010421,256
+0.010054,256
+0.010939,256
+0.009451,256
+0.013862,256
+0.010243,256
+0.009519,256
+0.010374,256
+0.009982,256
+0.010124,256
+0.011400,256
+0.010499,256
+0.009763,256
+0.010973,256
+0.009887,256
+0.010968,256
+0.011389,256
+0.013785,256
+0.009945,256
+0.010088,256
+0.010515,256
+0.010346,256
+0.010209,256
+0.009981,256
+0.010826,256
+0.009649,256
+0.011957,256
+0.010635,256
+0.009541,256
+0.010679,256
+0.010541,256
+0.009604,256
+0.010616,256
+0.009487,256
+0.010491,256
+0.010836,256
+0.013541,256
+0.017591,256
+0.014169,256
+0.012726,256
+0.013956,256
+0.011220,256
+0.010190,256
+0.011644,256
+0.010571,256
+0.010247,256
+0.010495,256
+0.010289,256
+0.010695,256
+0.010168,256
+0.009805,256
+0.011205,256
+0.010342,256
+0.010553,256
+0.010728,256
+0.009985,256
+0.010386,256
+0.010392,256
+0.010682,256
+0.011283,256
+0.011353,256
+0.010878,256
+0.015319,256
+0.015399,256
+0.010297,256
+0.010587,256
+0.017157,256
+0.017762,256
+0.017091,256
+0.017641,256
+0.013289,256
+0.011448,256
+0.011872,256
+0.011224,256
+0.010420,256
+0.011012,256
+0.011475,256
+0.015462,256
+0.012049,256
+0.011826,256
+0.011497,256
+0.011092,256
+0.011921,256
+0.011552,256
+0.011640,256
+0.010822,256
+0.011117,256
+0.010751,256
+0.010827,256
+0.010403,256
+0.009689,256
+0.011013,256
+0.012598,256
+0.009945,256
+0.010082,256
+0.014993,256
+0.009717,256
+0.009882,256
+0.010107,258
+0.009770,258
+0.009796,258
+0.009472,258
+0.009749,258
+0.009416,258
+0.010430,258
+0.009918,258
+0.009482,258
+0.009579,258
+0.009374,258
+0.009683,258
+0.009468,258
+0.009405,258
+0.009450,258
+0.009404,258
+0.009560,258
+0.009866,258
+0.009767,258
+0.009467,258
+0.009433,258
+0.009574,258
+0.009596,258
+0.009561,258
+0.009546,258
+0.009753,258
+0.009619,258
+0.009744,258
+0.010196,258
+0.010095,258
+0.010383,258
+0.010210,258
+0.010262,258
+0.010389,258
+0.010256,258
+0.009983,258
+0.009761,258
+0.009582,258
+0.010053,258
+0.009413,258
+0.009532,258
+0.009446,258
+0.009426,258
+0.009423,258
+0.009346,258
+0.009422,258
+0.009347,258
+0.009394,258
+0.009674,258
+0.009704,258
+0.009396,258
+0.009351,258
+0.009391,258
+0.009346,258
+0.009475,258
+0.009598,258
+0.010080,258
+0.010452,258
+0.010871,258
+0.010423,258
+0.010513,258
+0.010116,258
+0.010210,258
+0.009958,258
+0.009968,258
+0.010047,258
+0.010058,258
+0.010037,258
+0.010153,258
+0.011575,258
+0.012614,258
+0.010947,258
+0.009669,258
+0.009714,258
+0.009688,258
+0.010026,258
+0.009516,258
+0.009797,258
+0.009955,258
+0.010176,258
+0.009922,258
+0.010324,258
+0.010263,258
+0.009942,258
+0.010075,258
+0.010010,258
+0.010313,258
+0.010602,258
+0.010260,258
+0.010234,258
+0.010394,258
+0.010284,258
+0.013337,258
+0.010676,258
+0.010417,258
+0.010114,258
+0.010350,258
+0.012891,258
+0.013548,258
+0.010766,258
+0.011532,260
+0.010968,260
+0.010756,260
+0.010761,260
+0.010170,260
+0.010459,260
+0.013812,260
+0.011390,260
+0.009759,260
+0.010005,260
+0.009683,260
+0.009912,260
+0.009788,260
+0.009833,260
+0.012760,260
+0.019698,260
+0.018735,260
+0.018137,260
+0.018051,260
+0.018126,260
+0.016454,260
+0.010452,260
+0.009917,260
+0.009712,260
+0.010646,260
+0.010046,260
+0.010721,260
+0.010848,260
+0.010831,260
+0.011017,260
+0.010318,260
+0.010154,260
+0.009890,260
+0.009848,260
+0.010152,260
+0.009949,260
+0.009642,260
+0.009848,260
+0.010376,260
+0.010758,260
+0.011059,260
+0.010853,260
+0.012435,260
+0.010276,260
+0.010300,260
+0.012000,260
+0.013294,260
+0.012111,260
+0.011801,260
+0.010755,260
+0.011994,260
+0.011919,260
+0.010789,260
+0.012048,260
+0.011977,260
+0.012300,260
+0.012509,260
+0.012142,260
+0.010451,260
+0.010635,260
+0.010448,260
+0.010917,260
+0.010891,260
+0.010783,260
+0.010708,260
+0.010749,260
+0.010585,260
+0.010855,260
+0.011117,260
+0.010729,260
+0.010794,260
+0.010692,260
+0.010542,260
+0.010503,260
+0.010549,260
+0.010460,260
+0.010503,260
+0.010593,260
+0.010516,260
+0.010728,260
+0.010585,260
+0.010632,260
+0.010700,260
+0.013832,260
+0.011336,260
+0.010597,260
+0.010557,260
+0.010810,260
+0.011117,260
+0.011006,260
+0.011358,260
+0.010412,260
+0.010276,260
+0.011562,260
+0.012203,260
+0.015970,260
+0.009911,260
+0.011294,260
+0.011579,260
+0.012378,260
+0.011885,262
+0.011688,262
+0.012098,262
+0.017249,262
+0.012328,262
+0.017765,262
+0.022648,262
+0.018523,262
+0.011370,262
+0.012250,262
+0.011140,262
+0.010837,262
+0.010156,262
+0.010665,262
+0.010573,262
+0.012050,262
+0.011725,262
+0.011434,262
+0.011467,262
+0.011308,262
+0.012422,262
+0.010747,262
+0.011455,262
+0.012212,262
+0.010871,262
+0.011883,262
+0.011414,262
+0.011060,262
+0.011012,262
+0.011690,262
+0.013613,262
+0.010994,262
+0.011202,262
+0.013261,262
+0.012546,262
+0.013007,262
+0.011315,262
+0.011240,262
+0.010581,262
+0.012079,262
+0.011860,262
+0.011337,262
+0.011544,262
+0.013034,262
+0.011081,262
+0.010664,262
+0.010906,262
+0.012053,262
+0.010731,262
+0.014121,262
+0.011711,262
+0.013684,262
+0.012036,262
+0.012383,262
+0.011715,262
+0.010776,262
+0.011244,262
+0.011810,262
+0.010253,262
+0.010740,262
+0.010743,262
+0.011492,262
+0.011037,262
+0.011238,262
+0.010825,262
+0.011052,262
+0.011090,262
+0.010108,262
+0.011135,262
+0.011111,262
+0.011944,262
+0.011301,262
+0.011062,262
+0.010266,262
+0.012399,262
+0.011177,262
+0.009959,262
+0.010554,262
+0.010458,262
+0.010451,262
+0.010572,262
+0.010284,262
+0.011125,262
+0.011215,262
+0.010490,262
+0.011294,262
+0.010950,262
+0.010181,262
+0.010554,262
+0.010798,262
+0.010588,262
+0.010938,262
+0.011195,262
+0.010304,262
+0.016095,262
+0.013226,262
+0.010853,262
+0.010454,262
+0.010427,262
+0.010101,262
+0.010794,264
+0.011579,264
+0.011372,264
+0.013671,264
+0.012693,264
+0.012298,264
+0.011387,264
+0.010932,264
+0.012185,264
+0.012093,264
+0.010862,264
+0.013355,264
+0.013758,264
+0.012014,264
+0.010772,264
+0.013846,264
+0.010442,264
+0.010146,264
+0.010189,264
+0.010453,264
+0.010165,264
+0.010202,264
+0.010154,264
+0.010184,264
+0.016234,264
+0.010232,264
+0.010653,264
+0.010957,264
+0.010317,264
+0.010160,264
+0.010207,264
+0.010154,264
+0.010074,264
+0.015739,264
+0.010218,264
+0.010167,264
+0.010198,264
+0.010039,264
+0.011495,264
+0.010973,264
+0.010209,264
+0.010213,264
+0.010392,264
+0.010206,264
+0.010219,264
+0.010150,264
+0.010204,264
+0.010077,264
+0.010029,264
+0.010081,264
+0.010087,264
+0.010062,264
+0.010284,264
+0.010231,264
+0.010156,264
+0.010122,264
+0.010094,264
+0.010179,264
+0.009974,264
+0.010217,264
+0.010331,264
+0.010127,264
+0.010511,264
+0.010212,264
+0.010175,264
+0.010099,264
+0.010354,264
+0.010094,264
+0.010020,264
+0.010053,264
+0.010128,264
+0.010016,264
+0.010424,264
+0.010017,264
+0.010142,264
+0.010322,264
+0.009975,264
+0.011610,264
+0.010608,264
+0.010153,264
+0.010441,264
+0.010130,264
+0.010610,264
+0.010203,264
+0.010101,264
+0.010052,264
+0.010070,264
+0.010221,264
+0.010127,264
+0.010209,264
+0.010113,264
+0.010248,264
+0.010656,264
+0.010227,264
+0.010537,264
+0.010463,264
+0.010206,264
+0.009976,264
+0.010978,264
+0.012841,264
+0.011457,266
+0.011325,266
+0.012660,266
+0.011298,266
+0.010768,266
+0.011054,266
+0.010783,266
+0.010563,266
+0.010470,266
+0.010377,266
+0.010594,266
+0.010372,266
+0.010286,266
+0.010322,266
+0.010281,266
+0.010319,266
+0.010380,266
+0.010277,266
+0.010316,266
+0.010538,266
+0.010632,266
+0.010314,266
+0.010246,266
+0.010298,266
+0.010313,266
+0.010222,266
+0.010392,266
+0.010303,266
+0.010258,266
+0.011083,266
+0.011373,266
+0.011394,266
+0.011423,266
+0.011494,266
+0.011362,266
+0.011225,266
+0.011327,266
+0.011162,266
+0.011533,266
+0.012106,266
+0.011551,266
+0.011496,266
+0.012078,266
+0.010990,266
+0.011217,266
+0.011571,266
+0.011147,266
+0.010625,266
+0.011689,266
+0.012289,266
+0.011349,266
+0.012935,266
+0.012327,266
+0.011804,266
+0.011409,266
+0.011983,266
+0.011368,266
+0.011151,266
+0.011225,266
+0.010653,266
+0.010704,266
+0.011275,266
+0.011230,266
+0.011698,266
+0.013166,266
+0.015349,266
+0.018412,266
+0.017065,266
+0.013121,266
+0.011527,266
+0.010822,266
+0.011982,266
+0.011018,266
+0.010638,266
+0.011363,266
+0.012734,266
+0.010482,266
+0.010728,266
+0.010993,266
+0.011482,266
+0.011666,266
+0.011318,266
+0.011667,266
+0.011474,266
+0.012265,266
+0.012166,266
+0.011736,266
+0.012148,266
+0.012070,266
+0.011598,266
+0.013895,266
+0.012129,266
+0.014653,266
+0.012137,266
+0.014748,266
+0.015828,266
+0.013458,266
+0.014819,266
+0.012846,266
+0.016506,266
+0.012439,268
+0.011157,268
+0.012181,268
+0.012792,268
+0.018302,268
+0.012486,268
+0.011053,268
+0.011819,268
+0.012515,268
+0.014427,268
+0.018408,268
+0.021454,268
+0.012570,268
+0.011423,268
+0.011239,268
+0.011432,268
+0.011399,268
+0.011265,268
+0.012256,268
+0.011688,268
+0.011787,268
+0.011798,268
+0.011951,268
+0.011667,268
+0.011537,268
+0.012007,268
+0.010827,268
+0.011254,268
+0.011534,268
+0.011232,268
+0.010853,268
+0.011462,268
+0.011062,268
+0.010949,268
+0.011541,268
+0.011058,268
+0.011035,268
+0.011518,268
+0.011622,268
+0.010679,268
+0.011386,268
+0.012035,268
+0.014004,268
+0.011193,268
+0.012148,268
+0.011543,268
+0.012519,268
+0.011213,268
+0.014361,268
+0.013364,268
+0.013924,268
+0.012259,268
+0.013628,268
+0.012660,268
+0.012574,268
+0.012317,268
+0.012326,268
+0.011779,268
+0.012059,268
+0.011431,268
+0.011946,268
+0.013517,268
+0.015301,268
+0.014987,268
+0.012013,268
+0.012194,268
+0.011377,268
+0.011686,268
+0.011386,268
+0.012465,268
+0.015420,268
+0.020418,268
+0.015497,268
+0.012483,268
+0.011771,268
+0.013726,268
+0.012621,268
+0.012090,268
+0.010986,268
+0.012368,268
+0.011458,268
+0.011811,268
+0.011334,268
+0.017564,268
+0.014490,268
+0.016207,268
+0.013307,268
+0.012526,268
+0.011412,268
+0.012655,268
+0.011794,268
+0.011151,268
+0.012182,268
+0.012015,268
+0.011588,268
+0.011319,268
+0.011843,268
+0.011518,268
+0.013115,268
+0.011957,268
+0.013827,270
+0.011480,270
+0.011624,270
+0.011960,270
+0.013117,270
+0.013719,270
+0.012665,270
+0.014312,270
+0.018070,270
+0.012840,270
+0.013579,270
+0.013749,270
+0.011697,270
+0.011351,270
+0.012223,270
+0.017580,270
+0.011414,270
+0.011318,270
+0.011599,270
+0.011700,270
+0.012627,270
+0.011451,270
+0.011609,270
+0.011333,270
+0.011392,270
+0.010944,270
+0.010892,270
+0.011558,270
+0.011820,270
+0.011908,270
+0.011294,270
+0.011460,270
+0.013014,270
+0.014360,270
+0.011905,270
+0.011698,270
+0.011326,270
+0.011469,270
+0.011072,270
+0.011061,270
+0.012363,270
+0.011825,270
+0.012339,270
+0.011823,270
+0.014907,270
+0.011328,270
+0.011481,270
+0.011953,270
+0.014402,270
+0.014933,270
+0.011434,270
+0.011730,270
+0.011142,270
+0.011680,270
+0.011440,270
+0.011634,270
+0.011048,270
+0.012270,270
+0.011313,270
+0.011724,270
+0.011649,270
+0.014341,270
+0.017158,270
+0.013464,270
+0.011567,270
+0.011611,270
+0.011913,270
+0.013445,270
+0.011918,270
+0.015169,270
+0.014472,270
+0.011883,270
+0.012696,270
+0.012013,270
+0.011942,270
+0.011916,270
+0.011145,270
+0.013960,270
+0.012014,270
+0.011429,270
+0.011623,270
+0.013834,270
+0.011994,270
+0.011362,270
+0.010976,270
+0.011128,270
+0.010985,270
+0.011327,270
+0.011608,270
+0.013648,270
+0.011881,270
+0.011458,270
+0.011348,270
+0.011615,270
+0.012125,270
+0.011188,270
+0.013129,270
+0.011223,270
+0.011644,270
+0.011201,270
+0.011853,272
+0.012187,272
+0.012305,272
+0.013455,272
+0.012277,272
+0.012017,272
+0.015585,272
+0.012174,272
+0.011242,272
+0.011910,272
+0.011257,272
+0.011207,272
+0.011918,272
+0.011065,272
+0.011464,272
+0.012213,272
+0.011118,272
+0.011124,272
+0.011316,272
+0.011282,272
+0.011464,272
+0.011202,272
+0.011479,272
+0.011615,272
+0.011943,272
+0.011892,272
+0.011300,272
+0.013015,272
+0.011799,272
+0.012453,272
+0.011830,272
+0.015279,272
+0.013138,272
+0.011969,272
+0.012412,272
+0.013635,272
+0.011874,272
+0.012776,272
+0.012803,272
+0.012065,272
+0.012143,272
+0.011485,272
+0.011841,272
+0.012257,272
+0.012161,272
+0.011664,272
+0.012727,272
+0.012390,272
+0.011519,272
+0.012903,272
+0.012968,272
+0.011564,272
+0.011474,272
+0.012503,272
+0.013555,272
+0.011861,272
+0.017892,272
+0.012202,272
+0.011796,272
+0.011900,272
+0.011608,272
+0.011639,272
+0.012110,272
+0.011517,272
+0.011523,272
+0.011379,272
+0.011210,272
+0.011205,272
+0.011195,272
+0.011060,272
+0.011284,272
+0.011000,272
+0.011011,272
+0.011319,272
+0.010966,272
+0.011012,272
+0.011026,272
+0.010966,272
+0.010985,272
+0.011140,272
+0.010966,272
+0.011092,272
+0.011223,272
+0.010995,272
+0.011014,272
+0.010989,272
+0.010997,272
+0.010986,272
+0.011621,272
+0.010976,272
+0.011770,272
+0.011894,272
+0.012049,272
+0.012264,272
+0.012022,272
+0.011747,272
+0.012237,272
+0.012840,272
+0.012496,272
+0.018836,272
+0.012484,274
+0.011528,274
+0.011521,274
+0.011412,274
+0.011490,274
+0.011426,274
+0.011435,274
+0.017460,274
+0.011924,274
+0.011255,274
+0.011323,274
+0.011351,274
+0.011352,274
+0.011390,274
+0.011604,274
+0.014364,274
+0.014529,274
+0.011399,274
+0.011264,274
+0.011219,274
+0.011388,274
+0.011373,274
+0.011226,274
+0.011304,274
+0.017376,274
+0.011361,274
+0.011385,274
+0.011204,274
+0.011264,274
+0.011887,274
+0.011308,274
+0.011339,274
+0.017406,274
+0.013205,274
+0.012187,274
+0.011445,274
+0.011474,274
+0.011793,274
+0.011532,274
+0.011725,274
+0.017909,274
+0.011546,274
+0.012766,274
+0.011466,274
+0.011593,274
+0.011637,274
+0.011641,274
+0.013013,274
+0.018135,274
+0.013629,274
+0.011539,274
+0.012274,274
+0.012491,274
+0.011918,274
+0.012186,274
+0.011985,274
+0.017766,274
+0.011750,274
+0.011517,274
+0.011799,274
+0.011707,274
+0.011869,274
+0.012377,274
+0.012414,274
+0.011907,274
+0.012177,274
+0.011493,274
+0.011761,274
+0.012167,274
+0.012437,274
+0.011576,274
+0.011602,274
+0.012961,274
+0.011365,274
+0.011398,274
+0.011277,274
+0.011328,274
+0.011243,274
+0.011415,274
+0.011370,274
+0.011262,274
+0.013047,274
+0.011328,274
+0.011282,274
+0.011300,274
+0.011189,274
+0.011350,274
+0.011451,274
+0.011256,274
+0.011985,274
+0.012333,274
+0.011306,274
+0.011182,274
+0.011293,274
+0.011283,274
+0.011312,274
+0.011405,274
+0.011258,274
+0.012624,274
+0.011732,274
+0.011626,276
+0.011830,276
+0.011472,276
+0.011444,276
+0.012230,276
+0.011908,276
+0.011449,276
+0.013251,276
+0.011545,276
+0.011906,276
+0.011556,276
+0.011654,276
+0.011653,276
+0.011543,276
+0.011620,276
+0.014764,276
+0.012550,276
+0.011524,276
+0.011551,276
+0.011626,276
+0.011757,276
+0.012318,276
+0.011735,276
+0.012132,276
+0.012866,276
+0.011526,276
+0.011551,276
+0.011645,276
+0.011461,276
+0.011700,276
+0.011646,276
+0.011464,276
+0.013195,276
+0.011691,276
+0.011567,276
+0.011444,276
+0.011548,276
+0.011577,276
+0.011507,276
+0.011613,276
+0.011945,276
+0.013265,276
+0.011492,276
+0.011523,276
+0.011529,276
+0.011488,276
+0.011626,276
+0.011577,276
+0.011430,276
+0.013222,276
+0.011690,276
+0.011585,276
+0.011442,276
+0.011534,276
+0.011572,276
+0.011527,276
+0.011698,276
+0.011460,276
+0.013457,276
+0.011480,276
+0.011521,276
+0.011593,276
+0.011477,276
+0.011625,276
+0.011618,276
+0.011504,276
+0.013268,276
+0.011676,276
+0.011595,276
+0.011449,276
+0.011510,276
+0.011694,276
+0.011560,276
+0.011675,276
+0.011486,276
+0.013421,276
+0.011482,276
+0.011500,276
+0.011549,276
+0.011423,276
+0.011618,276
+0.011554,276
+0.011484,276
+0.013115,276
+0.011791,276
+0.011593,276
+0.011446,276
+0.011472,276
+0.011623,276
+0.011769,276
+0.011809,276
+0.011456,276
+0.013300,276
+0.011511,276
+0.011486,276
+0.011532,276
+0.011444,276
+0.011601,276
+0.011573,276
+0.011466,276
+0.014016,278
+0.012821,278
+0.011816,278
+0.011791,278
+0.011814,278
+0.011808,278
+0.011876,278
+0.011704,278
+0.012423,278
+0.013013,278
+0.011796,278
+0.011863,278
+0.011816,278
+0.012011,278
+0.011901,278
+0.011876,278
+0.011801,278
+0.013614,278
+0.012472,278
+0.011975,278
+0.011879,278
+0.011779,278
+0.011925,278
+0.011799,278
+0.011921,278
+0.013394,278
+0.012003,278
+0.011716,278
+0.011783,278
+0.011709,278
+0.011817,278
+0.011915,278
+0.011706,278
+0.012678,278
+0.012789,278
+0.011801,278
+0.011737,278
+0.011810,278
+0.011883,278
+0.011786,278
+0.011824,278
+0.011753,278
+0.013593,278
+0.011803,278
+0.011789,278
+0.011834,278
+0.011888,278
+0.011825,278
+0.011847,278
+0.011877,278
+0.013396,278
+0.011984,278
+0.011737,278
+0.011921,278
+0.011703,278
+0.011848,278
+0.012008,278
+0.012461,278
+0.013065,278
+0.015012,278
+0.011799,278
+0.011843,278
+0.011725,278
+0.011822,278
+0.011867,278
+0.011685,278
+0.012549,278
+0.017619,278
+0.012041,278
+0.011872,278
+0.011734,278
+0.011846,278
+0.011907,278
+0.011726,278
+0.013490,278
+0.016518,278
+0.012111,278
+0.011972,278
+0.011709,278
+0.011893,278
+0.011847,278
+0.011849,278
+0.013321,278
+0.017125,278
+0.011849,278
+0.012183,278
+0.011838,278
+0.011931,278
+0.011931,278
+0.011880,278
+0.016327,278
+0.013564,278
+0.011901,278
+0.011785,278
+0.012227,278
+0.012016,278
+0.015415,278
+0.012437,278
+0.018601,278
+0.011967,278
+0.012358,280
+0.012528,280
+0.012497,280
+0.012089,280
+0.012103,280
+0.013682,280
+0.016582,280
+0.011985,280
+0.012008,280
+0.012124,280
+0.012076,280
+0.012043,280
+0.012039,280
+0.015314,280
+0.015128,280
+0.011979,280
+0.012000,280
+0.012176,280
+0.012002,280
+0.012048,280
+0.011957,280
+0.017007,280
+0.013269,280
+0.011976,280
+0.012094,280
+0.012067,280
+0.012082,280
+0.012120,280
+0.011987,280
+0.018353,280
+0.012012,280
+0.012067,280
+0.011959,280
+0.012076,280
+0.012149,280
+0.011906,280
+0.012002,280
+0.018332,280
+0.012014,280
+0.012062,280
+0.011926,280
+0.012084,280
+0.012065,280
+0.012078,280
+0.011952,280
+0.018367,280
+0.012072,280
+0.011984,280
+0.012042,280
+0.012131,280
+0.012037,280
+0.012020,280
+0.011885,280
+0.018517,280
+0.012033,280
+0.011994,280
+0.012136,280
+0.012023,280
+0.012108,280
+0.012008,280
+0.012312,280
+0.019490,280
+0.012129,280
+0.012053,280
+0.012023,280
+0.012058,280
+0.011982,280
+0.012002,280
+0.015990,280
+0.014953,280
+0.012328,280
+0.012194,280
+0.012157,280
+0.012081,280
+0.012064,280
+0.011945,280
+0.018334,280
+0.012104,280
+0.011964,280
+0.012029,280
+0.012046,280
+0.012069,280
+0.012067,280
+0.012037,280
+0.018357,280
+0.011993,280
+0.012012,280
+0.012035,280
+0.012176,280
+0.011944,280
+0.011945,280
+0.012023,280
+0.018378,280
+0.012070,280
+0.011964,280
+0.012046,280
+0.012120,280
+0.011925,280
+0.011982,280
+0.012008,280
+0.018777,282
+0.012455,282
+0.012229,282
+0.012423,282
+0.012639,282
+0.012323,282
+0.012197,282
+0.017554,282
+0.013383,282
+0.012235,282
+0.012296,282
+0.012469,282
+0.012245,282
+0.012271,282
+0.012269,282
+0.018619,282
+0.012279,282
+0.012240,282
+0.012295,282
+0.012357,282
+0.012275,282
+0.012292,282
+0.012448,282
+0.018508,282
+0.012233,282
+0.012294,282
+0.012277,282
+0.012265,282
+0.012279,282
+0.012284,282
+0.016910,282
+0.014048,282
+0.012333,282
+0.012298,282
+0.012427,282
+0.012202,282
+0.012237,282
+0.012336,282
+0.019885,282
+0.012457,282
+0.012339,282
+0.012278,282
+0.012321,282
+0.012412,282
+0.012197,282
+0.015114,282
+0.016011,282
+0.012308,282
+0.012356,282
+0.012507,282
+0.012255,282
+0.012235,282
+0.012698,282
+0.019801,282
+0.013296,282
+0.013066,282
+0.012764,282
+0.012640,282
+0.012618,282
+0.012736,282
+0.016990,282
+0.014150,282
+0.012346,282
+0.012283,282
+0.012471,282
+0.012238,282
+0.012256,282
+0.012278,282
+0.018771,282
+0.012374,282
+0.012408,282
+0.012287,282
+0.012941,282
+0.012385,282
+0.012293,282
+0.014701,282
+0.016269,282
+0.012355,282
+0.012353,282
+0.012427,282
+0.012444,282
+0.012636,282
+0.013100,282
+0.020059,282
+0.013754,282
+0.015306,282
+0.013966,282
+0.013118,282
+0.013573,282
+0.013209,282
+0.013211,282
+0.013682,282
+0.013451,282
+0.013830,282
+0.016563,282
+0.014275,282
+0.013191,282
+0.014931,282
+0.013361,282
+0.013060,282
+0.013946,284
+0.013994,284
+0.013735,284
+0.013689,284
+0.015005,284
+0.013579,284
+0.013733,284
+0.013731,284
+0.014022,284
+0.013994,284
+0.013784,284
+0.013775,284
+0.013650,284
+0.013812,284
+0.013409,284
+0.013660,284
+0.013485,284
+0.013261,284
+0.012729,284
+0.013414,284
+0.012799,284
+0.012514,284
+0.012703,284
+0.012598,284
+0.012822,284
+0.012455,284
+0.012624,284
+0.012976,284
+0.012607,284
+0.012557,284
+0.012518,284
+0.012584,284
+0.012541,284
+0.013689,284
+0.013699,284
+0.013100,284
+0.013475,284
+0.012920,284
+0.013383,284
+0.014202,284
+0.014666,284
+0.014012,284
+0.013489,284
+0.013736,284
+0.013426,284
+0.013414,284
+0.013479,284
+0.013610,284
+0.013781,284
+0.013853,284
+0.014394,284
+0.013401,284
+0.013368,284
+0.013851,284
+0.013561,284
+0.013997,284
+0.013764,284
+0.015446,284
+0.013561,284
+0.013659,284
+0.013920,284
+0.013185,284
+0.013524,284
+0.013365,284
+0.015054,284
+0.014309,284
+0.013730,284
+0.013936,284
+0.013663,284
+0.013726,284
+0.013492,284
+0.014247,284
+0.013913,284
+0.013512,284
+0.013265,284
+0.013152,284
+0.012955,284
+0.012899,284
+0.012563,284
+0.012663,284
+0.012529,284
+0.012587,284
+0.012622,284
+0.012544,284
+0.012493,284
+0.012484,284
+0.012470,284
+0.012798,284
+0.012542,284
+0.012523,284
+0.012628,284
+0.012525,284
+0.012440,284
+0.012487,284
+0.012466,284
+0.012660,284
+0.012507,284
+0.012504,284
+0.012633,284
+0.012492,284
+0.012885,286
+0.012740,286
+0.012743,286
+0.012959,286
+0.012753,286
+0.012818,286
+0.012940,286
+0.012742,286
+0.012681,286
+0.012706,286
+0.012818,286
+0.013008,286
+0.012674,286
+0.012738,286
+0.013173,286
+0.012881,286
+0.012797,286
+0.013203,286
+0.013836,286
+0.013470,286
+0.013405,286
+0.013145,286
+0.013560,286
+0.013173,286
+0.012748,286
+0.012981,286
+0.013443,286
+0.013051,286
+0.012730,286
+0.012914,286
+0.012685,286
+0.012631,286
+0.012703,286
+0.012712,286
+0.013049,286
+0.012640,286
+0.012690,286
+0.012926,286
+0.012703,286
+0.012614,286
+0.012685,286
+0.012711,286
+0.013000,286
+0.012728,286
+0.012750,286
+0.012863,286
+0.012725,286
+0.012820,286
+0.012615,286
+0.012768,286
+0.012977,286
+0.012775,286
+0.012779,286
+0.012877,286
+0.012749,286
+0.012727,286
+0.012663,286
+0.012842,286
+0.012997,286
+0.012824,286
+0.012818,286
+0.012674,286
+0.012758,286
+0.012853,286
+0.012863,286
+0.012864,286
+0.012988,286
+0.012823,286
+0.012866,286
+0.012704,286
+0.012687,286
+0.012745,286
+0.012806,286
+0.013069,286
+0.012840,286
+0.012767,286
+0.012968,286
+0.012784,286
+0.012612,286
+0.012711,286
+0.012723,286
+0.013276,286
+0.012728,286
+0.012752,286
+0.012881,286
+0.012702,286
+0.012743,286
+0.012612,286
+0.012753,286
+0.013214,286
+0.012757,286
+0.012776,286
+0.012821,286
+0.012775,286
+0.012750,286
+0.012712,286
+0.012857,286
+0.013142,286
+0.012788,286
+0.012879,286
+0.013201,288
+0.012976,288
+0.013002,288
+0.012988,288
+0.013214,288
+0.013187,288
+0.013072,288
+0.013409,288
+0.013022,288
+0.012897,288
+0.013063,288
+0.012993,288
+0.013472,288
+0.013100,288
+0.012897,288
+0.013178,288
+0.013025,288
+0.013024,288
+0.013205,288
+0.013200,288
+0.013378,288
+0.013053,288
+0.013097,288
+0.014063,288
+0.013531,288
+0.013111,288
+0.012972,288
+0.013326,288
+0.013193,288
+0.013007,288
+0.013126,288
+0.013079,288
+0.013020,288
+0.013074,288
+0.013201,288
+0.013680,288
+0.013155,288
+0.013164,288
+0.013608,288
+0.013087,288
+0.013348,288
+0.013029,288
+0.013178,288
+0.013346,288
+0.013070,288
+0.013138,288
+0.013156,288
+0.013135,288
+0.013054,288
+0.013051,288
+0.013585,288
+0.014019,288
+0.013054,288
+0.013111,288
+0.013063,288
+0.013061,288
+0.013035,288
+0.013075,288
+0.013358,288
+0.013098,288
+0.013045,288
+0.013083,288
+0.012938,288
+0.012982,288
+0.013000,288
+0.013198,288
+0.013349,288
+0.013032,288
+0.013157,288
+0.013035,288
+0.013016,288
+0.012915,288
+0.013047,288
+0.013452,288
+0.013033,288
+0.012995,288
+0.012971,288
+0.013044,288
+0.013024,288
+0.012997,288
+0.013056,288
+0.013446,288
+0.013038,288
+0.013153,288
+0.013140,288
+0.012877,288
+0.012974,288
+0.013012,288
+0.013184,288
+0.013406,288
+0.012904,288
+0.013190,288
+0.013045,288
+0.013018,288
+0.012908,288
+0.012955,288
+0.013446,288
+0.013057,288
+0.013114,288
+0.012941,288
+0.013481,290
+0.013334,290
+0.013320,290
+0.013323,290
+0.013687,290
+0.013270,290
+0.013456,290
+0.013301,290
+0.013286,290
+0.013170,290
+0.013281,290
+0.013732,290
+0.013544,290
+0.013473,290
+0.014077,290
+0.013593,290
+0.013379,290
+0.013369,290
+0.013526,290
+0.013858,290
+0.013238,290
+0.013551,290
+0.013339,290
+0.013329,290
+0.013351,290
+0.013180,290
+0.013894,290
+0.013400,290
+0.013488,290
+0.013460,290
+0.013149,290
+0.013432,290
+0.014937,290
+0.013927,290
+0.013685,290
+0.013380,290
+0.013409,290
+0.013391,290
+0.013376,290
+0.013751,290
+0.013292,290
+0.013819,290
+0.013339,290
+0.013473,290
+0.013314,290
+0.013291,290
+0.013173,290
+0.013790,290
+0.013684,290
+0.013551,290
+0.013448,290
+0.013325,290
+0.013243,290
+0.013352,290
+0.013321,290
+0.013306,290
+0.013955,290
+0.013242,290
+0.013509,290
+0.013295,290
+0.013302,290
+0.013305,290
+0.013144,290
+0.013688,290
+0.013629,290
+0.013456,290
+0.013424,290
+0.013146,290
+0.013349,290
+0.013292,290
+0.013466,290
+0.013820,290
+0.013269,290
+0.013694,290
+0.013465,290
+0.013425,290
+0.013293,290
+0.013317,290
+0.013721,290
+0.013529,290
+0.013479,290
+0.013367,290
+0.013148,290
+0.013268,290
+0.013541,290
+0.013400,290
+0.013686,290
+0.013212,290
+0.013478,290
+0.013329,290
+0.013299,290
+0.013286,290
+0.013170,290
+0.013637,290
+0.013704,290
+0.013489,290
+0.013450,290
+0.013332,290
+0.013141,290
+0.013324,290
+0.014173,292
+0.013964,292
+0.013706,292
+0.013608,292
+0.013528,292
+0.013538,292
+0.013556,292
+0.013539,292
+0.014056,292
+0.013518,292
+0.013774,292
+0.013569,292
+0.013601,292
+0.013535,292
+0.013463,292
+0.013851,292
+0.013804,292
+0.013714,292
+0.013679,292
+0.013573,292
+0.013422,292
+0.013563,292
+0.013673,292
+0.013962,292
+0.013572,292
+0.013598,292
+0.013531,292
+0.013587,292
+0.013540,292
+0.013535,292
+0.013977,292
+0.013441,292
+0.013751,292
+0.013548,292
+0.013621,292
+0.013551,292
+0.013401,292
+0.013880,292
+0.013904,292
+0.013742,292
+0.013665,292
+0.013593,292
+0.013414,292
+0.013546,292
+0.013682,292
+0.014659,292
+0.014596,292
+0.014658,292
+0.013872,292
+0.014497,292
+0.014095,292
+0.014564,292
+0.014594,292
+0.015230,292
+0.014673,292
+0.014149,292
+0.014151,292
+0.014572,292
+0.014287,292
+0.014656,292
+0.014418,292
+0.014275,292
+0.013836,292
+0.013588,292
+0.013943,292
+0.014227,292
+0.014491,292
+0.014003,292
+0.013849,292
+0.013481,292
+0.014047,292
+0.013839,292
+0.013693,292
+0.014099,292
+0.015242,292
+0.014441,292
+0.014667,292
+0.015529,292
+0.016512,292
+0.016460,292
+0.015420,292
+0.016760,292
+0.014867,292
+0.014562,292
+0.014597,292
+0.014859,292
+0.014662,292
+0.014812,292
+0.015283,292
+0.015188,292
+0.014670,292
+0.014191,292
+0.014242,292
+0.014280,292
+0.014270,292
+0.014309,292
+0.013729,292
+0.013819,292
+0.014126,292
+0.013795,292
+0.014795,294
+0.014027,294
+0.013913,294
+0.013824,294
+0.015135,294
+0.016026,294
+0.015641,294
+0.015718,294
+0.015860,294
+0.015509,294
+0.015591,294
+0.014985,294
+0.015005,294
+0.016038,294
+0.016855,294
+0.016140,294
+0.015329,294
+0.015619,294
+0.015057,294
+0.014654,294
+0.015085,294
+0.015368,294
+0.015454,294
+0.015917,294
+0.015275,294
+0.015016,294
+0.015117,294
+0.015881,294
+0.017002,294
+0.016115,294
+0.016410,294
+0.015987,294
+0.014855,294
+0.015974,294
+0.014814,294
+0.015446,294
+0.015848,294
+0.015758,294
+0.014875,294
+0.014658,294
+0.014860,294
+0.015297,294
+0.016768,294
+0.015180,294
+0.014770,294
+0.015168,294
+0.015061,294
+0.015951,294
+0.017409,294
+0.017436,294
+0.017312,294
+0.015754,294
+0.016206,294
+0.016827,294
+0.016502,294
+0.016044,294
+0.015842,294
+0.018897,294
+0.019509,294
+0.018065,294
+0.019213,294
+0.015811,294
+0.015241,294
+0.014296,294
+0.015615,294
+0.017037,294
+0.017171,294
+0.015242,294
+0.015142,294
+0.015733,294
+0.016041,294
+0.015273,294
+0.015189,294
+0.015082,294
+0.015422,294
+0.016060,294
+0.016130,294
+0.016446,294
+0.017918,294
+0.016325,294
+0.016780,294
+0.015085,294
+0.014598,294
+0.015548,294
+0.018661,294
+0.018239,294
+0.015832,294
+0.015122,294
+0.018574,294
+0.017859,294
+0.016707,294
+0.014995,294
+0.015211,294
+0.014929,294
+0.015035,294
+0.014774,294
+0.014655,294
+0.015027,294
+0.015038,294
+0.015198,294
+0.014681,296
+0.014288,296
+0.015142,296
+0.015681,296
+0.015230,296
+0.015222,296
+0.015204,296
+0.015051,296
+0.015135,296
+0.015832,296
+0.016320,296
+0.015317,296
+0.015174,296
+0.014283,296
+0.016614,296
+0.016972,296
+0.014858,296
+0.014459,296
+0.014602,296
+0.014277,296
+0.015539,296
+0.015612,296
+0.016112,296
+0.015737,296
+0.015104,296
+0.014696,296
+0.015561,296
+0.015715,296
+0.015489,296
+0.015198,296
+0.015239,296
+0.015045,296
+0.015285,296
+0.015164,296
+0.014412,296
+0.014795,296
+0.014220,296
+0.014082,296
+0.013997,296
+0.014116,296
+0.014535,296
+0.014673,296
+0.015166,296
+0.015054,296
+0.014801,296
+0.016423,296
+0.019121,296
+0.016707,296
+0.017321,296
+0.015645,296
+0.015656,296
+0.014643,296
+0.014348,296
+0.014928,296
+0.015420,296
+0.015165,296
+0.015154,296
+0.014837,296
+0.015405,296
+0.015458,296
+0.023828,296
+0.024815,296
+0.016970,296
+0.017982,296
+0.015732,296
+0.016239,296
+0.015299,296
+0.014810,296
+0.014520,296
+0.014830,296
+0.015901,296
+0.015074,296
+0.015274,296
+0.016604,296
+0.015285,296
+0.014779,296
+0.015344,296
+0.015064,296
+0.014944,296
+0.016107,296
+0.015013,296
+0.014853,296
+0.014481,296
+0.015386,296
+0.014975,296
+0.015724,296
+0.014866,296
+0.015657,296
+0.014461,296
+0.014291,296
+0.014056,296
+0.014826,296
+0.014428,296
+0.015374,296
+0.014666,296
+0.015026,296
+0.014345,296
+0.014619,296
+0.015102,296
+0.014787,296
+0.015666,298
+0.014854,298
+0.015187,298
+0.015992,298
+0.016170,298
+0.015382,298
+0.016049,298
+0.015758,298
+0.016153,298
+0.015938,298
+0.016403,298
+0.016760,298
+0.016727,298
+0.017336,298
+0.015007,298
+0.015812,298
+0.016600,298
+0.017088,298
+0.021346,298
+0.016721,298
+0.018078,298
+0.016002,298
+0.015634,298
+0.016869,298
+0.015550,298
+0.015720,298
+0.015011,298
+0.015664,298
+0.015481,298
+0.015510,298
+0.018328,298
+0.020421,298
+0.015091,298
+0.014703,298
+0.014954,298
+0.014855,298
+0.016252,298
+0.017516,298
+0.018290,298
+0.017556,298
+0.016717,298
+0.019328,298
+0.018002,298
+0.017207,298
+0.017260,298
+0.016040,298
+0.015982,298
+0.015778,298
+0.016230,298
+0.017668,298
+0.016499,298
+0.017272,298
+0.015800,298
+0.015261,298
+0.015103,298
+0.015956,298
+0.016004,298
+0.016785,298
+0.016497,298
+0.015962,298
+0.015830,298
+0.017555,298
+0.016003,298
+0.016073,298
+0.016233,298
+0.016343,298
+0.015528,298
+0.017081,298
+0.015666,298
+0.015200,298
+0.015575,298
+0.014971,298
+0.015492,298
+0.016195,298
+0.016266,298
+0.015414,298
+0.015653,298
+0.015342,298
+0.015384,298
+0.015154,298
+0.017177,298
+0.016570,298
+0.017330,298
+0.016724,298
+0.018397,298
+0.021554,298
+0.025023,298
+0.016175,298
+0.017001,298
+0.016864,298
+0.016334,298
+0.016042,298
+0.015923,298
+0.017484,298
+0.016283,298
+0.014971,298
+0.015364,298
+0.016135,298
+0.016538,298
+0.015348,298
diff --git a/buch/papers/multiplikation/code/meas/test/winograd.txt b/buch/papers/multiplikation/code/meas/test/winograd.txt
new file mode 100644
index 0000000..d01fefd
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/test/winograd.txt
@@ -0,0 +1,14900 @@
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000010,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000010,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000010,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000011,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000010,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000001,6
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000012,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000011,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000012,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000011,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000014,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000011,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000015,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000011,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000011,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000011,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000013,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000012,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000013,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000005,10
+0.000005,10
+0.000005,10
+0.000014,10
+0.000004,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000003,10
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000015,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000014,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000005,12
+0.000008,14
+0.000008,14
+0.000018,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000017,14
+0.000012,14
+0.000013,14
+0.000009,14
+0.000011,14
+0.000014,14
+0.000010,14
+0.000008,14
+0.000008,14
+0.000014,14
+0.000013,14
+0.000010,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000015,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000012,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000009,14
+0.000010,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000017,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000008,14
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000022,16
+0.000011,16
+0.000011,16
+0.000020,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000021,16
+0.000011,16
+0.000011,16
+0.000020,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000016,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000027,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000015,18
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000026,20
+0.000028,20
+0.000031,20
+0.000031,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000031,20
+0.000052,20
+0.000021,20
+0.000021,20
+0.000030,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000028,20
+0.000025,20
+0.000032,20
+0.000036,20
+0.000031,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000021,20
+0.000031,20
+0.000021,20
+0.000030,20
+0.000031,20
+0.000048,22
+0.000038,22
+0.000028,22
+0.000037,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000035,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000035,22
+0.000037,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000029,22
+0.000042,22
+0.000042,22
+0.000036,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000027,22
+0.000036,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000052,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000047,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000048,24
+0.000070,24
+0.000045,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000046,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000035,24
+0.000043,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000034,24
+0.000044,26
+0.000043,26
+0.000052,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000044,26
+0.000057,26
+0.000045,26
+0.000044,26
+0.000044,26
+0.000052,26
+0.000043,26
+0.000043,26
+0.000084,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000061,26
+0.000062,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000053,26
+0.000053,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000067,26
+0.000073,26
+0.000044,26
+0.000072,26
+0.000074,26
+0.000053,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000061,26
+0.000057,26
+0.000053,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000043,26
+0.000065,26
+0.000091,26
+0.000047,26
+0.000044,26
+0.000044,26
+0.000048,26
+0.000044,26
+0.000044,26
+0.000049,26
+0.000048,26
+0.000053,26
+0.000043,26
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000084,28
+0.000084,28
+0.000098,28
+0.000063,28
+0.000054,28
+0.000054,28
+0.000064,28
+0.000084,28
+0.000064,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000081,28
+0.000063,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000053,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000053,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000064,28
+0.000074,28
+0.000085,28
+0.000095,28
+0.000063,28
+0.000054,28
+0.000064,28
+0.000073,28
+0.000085,28
+0.000064,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000053,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000053,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000062,28
+0.000092,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000054,28
+0.000067,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000066,30
+0.000066,30
+0.000065,30
+0.000098,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000066,30
+0.000065,30
+0.000066,30
+0.000066,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000104,30
+0.000077,30
+0.000127,30
+0.000075,30
+0.000065,30
+0.000066,30
+0.000095,30
+0.000086,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000076,30
+0.000087,30
+0.000140,30
+0.000075,30
+0.000066,30
+0.000085,30
+0.000106,30
+0.000076,30
+0.000066,30
+0.000065,30
+0.000066,30
+0.000101,30
+0.000065,30
+0.000065,30
+0.000066,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000066,30
+0.000065,30
+0.000066,30
+0.000066,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000074,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000067,30
+0.000098,30
+0.000108,30
+0.000075,30
+0.000065,30
+0.000085,30
+0.000106,30
+0.000076,30
+0.000066,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000065,30
+0.000066,30
+0.000066,30
+0.000065,30
+0.000065,30
+0.000066,30
+0.000065,30
+0.000065,30
+0.000076,30
+0.000081,30
+0.000103,30
+0.000096,30
+0.000069,30
+0.000091,30
+0.000080,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000090,32
+0.000089,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000110,32
+0.000138,32
+0.000099,32
+0.000079,32
+0.000099,32
+0.000120,32
+0.000089,32
+0.000079,32
+0.000119,32
+0.000121,32
+0.000081,32
+0.000085,32
+0.000086,32
+0.000093,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000114,32
+0.000110,32
+0.000155,32
+0.000089,32
+0.000079,32
+0.000090,32
+0.000120,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000109,32
+0.000112,32
+0.000132,32
+0.000079,32
+0.000079,32
+0.000121,32
+0.000089,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000105,32
+0.000089,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000103,32
+0.000089,32
+0.000096,34
+0.000094,34
+0.000094,34
+0.000125,34
+0.000139,34
+0.000115,34
+0.000114,34
+0.000136,34
+0.000104,34
+0.000094,34
+0.000104,34
+0.000119,34
+0.000094,34
+0.000094,34
+0.000094,34
+0.000094,34
+0.000094,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000126,34
+0.000168,34
+0.000104,34
+0.000115,34
+0.000136,34
+0.000105,34
+0.000095,34
+0.000139,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000106,34
+0.000159,34
+0.000134,34
+0.000095,34
+0.000125,34
+0.000116,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000131,34
+0.000095,34
+0.000095,34
+0.000125,34
+0.000165,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000095,34
+0.000125,34
+0.000143,34
+0.000149,34
+0.000095,34
+0.000115,34
+0.000136,34
+0.000104,34
+0.000095,34
+0.000105,34
+0.000133,34
+0.000152,34
+0.000095,34
+0.000105,34
+0.000135,34
+0.000094,34
+0.000094,34
+0.000094,34
+0.000094,34
+0.000094,34
+0.000094,34
+0.000095,34
+0.000112,36
+0.000123,36
+0.000175,36
+0.000120,36
+0.000146,36
+0.000125,36
+0.000115,36
+0.000115,36
+0.000131,36
+0.000124,36
+0.000124,36
+0.000124,36
+0.000124,36
+0.000140,36
+0.000129,36
+0.000124,36
+0.000159,36
+0.000135,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000114,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000115,36
+0.000150,36
+0.000122,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000133,36
+0.000151,36
+0.000163,36
+0.000153,36
+0.000152,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000145,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000152,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000123,36
+0.000148,36
+0.000127,36
+0.000123,36
+0.000163,36
+0.000121,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000132,36
+0.000111,36
+0.000112,36
+0.000112,36
+0.000112,36
+0.000133,38
+0.000131,38
+0.000131,38
+0.000173,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000141,38
+0.000189,38
+0.000178,38
+0.000140,38
+0.000182,38
+0.000141,38
+0.000131,38
+0.000138,38
+0.000181,38
+0.000175,38
+0.000181,38
+0.000162,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000146,38
+0.000174,38
+0.000230,38
+0.000194,38
+0.000195,38
+0.000222,38
+0.000131,38
+0.000134,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000132,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000132,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000132,38
+0.000131,38
+0.000175,38
+0.000197,38
+0.000144,38
+0.000176,38
+0.000175,38
+0.000134,38
+0.000135,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000182,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000152,38
+0.000131,38
+0.000141,38
+0.000189,38
+0.000179,38
+0.000172,38
+0.000171,38
+0.000131,38
+0.000169,38
+0.000131,38
+0.000141,38
+0.000140,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000131,38
+0.000177,38
+0.000163,38
+0.000161,38
+0.000182,38
+0.000131,38
+0.000131,38
+0.000149,38
+0.000209,40
+0.000172,40
+0.000213,40
+0.000152,40
+0.000152,40
+0.000152,40
+0.000152,40
+0.000152,40
+0.000152,40
+0.000152,40
+0.000152,40
+0.000192,40
+0.000152,40
+0.000152,40
+0.000152,40
+0.000152,40
+0.000152,40
+0.000153,40
+0.000217,40
+0.000162,40
+0.000203,40
+0.000209,40
+0.000152,40
+0.000152,40
+0.000152,40
+0.000174,40
+0.000152,40
+0.000152,40
+0.000163,40
+0.000179,40
+0.000210,40
+0.000172,40
+0.000225,40
+0.000160,40
+0.000200,40
+0.000195,40
+0.000184,40
+0.000167,40
+0.000154,40
+0.000174,40
+0.000181,40
+0.000166,40
+0.000162,40
+0.000153,40
+0.000165,40
+0.000165,40
+0.000153,40
+0.000164,40
+0.000157,40
+0.000157,40
+0.000157,40
+0.000157,40
+0.000157,40
+0.000163,40
+0.000153,40
+0.000153,40
+0.000153,40
+0.000164,40
+0.000195,40
+0.000158,40
+0.000153,40
+0.000185,40
+0.000165,40
+0.000153,40
+0.000153,40
+0.000163,40
+0.000165,40
+0.000152,40
+0.000153,40
+0.000153,40
+0.000153,40
+0.000169,40
+0.000272,40
+0.000177,40
+0.000195,40
+0.000196,40
+0.000162,40
+0.000210,40
+0.000177,40
+0.000166,40
+0.000176,40
+0.000258,40
+0.000241,40
+0.000176,40
+0.000166,40
+0.000156,40
+0.000156,40
+0.000156,40
+0.000156,40
+0.000156,40
+0.000156,40
+0.000156,40
+0.000156,40
+0.000184,40
+0.000184,40
+0.000198,40
+0.000158,40
+0.000158,40
+0.000158,40
+0.000158,40
+0.000184,42
+0.000182,42
+0.000182,42
+0.000182,42
+0.000238,42
+0.000302,42
+0.000215,42
+0.000192,42
+0.000182,42
+0.000182,42
+0.000182,42
+0.000182,42
+0.000182,42
+0.000182,42
+0.000206,42
+0.000199,42
+0.000188,42
+0.000203,42
+0.000182,42
+0.000182,42
+0.000182,42
+0.000182,42
+0.000182,42
+0.000182,42
+0.000206,42
+0.000309,42
+0.000182,42
+0.000222,42
+0.000182,42
+0.000219,42
+0.000280,42
+0.000212,42
+0.000225,42
+0.000187,42
+0.000187,42
+0.000187,42
+0.000191,42
+0.000187,42
+0.000187,42
+0.000305,42
+0.000270,42
+0.000180,42
+0.000204,42
+0.000298,42
+0.000289,42
+0.000190,42
+0.000180,42
+0.000180,42
+0.000180,42
+0.000180,42
+0.000180,42
+0.000180,42
+0.000201,42
+0.000314,42
+0.000307,42
+0.000314,42
+0.000338,42
+0.000333,42
+0.000327,42
+0.000317,42
+0.000329,42
+0.000328,42
+0.000363,42
+0.000331,42
+0.000323,42
+0.000311,42
+0.000269,42
+0.000233,42
+0.000212,42
+0.000217,42
+0.000272,42
+0.000322,42
+0.000341,42
+0.000225,42
+0.000195,42
+0.000182,42
+0.000182,42
+0.000207,42
+0.000273,42
+0.000187,42
+0.000187,42
+0.000187,42
+0.000187,42
+0.000193,42
+0.000182,42
+0.000182,42
+0.000182,42
+0.000215,42
+0.000220,42
+0.000202,42
+0.000191,42
+0.000208,42
+0.000180,42
+0.000180,42
+0.000180,42
+0.000180,42
+0.000180,42
+0.000180,42
+0.000180,42
+0.000180,42
+0.000209,44
+0.000207,44
+0.000207,44
+0.000285,44
+0.000239,44
+0.000239,44
+0.000247,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000253,44
+0.000235,44
+0.000246,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000221,44
+0.000212,44
+0.000212,44
+0.000263,44
+0.000250,44
+0.000227,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000226,44
+0.000207,44
+0.000207,44
+0.000257,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000246,44
+0.000249,44
+0.000217,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000244,44
+0.000239,44
+0.000207,44
+0.000207,44
+0.000231,44
+0.000240,44
+0.000247,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000273,44
+0.000237,44
+0.000216,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000224,44
+0.000245,44
+0.000262,44
+0.000227,44
+0.000207,44
+0.000207,44
+0.000212,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000226,44
+0.000271,44
+0.000272,44
+0.000212,44
+0.000217,44
+0.000212,44
+0.000212,44
+0.000212,44
+0.000212,44
+0.000212,44
+0.000245,44
+0.000227,44
+0.000207,44
+0.000207,44
+0.000210,44
+0.000249,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000207,44
+0.000237,46
+0.000261,46
+0.000249,46
+0.000236,46
+0.000236,46
+0.000255,46
+0.000240,46
+0.000281,46
+0.000263,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000235,46
+0.000236,46
+0.000274,46
+0.000241,46
+0.000274,46
+0.000230,46
+0.000229,46
+0.000230,46
+0.000259,46
+0.000357,46
+0.000296,46
+0.000256,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000255,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000255,46
+0.000248,46
+0.000269,46
+0.000253,46
+0.000229,46
+0.000324,46
+0.000286,46
+0.000245,46
+0.000240,46
+0.000282,46
+0.000265,46
+0.000230,46
+0.000230,46
+0.000230,46
+0.000230,46
+0.000283,46
+0.000302,46
+0.000239,46
+0.000230,46
+0.000230,46
+0.000230,46
+0.000229,46
+0.000230,46
+0.000229,46
+0.000230,46
+0.000229,46
+0.000230,46
+0.000229,46
+0.000230,46
+0.000230,46
+0.000230,46
+0.000229,46
+0.000230,46
+0.000280,46
+0.000230,46
+0.000230,46
+0.000229,46
+0.000229,46
+0.000322,46
+0.000386,46
+0.000279,46
+0.000242,46
+0.000242,46
+0.000242,46
+0.000267,46
+0.000236,46
+0.000236,46
+0.000235,46
+0.000236,46
+0.000260,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000235,46
+0.000236,46
+0.000236,46
+0.000236,46
+0.000242,46
+0.000265,46
+0.000372,46
+0.000339,48
+0.000281,48
+0.000438,48
+0.000286,48
+0.000281,48
+0.000260,48
+0.000276,48
+0.000333,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000293,48
+0.000363,48
+0.000319,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000299,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000371,48
+0.000476,48
+0.000272,48
+0.000263,48
+0.000304,48
+0.000263,48
+0.000309,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000300,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000352,48
+0.000466,48
+0.000337,48
+0.000263,48
+0.000263,48
+0.000263,48
+0.000378,48
+0.000471,48
+0.000335,48
+0.000260,48
+0.000260,48
+0.000260,48
+0.000358,48
+0.000337,48
+0.000293,48
+0.000260,48
+0.000274,48
+0.000271,48
+0.000274,48
+0.000271,48
+0.000273,48
+0.000271,48
+0.000282,48
+0.000283,48
+0.000260,48
+0.000260,48
+0.000285,48
+0.000260,48
+0.000284,48
+0.000260,48
+0.000272,48
+0.000272,48
+0.000260,48
+0.000331,48
+0.000461,48
+0.000328,48
+0.000291,48
+0.000325,48
+0.000402,48
+0.000333,48
+0.000284,48
+0.000300,50
+0.000316,50
+0.000297,50
+0.000297,50
+0.000297,50
+0.000533,50
+0.000402,50
+0.000340,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000400,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000301,50
+0.000506,50
+0.000445,50
+0.000294,50
+0.000309,50
+0.000424,50
+0.000302,50
+0.000304,50
+0.000304,50
+0.000310,50
+0.000294,50
+0.000294,50
+0.000344,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000355,50
+0.000308,50
+0.000333,50
+0.000294,50
+0.000333,50
+0.000465,50
+0.000440,50
+0.000349,50
+0.000508,50
+0.000297,50
+0.000297,50
+0.000297,50
+0.000297,50
+0.000341,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000313,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000374,50
+0.000299,50
+0.000294,50
+0.000344,50
+0.000294,50
+0.000300,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000572,50
+0.000427,50
+0.000297,50
+0.000297,50
+0.000297,50
+0.000332,50
+0.000297,50
+0.000297,50
+0.000297,50
+0.000297,50
+0.000297,50
+0.000297,50
+0.000297,50
+0.000297,50
+0.000297,50
+0.000461,50
+0.000454,50
+0.000376,50
+0.000313,50
+0.000294,50
+0.000294,50
+0.000294,50
+0.000354,50
+0.000294,50
+0.000588,52
+0.000370,52
+0.000333,52
+0.000333,52
+0.000378,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000415,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000655,52
+0.000353,52
+0.000591,52
+0.000396,52
+0.000367,52
+0.000341,52
+0.000375,52
+0.000330,52
+0.000330,52
+0.000378,52
+0.000591,52
+0.000334,52
+0.000333,52
+0.000333,52
+0.000333,52
+0.000333,52
+0.000333,52
+0.000375,52
+0.000330,52
+0.000369,52
+0.000330,52
+0.000330,52
+0.000336,52
+0.000493,52
+0.000479,52
+0.000333,52
+0.000333,52
+0.000333,52
+0.000378,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000494,52
+0.000468,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000376,52
+0.000408,52
+0.000376,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000575,52
+0.000368,52
+0.000330,52
+0.000340,52
+0.000405,52
+0.000378,52
+0.000339,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000600,52
+0.000340,52
+0.000330,52
+0.000330,52
+0.000345,52
+0.000349,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000390,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000382,52
+0.000589,52
+0.000369,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000329,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000330,52
+0.000372,54
+0.000369,54
+0.000369,54
+0.000579,54
+0.000500,54
+0.000471,54
+0.000378,54
+0.000369,54
+0.000379,54
+0.000378,54
+0.000443,54
+0.000369,54
+0.000410,54
+0.000515,54
+0.000437,54
+0.000546,54
+0.000378,54
+0.000377,54
+0.000369,54
+0.000380,54
+0.000588,54
+0.000405,54
+0.000368,54
+0.000369,54
+0.000369,54
+0.000369,54
+0.000369,54
+0.000431,54
+0.000369,54
+0.000369,54
+0.000369,54
+0.000410,54
+0.000413,54
+0.000369,54
+0.000369,54
+0.000651,54
+0.000382,54
+0.000373,54
+0.000373,54
+0.000373,54
+0.000373,54
+0.000373,54
+0.000416,54
+0.000369,54
+0.000369,54
+0.000369,54
+0.000400,54
+0.000459,54
+0.000369,54
+0.000369,54
+0.000381,54
+0.000378,54
+0.000402,54
+0.000379,54
+0.000411,54
+0.000527,54
+0.000369,54
+0.000379,54
+0.000408,54
+0.000369,54
+0.000369,54
+0.000369,54
+0.000404,54
+0.000369,54
+0.000409,54
+0.000369,54
+0.000369,54
+0.000389,54
+0.000369,54
+0.000459,54
+0.000376,54
+0.000438,54
+0.000442,54
+0.000378,54
+0.000369,54
+0.000369,54
+0.000541,54
+0.000588,54
+0.000392,54
+0.000389,54
+0.000389,54
+0.000403,54
+0.000378,54
+0.000378,54
+0.000378,54
+0.000379,54
+0.000378,54
+0.000378,54
+0.000434,54
+0.000369,54
+0.000369,54
+0.000369,54
+0.000406,54
+0.000368,54
+0.000369,54
+0.000369,54
+0.000454,54
+0.000443,54
+0.000395,54
+0.000369,54
+0.000412,56
+0.000410,56
+0.000452,56
+0.000410,56
+0.000411,56
+0.000410,56
+0.000411,56
+0.000411,56
+0.000410,56
+0.000411,56
+0.000451,56
+0.000455,56
+0.000490,56
+0.000466,56
+0.000411,56
+0.000410,56
+0.000411,56
+0.000411,56
+0.000410,56
+0.000410,56
+0.000411,56
+0.000447,56
+0.000410,56
+0.000410,56
+0.000411,56
+0.000411,56
+0.000411,56
+0.000430,56
+0.000486,56
+0.000467,56
+0.000448,56
+0.000411,56
+0.000410,56
+0.000498,56
+0.000450,56
+0.000491,56
+0.000471,56
+0.000411,56
+0.000410,56
+0.000443,56
+0.000410,56
+0.000410,56
+0.000411,56
+0.000411,56
+0.000410,56
+0.000410,56
+0.000411,56
+0.000410,56
+0.000412,56
+0.000528,56
+0.000454,56
+0.000411,56
+0.000451,56
+0.000411,56
+0.000410,56
+0.000410,56
+0.000517,56
+0.000489,56
+0.000410,56
+0.000410,56
+0.000498,56
+0.000450,56
+0.000410,56
+0.000410,56
+0.000411,56
+0.000431,56
+0.000437,56
+0.000479,56
+0.000411,56
+0.000411,56
+0.000430,56
+0.000442,56
+0.000662,56
+0.000483,56
+0.000445,56
+0.000454,56
+0.000410,56
+0.000410,56
+0.000410,56
+0.000410,56
+0.000597,56
+0.000603,56
+0.000460,56
+0.000458,56
+0.000709,56
+0.000501,56
+0.000462,56
+0.000453,56
+0.000433,56
+0.000421,56
+0.000421,56
+0.000421,56
+0.000449,56
+0.000411,56
+0.000411,56
+0.000679,56
+0.000441,56
+0.000421,56
+0.000421,56
+0.000421,56
+0.000469,58
+0.000832,58
+0.000624,58
+0.000507,58
+0.000506,58
+0.000455,58
+0.000455,58
+0.000538,58
+0.000739,58
+0.000536,58
+0.000467,58
+0.000467,58
+0.000468,58
+0.000487,58
+0.000554,58
+0.000495,58
+0.000467,58
+0.000467,58
+0.000559,58
+0.000508,58
+0.000480,58
+0.000480,58
+0.000582,58
+0.000483,58
+0.000480,58
+0.000480,58
+0.000480,58
+0.000480,58
+0.000506,58
+0.000477,58
+0.000467,58
+0.000467,58
+0.000499,58
+0.000455,58
+0.000697,58
+0.000636,58
+0.000502,58
+0.000472,58
+0.000514,58
+0.000506,58
+0.000566,58
+0.000465,58
+0.000455,58
+0.000515,58
+0.000707,58
+0.000478,58
+0.000487,58
+0.000519,58
+0.000490,58
+0.000467,58
+0.000467,58
+0.000522,58
+0.000483,58
+0.000467,58
+0.000488,58
+0.000477,58
+0.000467,58
+0.000467,58
+0.000467,58
+0.000478,58
+0.000642,58
+0.000498,58
+0.000483,58
+0.000472,58
+0.000467,58
+0.000467,58
+0.000467,58
+0.000502,58
+0.000533,58
+0.000473,58
+0.000467,58
+0.000480,58
+0.000455,58
+0.000498,58
+0.000544,58
+0.000455,58
+0.000632,58
+0.000488,58
+0.000500,58
+0.000507,58
+0.000468,58
+0.000486,58
+0.000499,58
+0.000455,58
+0.000480,58
+0.000493,58
+0.000467,58
+0.000530,58
+0.000557,58
+0.000495,58
+0.000518,58
+0.000539,58
+0.000572,58
+0.000487,58
+0.000467,58
+0.000495,58
+0.000467,58
+0.000498,58
+0.000613,58
+0.000513,58
+0.000605,60
+0.000517,60
+0.000526,60
+0.000540,60
+0.000503,60
+0.000504,60
+0.000648,60
+0.000701,60
+0.000610,60
+0.000554,60
+0.000532,60
+0.000517,60
+0.000645,60
+0.000517,60
+0.000516,60
+0.000517,60
+0.000531,60
+0.000638,60
+0.000557,60
+0.000517,60
+0.000517,60
+0.000517,60
+0.000517,60
+0.000517,60
+0.000563,60
+0.000653,60
+0.000517,60
+0.000517,60
+0.000565,60
+0.000560,60
+0.000555,60
+0.000548,60
+0.000517,60
+0.000525,60
+0.000650,60
+0.000613,60
+0.000596,60
+0.000517,60
+0.000547,60
+0.000614,60
+0.000526,60
+0.000517,60
+0.000556,60
+0.000551,60
+0.000517,60
+0.000517,60
+0.000670,60
+0.000537,60
+0.000517,60
+0.000531,60
+0.000517,60
+0.000517,60
+0.000613,60
+0.000547,60
+0.000517,60
+0.000585,60
+0.000543,60
+0.000517,60
+0.000517,60
+0.000552,60
+0.000550,60
+0.000553,60
+0.000528,60
+0.000559,60
+0.000517,60
+0.000517,60
+0.000684,60
+0.000583,60
+0.000526,60
+0.000517,60
+0.000604,60
+0.000517,60
+0.000517,60
+0.000517,60
+0.000517,60
+0.000588,60
+0.000538,60
+0.000610,60
+0.000534,60
+0.000622,60
+0.000517,60
+0.000517,60
+0.000596,60
+0.000558,60
+0.000544,60
+0.000564,60
+0.000545,60
+0.000537,60
+0.000517,60
+0.000542,60
+0.000586,60
+0.000582,60
+0.000579,60
+0.000522,60
+0.000517,60
+0.000554,60
+0.000558,60
+0.000604,60
+0.000526,60
+0.000563,60
+0.000599,62
+0.000611,62
+0.000569,62
+0.000601,62
+0.000648,62
+0.000579,62
+0.000605,62
+0.000607,62
+0.000613,62
+0.000570,62
+0.000654,62
+0.000610,62
+0.000637,62
+0.000569,62
+0.000569,62
+0.000596,62
+0.000611,62
+0.000664,62
+0.000569,62
+0.000598,62
+0.000570,62
+0.000575,62
+0.000639,62
+0.000654,62
+0.000661,62
+0.000570,62
+0.000569,62
+0.000671,62
+0.000625,62
+0.000630,62
+0.000595,62
+0.000580,62
+0.000695,62
+0.000584,62
+0.000569,62
+0.000719,62
+0.000616,62
+0.000569,62
+0.000644,62
+0.000610,62
+0.000615,62
+0.000605,62
+0.000626,62
+0.000580,62
+0.000580,62
+0.000659,62
+0.000601,62
+0.000570,62
+0.000675,62
+0.000597,62
+0.000570,62
+0.000735,62
+0.000596,62
+0.000570,62
+0.000569,62
+0.000609,62
+0.000749,62
+0.000793,62
+0.000687,62
+0.000570,62
+0.000785,62
+0.000754,62
+0.000608,62
+0.000626,62
+0.000628,62
+0.000734,62
+0.000564,62
+0.000593,62
+0.000564,62
+0.000598,62
+0.000848,62
+0.000569,62
+0.000602,62
+0.000569,62
+0.000781,62
+0.000628,62
+0.000621,62
+0.000570,62
+0.000569,62
+0.000689,62
+0.000595,62
+0.000598,62
+0.000650,62
+0.000576,62
+0.000569,62
+0.000627,62
+0.000617,62
+0.000649,62
+0.000590,62
+0.000579,62
+0.000569,62
+0.000569,62
+0.000569,62
+0.000587,62
+0.000582,62
+0.000569,62
+0.000570,62
+0.000570,62
+0.000555,62
+0.000779,62
+0.000785,64
+0.000667,64
+0.000626,64
+0.000672,64
+0.000706,64
+0.000632,64
+0.000670,64
+0.000610,64
+0.000609,64
+0.000704,64
+0.000675,64
+0.000625,64
+0.000799,64
+0.000684,64
+0.000636,64
+0.000636,64
+0.000610,64
+0.000610,64
+0.000652,64
+0.000610,64
+0.000609,64
+0.000621,64
+0.000832,64
+0.000626,64
+0.000740,64
+0.000707,64
+0.000636,64
+0.000626,64
+0.000626,64
+0.000677,64
+0.000675,64
+0.000680,64
+0.000849,64
+0.000617,64
+0.000616,64
+0.000617,64
+0.000655,64
+0.000617,64
+0.000894,64
+0.000675,64
+0.000660,64
+0.000877,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000630,64
+0.000630,64
+0.000610,64
+0.000822,64
+0.000718,64
+0.000626,64
+0.000816,64
+0.000610,64
+0.000732,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000803,64
+0.000667,64
+0.000646,64
+0.000626,64
+0.000640,64
+0.000626,64
+0.000650,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000646,64
+0.000610,64
+0.000610,64
+0.000755,64
+0.000610,64
+0.000610,64
+0.000630,64
+0.000767,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000653,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000650,64
+0.000610,64
+0.000658,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000610,64
+0.000643,64
+0.000610,64
+0.000701,66
+0.000736,66
+0.000701,66
+0.000695,66
+0.000757,66
+0.000892,66
+0.000695,66
+0.000695,66
+0.000695,66
+0.000794,66
+0.000719,66
+0.000730,66
+0.000720,66
+0.000768,66
+0.000752,66
+0.000803,66
+0.000695,66
+0.000803,66
+0.000817,66
+0.000695,66
+0.000730,66
+0.000695,66
+0.000695,66
+0.000695,66
+0.000695,66
+0.000730,66
+0.000695,66
+0.000695,66
+0.000714,66
+0.000695,66
+0.000695,66
+0.000733,66
+0.000735,66
+0.000877,66
+0.000695,66
+0.000695,66
+0.000788,66
+0.000696,66
+0.000707,66
+0.000695,66
+0.000695,66
+0.000695,66
+0.000736,66
+0.000695,66
+0.000695,66
+0.000695,66
+0.000696,66
+0.000695,66
+0.000730,66
+0.000830,66
+0.001033,66
+0.000793,66
+0.000776,66
+0.000695,66
+0.000695,66
+0.000695,66
+0.000695,66
+0.000695,66
+0.000734,66
+0.000734,66
+0.000695,66
+0.000705,66
+0.000695,66
+0.000695,66
+0.000723,66
+0.000735,66
+0.000887,66
+0.000839,66
+0.001128,66
+0.000973,66
+0.000763,66
+0.000749,66
+0.000970,66
+0.000838,66
+0.000749,66
+0.000845,66
+0.000848,66
+0.000736,66
+0.001027,66
+0.001168,66
+0.001270,66
+0.000751,66
+0.000812,66
+0.000766,66
+0.000714,66
+0.000796,66
+0.000723,66
+0.000749,66
+0.000777,66
+0.000744,66
+0.000703,66
+0.000795,66
+0.000938,66
+0.000951,66
+0.001383,66
+0.000888,66
+0.000774,66
+0.000845,66
+0.001012,66
+0.000972,66
+0.000907,68
+0.001312,68
+0.001344,68
+0.001450,68
+0.001564,68
+0.001454,68
+0.001484,68
+0.001321,68
+0.001172,68
+0.000795,68
+0.000780,68
+0.000896,68
+0.000932,68
+0.000758,68
+0.000793,68
+0.000760,68
+0.000781,68
+0.000796,68
+0.000750,68
+0.000798,68
+0.000770,68
+0.000750,68
+0.000815,68
+0.000750,68
+0.000768,68
+0.000752,68
+0.000890,68
+0.000791,68
+0.000766,68
+0.000730,68
+0.000794,68
+0.000783,68
+0.000771,68
+0.000731,68
+0.000795,68
+0.000825,68
+0.000740,68
+0.000731,68
+0.000730,68
+0.000730,68
+0.000773,68
+0.000730,68
+0.000749,68
+0.000730,68
+0.000829,68
+0.000801,68
+0.000730,68
+0.000872,68
+0.000770,68
+0.000843,68
+0.000796,68
+0.000978,68
+0.000765,68
+0.000857,68
+0.000780,68
+0.000829,68
+0.000744,68
+0.000778,68
+0.000767,68
+0.000777,68
+0.000798,68
+0.000741,68
+0.000730,68
+0.000799,68
+0.000816,68
+0.000816,68
+0.000731,68
+0.000730,68
+0.000800,68
+0.000808,68
+0.000837,68
+0.000731,68
+0.000770,68
+0.000770,68
+0.000832,68
+0.000751,68
+0.000831,68
+0.000730,68
+0.000792,68
+0.000730,68
+0.000751,68
+0.000774,68
+0.000730,68
+0.000730,68
+0.000730,68
+0.000730,68
+0.000830,68
+0.000773,68
+0.000881,68
+0.000797,68
+0.000875,68
+0.000819,68
+0.000830,68
+0.000844,68
+0.000806,68
+0.000879,68
+0.000793,68
+0.000781,68
+0.000763,68
+0.000952,68
+0.000825,70
+0.000867,70
+0.000921,70
+0.000877,70
+0.000817,70
+0.000908,70
+0.000816,70
+0.000816,70
+0.000816,70
+0.000817,70
+0.000928,70
+0.000842,70
+0.000823,70
+0.000836,70
+0.000795,70
+0.000836,70
+0.000795,70
+0.000834,70
+0.000795,70
+0.000835,70
+0.000830,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000841,70
+0.000815,70
+0.000795,70
+0.000795,70
+0.000889,70
+0.000954,70
+0.000795,70
+0.000795,70
+0.000820,70
+0.000839,70
+0.000795,70
+0.000795,70
+0.000835,70
+0.000795,70
+0.000842,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000818,70
+0.000795,70
+0.000795,70
+0.000796,70
+0.000795,70
+0.000822,70
+0.000835,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000840,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000835,70
+0.000804,70
+0.000835,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000797,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000797,70
+0.000795,70
+0.000835,70
+0.000795,70
+0.000795,70
+0.000842,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000819,70
+0.000835,70
+0.000795,70
+0.000795,70
+0.000795,70
+0.000801,70
+0.000795,70
+0.000819,70
+0.000814,70
+0.000795,70
+0.000797,70
+0.000984,70
+0.000963,70
+0.000832,70
+0.000852,70
+0.000813,70
+0.000854,70
+0.000875,70
+0.000834,70
+0.001028,70
+0.000839,70
+0.000928,72
+0.000914,72
+0.000922,72
+0.000943,72
+0.001004,72
+0.000911,72
+0.000916,72
+0.000949,72
+0.000974,72
+0.001009,72
+0.001021,72
+0.000943,72
+0.000939,72
+0.001050,72
+0.001369,72
+0.000906,72
+0.000931,72
+0.000939,72
+0.001310,72
+0.001418,72
+0.001016,72
+0.000865,72
+0.000924,72
+0.000993,72
+0.000865,72
+0.001087,72
+0.001341,72
+0.000912,72
+0.000969,72
+0.000912,72
+0.000910,72
+0.000887,72
+0.001002,72
+0.000927,72
+0.000911,72
+0.000972,72
+0.001009,72
+0.000945,72
+0.000917,72
+0.000887,72
+0.000948,72
+0.001074,72
+0.000913,72
+0.001173,72
+0.000888,72
+0.001074,72
+0.000951,72
+0.001027,72
+0.000887,72
+0.000908,72
+0.000988,72
+0.000917,72
+0.000887,72
+0.000888,72
+0.000888,72
+0.000912,72
+0.001002,72
+0.000969,72
+0.000928,72
+0.000915,72
+0.001005,72
+0.001022,72
+0.000888,72
+0.000914,72
+0.001134,72
+0.000888,72
+0.000888,72
+0.000908,72
+0.000944,72
+0.001175,72
+0.000911,72
+0.000897,72
+0.000915,72
+0.000887,72
+0.000887,72
+0.000951,72
+0.000912,72
+0.000887,72
+0.000907,72
+0.000887,72
+0.001062,72
+0.000899,72
+0.000865,72
+0.000865,72
+0.000865,72
+0.000925,72
+0.000875,72
+0.000894,72
+0.000865,72
+0.000900,72
+0.000865,72
+0.001257,72
+0.000972,72
+0.000991,72
+0.001001,72
+0.000906,72
+0.000978,72
+0.000865,72
+0.000907,72
+0.000898,72
+0.000985,74
+0.001021,74
+0.000988,74
+0.001000,74
+0.001000,74
+0.001176,74
+0.000992,74
+0.000938,74
+0.000938,74
+0.000938,74
+0.001051,74
+0.000978,74
+0.001045,74
+0.000988,74
+0.001011,74
+0.001138,74
+0.001130,74
+0.001041,74
+0.000939,74
+0.001171,74
+0.001081,74
+0.001145,74
+0.001003,74
+0.000959,74
+0.000938,74
+0.000974,74
+0.001038,74
+0.001237,74
+0.001027,74
+0.001068,74
+0.000938,74
+0.000938,74
+0.000938,74
+0.000975,74
+0.000938,74
+0.000978,74
+0.000965,74
+0.001030,74
+0.000938,74
+0.000938,74
+0.001065,74
+0.001153,74
+0.000963,74
+0.000998,74
+0.000958,74
+0.001040,74
+0.000952,74
+0.000938,74
+0.000999,74
+0.001004,74
+0.000938,74
+0.000938,74
+0.000977,74
+0.001011,74
+0.000938,74
+0.000978,74
+0.001126,74
+0.001096,74
+0.001035,74
+0.000964,74
+0.000978,74
+0.000970,74
+0.001084,74
+0.000958,74
+0.000958,74
+0.001020,74
+0.000938,74
+0.000938,74
+0.000939,74
+0.001004,74
+0.000978,74
+0.000938,74
+0.000938,74
+0.000938,74
+0.000961,74
+0.000938,74
+0.000938,74
+0.000958,74
+0.000963,74
+0.000938,74
+0.001061,74
+0.000938,74
+0.000966,74
+0.000938,74
+0.000938,74
+0.000938,74
+0.000988,74
+0.000938,74
+0.000978,74
+0.000938,74
+0.000961,74
+0.000938,74
+0.000938,74
+0.000938,74
+0.000943,74
+0.000938,74
+0.000938,74
+0.000959,74
+0.000938,74
+0.000963,74
+0.001054,76
+0.001051,76
+0.001090,76
+0.001150,76
+0.001072,76
+0.001172,76
+0.001086,76
+0.001111,76
+0.001071,76
+0.001152,76
+0.001089,76
+0.001051,76
+0.001051,76
+0.001086,76
+0.001061,76
+0.001051,76
+0.001051,76
+0.001075,76
+0.001051,76
+0.001091,76
+0.001112,76
+0.001086,76
+0.001051,76
+0.001071,76
+0.001051,76
+0.001055,76
+0.001051,76
+0.001051,76
+0.001055,76
+0.001051,76
+0.001051,76
+0.001051,76
+0.001053,76
+0.001051,76
+0.001091,76
+0.001051,76
+0.001094,76
+0.001051,76
+0.001051,76
+0.001090,76
+0.001055,76
+0.001052,76
+0.001051,76
+0.001051,76
+0.001118,76
+0.001051,76
+0.001051,76
+0.001183,76
+0.001303,76
+0.001051,76
+0.001112,76
+0.001124,76
+0.001051,76
+0.001051,76
+0.001075,76
+0.001051,76
+0.001553,76
+0.001176,76
+0.001095,76
+0.001416,76
+0.001071,76
+0.001087,76
+0.001051,76
+0.001051,76
+0.001091,76
+0.001083,76
+0.001102,76
+0.001051,76
+0.001092,76
+0.001051,76
+0.001051,76
+0.001071,76
+0.001075,76
+0.001051,76
+0.001216,76
+0.001051,76
+0.001080,76
+0.001051,76
+0.001051,76
+0.001051,76
+0.001114,76
+0.001090,76
+0.001051,76
+0.001053,76
+0.001051,76
+0.001051,76
+0.001051,76
+0.001055,76
+0.001052,76
+0.001094,76
+0.001051,76
+0.001053,76
+0.001051,76
+0.001051,76
+0.001051,76
+0.001115,76
+0.001051,76
+0.001091,76
+0.001053,76
+0.001051,76
+0.001100,78
+0.001097,78
+0.001101,78
+0.001097,78
+0.001097,78
+0.001097,78
+0.001099,78
+0.001097,78
+0.001097,78
+0.001122,78
+0.001097,78
+0.001136,78
+0.001156,78
+0.001120,78
+0.001097,78
+0.001097,78
+0.001125,78
+0.001097,78
+0.001097,78
+0.001097,78
+0.001099,78
+0.001097,78
+0.001097,78
+0.001097,78
+0.001101,78
+0.001097,78
+0.001136,78
+0.001138,78
+0.001097,78
+0.001097,78
+0.001097,78
+0.001101,78
+0.001097,78
+0.001097,78
+0.001097,78
+0.001119,78
+0.001147,78
+0.001097,78
+0.001167,78
+0.001097,78
+0.001097,78
+0.001136,78
+0.001140,78
+0.001097,78
+0.001097,78
+0.001099,78
+0.001097,78
+0.001097,78
+0.001141,78
+0.001167,78
+0.001148,78
+0.001130,78
+0.001170,78
+0.001122,78
+0.001332,78
+0.001157,78
+0.001139,78
+0.001136,78
+0.001097,78
+0.001121,78
+0.001196,78
+0.001097,78
+0.001096,78
+0.001127,78
+0.001097,78
+0.001097,78
+0.001119,78
+0.001097,78
+0.001097,78
+0.001097,78
+0.001160,78
+0.001117,78
+0.001116,78
+0.001097,78
+0.001125,78
+0.001097,78
+0.001097,78
+0.001119,78
+0.001097,78
+0.001097,78
+0.001096,78
+0.001122,78
+0.001097,78
+0.001097,78
+0.001121,78
+0.001136,78
+0.001097,78
+0.001136,78
+0.001128,78
+0.001097,78
+0.001171,78
+0.001097,78
+0.001103,78
+0.001097,78
+0.001117,78
+0.001106,78
+0.001097,78
+0.001097,78
+0.001097,78
+0.001100,78
+0.001264,80
+0.001262,80
+0.001225,80
+0.001223,80
+0.001223,80
+0.001227,80
+0.001223,80
+0.001223,80
+0.001223,80
+0.001225,80
+0.001223,80
+0.001223,80
+0.001227,80
+0.001223,80
+0.001262,80
+0.001283,80
+0.001223,80
+0.001223,80
+0.001227,80
+0.001223,80
+0.001223,80
+0.001223,80
+0.001225,80
+0.001282,80
+0.001223,80
+0.001227,80
+0.001223,80
+0.001712,80
+0.001329,80
+0.001264,80
+0.001255,80
+0.001251,80
+0.001223,80
+0.001599,80
+0.001299,80
+0.001271,80
+0.001335,80
+0.001309,80
+0.001575,80
+0.001408,80
+0.001299,80
+0.001467,80
+0.001480,80
+0.001317,80
+0.001264,80
+0.001394,80
+0.001587,80
+0.001334,80
+0.001425,80
+0.001378,80
+0.001411,80
+0.001429,80
+0.001355,80
+0.001371,80
+0.001385,80
+0.001368,80
+0.001379,80
+0.001418,80
+0.001370,80
+0.001374,80
+0.001350,80
+0.001364,80
+0.001342,80
+0.001407,80
+0.001450,80
+0.001360,80
+0.001466,80
+0.001275,80
+0.001433,80
+0.001438,80
+0.001355,80
+0.001501,80
+0.001334,80
+0.001378,80
+0.001397,80
+0.001461,80
+0.001453,80
+0.001389,80
+0.001323,80
+0.001326,80
+0.001358,80
+0.001449,80
+0.001381,80
+0.001467,80
+0.001347,80
+0.001351,80
+0.001440,80
+0.001414,80
+0.001330,80
+0.001410,80
+0.001383,80
+0.001459,80
+0.001375,80
+0.001542,80
+0.001452,80
+0.001452,80
+0.001384,80
+0.001366,80
+0.001429,80
+0.001353,80
+0.001473,82
+0.001418,82
+0.001347,82
+0.001387,82
+0.001345,82
+0.001437,82
+0.001763,82
+0.001388,82
+0.001389,82
+0.001345,82
+0.001426,82
+0.001455,82
+0.001466,82
+0.001407,82
+0.001468,82
+0.001408,82
+0.001475,82
+0.001458,82
+0.001405,82
+0.001397,82
+0.001423,82
+0.001519,82
+0.001587,82
+0.001440,82
+0.001367,82
+0.001421,82
+0.001491,82
+0.001387,82
+0.002170,82
+0.001483,82
+0.001421,82
+0.001546,82
+0.001426,82
+0.001630,82
+0.001557,82
+0.001396,82
+0.001408,82
+0.001490,82
+0.001365,82
+0.001479,82
+0.001402,82
+0.001574,82
+0.001383,82
+0.001400,82
+0.001366,82
+0.001451,82
+0.001437,82
+0.001522,82
+0.001670,82
+0.001963,82
+0.002133,82
+0.001533,82
+0.001973,82
+0.001660,82
+0.001853,82
+0.001586,82
+0.001375,82
+0.001368,82
+0.001519,82
+0.001350,82
+0.001552,82
+0.001479,82
+0.001522,82
+0.001393,82
+0.001417,82
+0.001377,82
+0.001486,82
+0.001379,82
+0.001348,82
+0.001396,82
+0.001349,82
+0.001388,82
+0.001407,82
+0.001410,82
+0.001679,82
+0.001334,82
+0.001647,82
+0.001530,82
+0.001803,82
+0.001343,82
+0.001370,82
+0.001336,82
+0.001697,82
+0.001429,82
+0.001737,82
+0.001503,82
+0.001345,82
+0.001364,82
+0.001308,82
+0.001612,82
+0.001366,82
+0.001341,82
+0.001347,82
+0.001424,82
+0.001590,82
+0.001366,82
+0.001375,82
+0.001321,82
+0.001353,82
+0.001294,82
+0.001669,84
+0.001526,84
+0.001538,84
+0.001411,84
+0.001462,84
+0.001597,84
+0.001472,84
+0.001640,84
+0.001412,84
+0.001575,84
+0.001458,84
+0.001693,84
+0.001625,84
+0.001592,84
+0.001543,84
+0.001544,84
+0.001556,84
+0.001714,84
+0.001522,84
+0.001623,84
+0.001591,84
+0.001423,84
+0.001478,84
+0.001554,84
+0.001472,84
+0.001471,84
+0.001495,84
+0.001573,84
+0.001593,84
+0.001494,84
+0.001552,84
+0.001578,84
+0.001505,84
+0.001621,84
+0.001543,84
+0.001499,84
+0.001560,84
+0.001557,84
+0.001518,84
+0.001988,84
+0.001971,84
+0.001965,84
+0.001966,84
+0.001569,84
+0.001649,84
+0.001778,84
+0.001657,84
+0.001753,84
+0.001536,84
+0.001505,84
+0.001472,84
+0.001468,84
+0.001448,84
+0.001509,84
+0.001477,84
+0.001544,84
+0.001528,84
+0.001538,84
+0.001554,84
+0.001537,84
+0.001515,84
+0.001594,84
+0.001543,84
+0.001528,84
+0.001484,84
+0.001527,84
+0.001571,84
+0.001508,84
+0.001607,84
+0.001540,84
+0.001538,84
+0.001628,84
+0.001552,84
+0.001569,84
+0.001489,84
+0.001556,84
+0.001618,84
+0.001560,84
+0.001519,84
+0.001590,84
+0.001533,84
+0.001639,84
+0.001880,84
+0.001776,84
+0.001651,84
+0.001795,84
+0.001832,84
+0.001781,84
+0.001668,84
+0.001819,84
+0.001829,84
+0.001789,84
+0.001550,84
+0.001519,84
+0.001526,84
+0.001636,84
+0.001549,84
+0.001489,84
+0.001573,84
+0.001508,84
+0.001689,86
+0.001727,86
+0.001814,86
+0.001746,86
+0.001651,86
+0.001581,86
+0.002784,86
+0.002020,86
+0.001751,86
+0.001838,86
+0.001704,86
+0.001713,86
+0.002233,86
+0.001671,86
+0.001552,86
+0.001590,86
+0.001488,86
+0.001489,86
+0.001621,86
+0.001542,86
+0.001672,86
+0.002154,86
+0.001683,86
+0.001518,86
+0.001719,86
+0.001589,86
+0.001469,86
+0.001469,86
+0.001507,86
+0.001609,86
+0.001761,86
+0.001685,86
+0.001559,86
+0.001546,86
+0.001493,86
+0.001549,86
+0.001502,86
+0.001508,86
+0.001536,86
+0.001624,86
+0.001597,86
+0.001576,86
+0.001566,86
+0.001572,86
+0.001469,86
+0.001510,86
+0.001543,86
+0.001469,86
+0.001513,86
+0.001469,86
+0.001572,86
+0.001678,86
+0.001723,86
+0.001591,86
+0.001565,86
+0.001511,86
+0.001586,86
+0.001469,86
+0.001469,86
+0.001552,86
+0.001868,86
+0.002483,86
+0.002891,86
+0.002797,86
+0.002861,86
+0.002462,86
+0.001964,86
+0.001836,86
+0.001599,86
+0.001622,86
+0.001578,86
+0.001706,86
+0.001705,86
+0.001788,86
+0.001986,86
+0.001600,86
+0.001528,86
+0.001697,86
+0.001970,86
+0.002888,86
+0.002401,86
+0.001572,86
+0.001520,86
+0.001580,86
+0.001508,86
+0.001532,86
+0.001548,86
+0.001624,86
+0.001765,86
+0.001488,86
+0.001627,86
+0.001469,86
+0.001530,86
+0.001525,86
+0.001469,86
+0.001469,86
+0.001512,86
+0.001666,86
+0.001702,86
+0.001659,86
+0.001687,88
+0.001593,88
+0.001635,88
+0.001608,88
+0.001574,88
+0.001612,88
+0.001613,88
+0.001802,88
+0.001868,88
+0.001818,88
+0.001712,88
+0.001593,88
+0.001653,88
+0.001897,88
+0.001593,88
+0.001613,88
+0.001574,88
+0.001771,88
+0.001871,88
+0.001981,88
+0.001962,88
+0.001625,88
+0.001635,88
+0.002564,88
+0.002989,88
+0.002923,88
+0.002775,88
+0.001774,88
+0.001841,88
+0.001674,88
+0.001592,88
+0.001612,88
+0.001573,88
+0.001729,88
+0.001627,88
+0.001949,88
+0.001631,88
+0.001706,88
+0.001599,88
+0.001656,88
+0.001611,88
+0.001573,88
+0.001574,88
+0.001757,88
+0.001927,88
+0.001673,88
+0.001680,88
+0.001703,88
+0.001627,88
+0.001689,88
+0.001610,88
+0.001880,88
+0.001652,88
+0.001959,88
+0.001833,88
+0.001758,88
+0.001791,88
+0.001764,88
+0.001767,88
+0.001668,88
+0.001744,88
+0.001651,88
+0.001574,88
+0.002012,88
+0.001927,88
+0.001750,88
+0.001866,88
+0.001627,88
+0.001799,88
+0.001638,88
+0.001658,88
+0.001789,88
+0.001902,88
+0.001845,88
+0.001852,88
+0.001896,88
+0.001632,88
+0.001619,88
+0.001929,88
+0.002279,88
+0.001912,88
+0.001828,88
+0.001703,88
+0.001683,88
+0.001792,88
+0.001699,88
+0.001671,88
+0.001785,88
+0.001695,88
+0.001674,88
+0.001746,88
+0.001835,88
+0.001816,88
+0.002181,88
+0.002106,88
+0.001822,88
+0.002063,88
+0.001751,88
+0.002060,88
+0.001953,88
+0.002506,90
+0.002729,90
+0.002557,90
+0.002289,90
+0.002198,90
+0.002215,90
+0.002222,90
+0.002952,90
+0.002940,90
+0.002199,90
+0.002351,90
+0.002141,90
+0.001943,90
+0.002165,90
+0.002890,90
+0.002427,90
+0.002257,90
+0.002644,90
+0.002190,90
+0.002735,90
+0.002083,90
+0.002364,90
+0.002731,90
+0.003146,90
+0.002302,90
+0.002487,90
+0.002181,90
+0.002008,90
+0.002087,90
+0.001829,90
+0.001937,90
+0.002182,90
+0.002111,90
+0.002008,90
+0.001927,90
+0.001947,90
+0.002299,90
+0.002398,90
+0.001884,90
+0.001889,90
+0.002031,90
+0.001808,90
+0.001882,90
+0.001899,90
+0.002200,90
+0.002058,90
+0.001909,90
+0.001916,90
+0.001905,90
+0.001876,90
+0.001885,90
+0.001819,90
+0.002004,90
+0.002309,90
+0.002066,90
+0.001904,90
+0.001882,90
+0.001827,90
+0.001815,90
+0.001880,90
+0.001880,90
+0.002356,90
+0.002548,90
+0.001877,90
+0.001901,90
+0.001806,90
+0.001802,90
+0.001874,90
+0.001893,90
+0.002230,90
+0.002034,90
+0.002065,90
+0.001932,90
+0.001997,90
+0.001898,90
+0.002424,90
+0.003206,90
+0.003277,90
+0.003128,90
+0.002408,90
+0.002066,90
+0.002048,90
+0.002269,90
+0.002389,90
+0.002295,90
+0.002206,90
+0.002143,90
+0.002052,90
+0.002010,90
+0.001989,90
+0.002045,90
+0.002232,90
+0.002216,90
+0.002354,90
+0.002202,90
+0.002418,90
+0.002099,90
+0.002110,90
+0.002142,90
+0.002166,90
+0.002204,92
+0.002298,92
+0.002207,92
+0.002173,92
+0.002178,92
+0.002327,92
+0.002337,92
+0.002156,92
+0.002237,92
+0.002421,92
+0.002156,92
+0.002213,92
+0.002182,92
+0.002491,92
+0.002323,92
+0.002225,92
+0.002425,92
+0.002284,92
+0.002338,92
+0.003061,92
+0.003377,92
+0.003534,92
+0.003016,92
+0.002268,92
+0.002223,92
+0.002220,92
+0.002490,92
+0.002097,92
+0.002016,92
+0.002111,92
+0.002131,92
+0.002017,92
+0.001990,92
+0.002122,92
+0.001988,92
+0.001986,92
+0.002012,92
+0.002017,92
+0.001991,92
+0.002005,92
+0.001974,92
+0.002031,92
+0.002031,92
+0.002045,92
+0.002075,92
+0.002085,92
+0.002380,92
+0.002281,92
+0.002188,92
+0.002187,92
+0.002204,92
+0.002148,92
+0.002144,92
+0.002126,92
+0.002146,92
+0.002135,92
+0.002182,92
+0.002274,92
+0.002168,92
+0.002217,92
+0.002235,92
+0.002338,92
+0.002226,92
+0.002195,92
+0.003377,92
+0.003636,92
+0.003556,92
+0.002944,92
+0.002353,92
+0.002290,92
+0.002484,92
+0.002277,92
+0.002147,92
+0.002483,92
+0.002218,92
+0.002122,92
+0.002113,92
+0.002255,92
+0.002275,92
+0.002155,92
+0.002152,92
+0.002163,92
+0.002218,92
+0.002204,92
+0.002177,92
+0.002174,92
+0.002196,92
+0.002190,92
+0.002202,92
+0.002230,92
+0.002163,92
+0.002154,92
+0.002150,92
+0.002293,92
+0.002182,92
+0.002219,92
+0.002143,92
+0.002209,92
+0.002253,92
+0.002173,92
+0.002319,94
+0.002370,94
+0.002364,94
+0.002271,94
+0.002365,94
+0.002355,94
+0.002271,94
+0.003291,94
+0.003712,94
+0.003714,94
+0.003034,94
+0.002388,94
+0.002673,94
+0.002384,94
+0.002423,94
+0.002168,94
+0.002159,94
+0.002336,94
+0.002190,94
+0.002172,94
+0.002268,94
+0.002195,94
+0.002355,94
+0.002301,94
+0.002343,94
+0.002207,94
+0.002375,94
+0.002346,94
+0.002500,94
+0.002342,94
+0.002345,94
+0.002385,94
+0.002242,94
+0.002254,94
+0.002465,94
+0.002337,94
+0.002118,94
+0.002088,94
+0.002141,94
+0.002053,94
+0.002127,94
+0.002154,94
+0.002742,94
+0.002204,94
+0.002145,94
+0.002119,94
+0.002109,94
+0.002133,94
+0.002150,94
+0.002110,94
+0.002025,94
+0.002053,94
+0.002768,94
+0.002178,94
+0.002147,94
+0.002126,94
+0.002086,94
+0.002378,94
+0.002387,94
+0.002090,94
+0.002102,94
+0.002120,94
+0.002158,94
+0.002133,94
+0.002197,94
+0.002690,94
+0.002092,94
+0.002132,94
+0.002095,94
+0.002105,94
+0.002079,94
+0.002148,94
+0.002127,94
+0.002543,94
+0.002073,94
+0.002065,94
+0.002016,94
+0.002084,94
+0.002091,94
+0.001971,94
+0.002219,94
+0.002043,94
+0.002093,94
+0.002011,94
+0.002007,94
+0.001957,94
+0.001953,94
+0.001918,94
+0.002061,94
+0.002174,94
+0.001999,94
+0.001918,94
+0.002002,94
+0.001957,94
+0.001952,94
+0.001918,94
+0.001996,94
+0.002121,94
+0.002045,94
+0.001991,94
+0.002271,96
+0.002186,96
+0.002124,96
+0.002056,96
+0.002083,96
+0.002061,96
+0.002075,96
+0.002041,96
+0.002082,96
+0.002100,96
+0.002065,96
+0.002071,96
+0.002041,96
+0.002045,96
+0.002042,96
+0.002046,96
+0.002042,96
+0.002122,96
+0.002041,96
+0.002087,96
+0.002101,96
+0.002043,96
+0.002041,96
+0.002043,96
+0.002041,96
+0.002128,96
+0.002041,96
+0.002063,96
+0.002041,96
+0.002045,96
+0.002372,96
+0.002088,96
+0.002136,96
+0.002389,96
+0.002162,96
+0.002095,96
+0.002505,96
+0.002663,96
+0.002072,96
+0.002533,96
+0.002530,96
+0.002976,96
+0.003597,96
+0.002478,96
+0.002308,96
+0.002326,96
+0.002289,96
+0.002277,96
+0.002227,96
+0.002305,96
+0.002198,96
+0.002152,96
+0.002522,96
+0.002326,96
+0.002328,96
+0.002126,96
+0.002330,96
+0.002453,96
+0.002437,96
+0.002298,96
+0.002287,96
+0.002595,96
+0.002550,96
+0.002598,96
+0.002488,96
+0.002446,96
+0.002734,96
+0.002717,96
+0.002524,96
+0.002335,96
+0.002321,96
+0.002189,96
+0.002176,96
+0.002150,96
+0.002250,96
+0.002277,96
+0.002221,96
+0.002236,96
+0.002231,96
+0.002248,96
+0.002288,96
+0.002260,96
+0.002340,96
+0.002302,96
+0.002257,96
+0.002349,96
+0.002321,96
+0.002243,96
+0.002259,96
+0.002285,96
+0.002158,96
+0.002152,96
+0.002160,96
+0.002265,96
+0.002317,96
+0.002278,96
+0.002304,96
+0.002213,96
+0.002157,96
+0.002183,96
+0.002445,98
+0.002454,98
+0.002461,98
+0.002463,98
+0.002556,98
+0.002383,98
+0.002484,98
+0.002539,98
+0.002351,98
+0.002377,98
+0.002374,98
+0.002373,98
+0.002304,98
+0.002409,98
+0.002439,98
+0.002416,98
+0.002296,98
+0.002313,98
+0.002352,98
+0.002399,98
+0.002295,98
+0.002355,98
+0.002379,98
+0.002352,98
+0.002363,98
+0.002364,98
+0.002298,98
+0.002357,98
+0.002371,98
+0.002279,98
+0.002246,98
+0.002735,98
+0.002591,98
+0.002416,98
+0.002642,98
+0.002502,98
+0.002411,98
+0.002420,98
+0.002512,98
+0.002377,98
+0.002522,98
+0.002426,98
+0.002718,98
+0.002724,98
+0.002641,98
+0.002545,98
+0.002366,98
+0.002431,98
+0.002570,98
+0.002433,98
+0.002428,98
+0.002452,98
+0.002455,98
+0.002421,98
+0.002828,98
+0.002920,98
+0.003138,98
+0.003385,98
+0.003285,98
+0.002902,98
+0.003023,98
+0.002947,98
+0.002916,98
+0.002957,98
+0.002793,98
+0.003201,98
+0.002843,98
+0.002986,98
+0.002336,98
+0.003146,98
+0.002695,98
+0.002431,98
+0.002494,98
+0.002348,98
+0.002304,98
+0.002355,98
+0.002373,98
+0.002362,98
+0.002358,98
+0.002454,98
+0.002325,98
+0.002288,98
+0.002278,98
+0.002257,98
+0.002223,98
+0.002179,98
+0.002391,98
+0.002197,98
+0.002214,98
+0.002179,98
+0.002314,98
+0.002227,98
+0.002189,98
+0.002274,98
+0.002424,98
+0.002317,98
+0.002325,98
+0.002287,98
+0.002440,98
+0.002235,98
+0.002631,100
+0.003587,100
+0.003203,100
+0.002856,100
+0.002599,100
+0.002795,100
+0.003222,100
+0.002630,100
+0.002563,100
+0.002547,100
+0.002723,100
+0.002813,100
+0.002615,100
+0.002694,100
+0.002470,100
+0.002390,100
+0.002378,100
+0.002357,100
+0.002366,100
+0.002859,100
+0.002374,100
+0.002423,100
+0.002399,100
+0.002359,100
+0.002351,100
+0.002440,100
+0.002509,100
+0.002368,100
+0.002309,100
+0.002358,100
+0.002390,100
+0.002361,100
+0.002445,100
+0.002447,100
+0.002343,100
+0.002413,100
+0.002403,100
+0.002494,100
+0.002308,100
+0.002389,100
+0.002390,100
+0.002425,100
+0.002337,100
+0.002404,100
+0.002424,100
+0.002375,100
+0.002355,100
+0.003358,100
+0.004333,100
+0.004395,100
+0.002452,100
+0.002391,100
+0.002436,100
+0.002365,100
+0.002428,100
+0.002455,100
+0.002320,100
+0.002347,100
+0.002438,100
+0.002372,100
+0.002368,100
+0.002329,100
+0.002793,100
+0.002615,100
+0.002933,100
+0.003123,100
+0.002914,100
+0.002838,100
+0.003154,100
+0.002967,100
+0.003166,100
+0.003947,100
+0.003279,100
+0.003344,100
+0.002560,100
+0.002644,100
+0.003361,100
+0.002568,100
+0.002543,100
+0.002499,100
+0.002502,100
+0.002419,100
+0.002838,100
+0.004438,100
+0.004333,100
+0.003139,100
+0.002395,100
+0.002680,100
+0.002382,100
+0.002357,100
+0.002347,100
+0.002398,100
+0.002343,100
+0.002342,100
+0.002576,100
+0.002307,100
+0.002332,100
+0.002468,100
+0.002346,100
+0.002337,100
+0.002496,102
+0.002542,102
+0.002490,102
+0.002453,102
+0.002558,102
+0.002461,102
+0.002476,102
+0.002542,102
+0.002453,102
+0.002459,102
+0.002561,102
+0.002531,102
+0.002735,102
+0.002487,102
+0.002580,102
+0.002558,102
+0.002536,102
+0.002528,102
+0.002747,102
+0.002652,102
+0.002880,102
+0.002657,102
+0.002634,102
+0.002690,102
+0.002908,102
+0.002496,102
+0.002894,102
+0.002579,102
+0.002784,102
+0.002583,102
+0.002614,102
+0.002550,102
+0.002555,102
+0.002724,102
+0.002518,102
+0.002594,102
+0.002585,102
+0.002763,102
+0.002479,102
+0.002635,102
+0.002453,102
+0.002732,102
+0.002579,102
+0.002501,102
+0.002537,102
+0.002552,102
+0.002534,102
+0.002491,102
+0.002521,102
+0.002630,102
+0.002478,102
+0.002453,102
+0.002599,102
+0.002474,102
+0.002485,102
+0.002490,102
+0.002544,102
+0.002462,102
+0.002457,102
+0.002535,102
+0.002597,102
+0.002591,102
+0.002620,102
+0.002619,102
+0.002475,102
+0.002493,102
+0.002487,102
+0.002495,102
+0.002473,102
+0.002588,102
+0.002487,102
+0.002486,102
+0.002559,102
+0.002453,102
+0.002496,102
+0.002492,102
+0.002496,102
+0.002455,102
+0.002453,102
+0.002457,102
+0.002455,102
+0.002454,102
+0.002496,102
+0.002492,102
+0.002455,102
+0.002457,102
+0.002452,102
+0.002455,102
+0.002617,102
+0.002530,102
+0.002455,102
+0.002492,102
+0.002455,102
+0.002458,102
+0.002453,102
+0.002455,102
+0.002530,102
+0.002486,102
+0.002476,102
+0.002453,102
+0.002644,104
+0.002914,104
+0.002769,104
+0.002818,104
+0.003162,104
+0.002768,104
+0.002623,104
+0.002629,104
+0.002696,104
+0.002602,104
+0.002633,104
+0.002769,104
+0.002594,104
+0.002641,104
+0.002669,104
+0.002631,104
+0.002635,104
+0.002638,104
+0.002594,104
+0.002596,104
+0.002593,104
+0.002675,104
+0.002601,104
+0.002594,104
+0.002599,104
+0.002614,104
+0.002682,104
+0.002697,104
+0.002606,104
+0.002593,104
+0.002598,104
+0.002596,104
+0.002827,104
+0.002739,104
+0.002733,104
+0.002605,104
+0.002660,104
+0.002610,104
+0.002770,104
+0.002754,104
+0.002903,104
+0.002616,104
+0.002653,104
+0.002636,104
+0.002594,104
+0.002617,104
+0.002683,104
+0.002593,104
+0.002621,104
+0.002694,104
+0.002593,104
+0.002931,104
+0.002687,104
+0.002611,104
+0.002615,104
+0.002731,104
+0.002594,104
+0.002599,104
+0.002743,104
+0.002827,104
+0.002593,104
+0.002853,104
+0.002641,104
+0.002677,104
+0.002846,104
+0.002660,104
+0.002593,104
+0.002880,104
+0.002618,104
+0.002593,104
+0.002888,104
+0.002700,104
+0.002593,104
+0.002697,104
+0.002763,104
+0.002742,104
+0.002744,104
+0.002944,104
+0.002612,104
+0.002875,104
+0.002688,104
+0.002594,104
+0.002825,104
+0.002811,104
+0.002790,104
+0.002676,104
+0.002923,104
+0.002650,104
+0.002593,104
+0.002882,104
+0.002773,104
+0.002749,104
+0.002754,104
+0.002698,104
+0.002613,104
+0.002846,104
+0.002832,104
+0.002777,104
+0.002671,104
+0.002618,104
+0.002861,106
+0.002804,106
+0.002767,106
+0.002771,106
+0.002765,106
+0.002768,106
+0.002816,106
+0.003076,106
+0.002747,106
+0.002774,106
+0.002827,106
+0.002822,106
+0.002887,106
+0.003106,106
+0.002937,106
+0.002827,106
+0.002802,106
+0.002752,106
+0.002786,106
+0.002772,106
+0.002751,106
+0.002766,106
+0.002749,106
+0.002751,106
+0.002757,106
+0.002778,106
+0.002750,106
+0.002749,106
+0.002746,106
+0.002751,106
+0.002749,106
+0.002808,106
+0.002755,106
+0.002766,106
+0.002747,106
+0.002748,106
+0.002812,106
+0.003042,106
+0.002754,106
+0.002816,106
+0.002796,106
+0.002796,106
+0.002974,106
+0.002886,106
+0.002746,106
+0.002830,106
+0.002770,106
+0.002814,106
+0.002845,106
+0.002852,106
+0.002921,106
+0.002764,106
+0.002799,106
+0.002937,106
+0.002828,106
+0.002919,106
+0.002782,106
+0.002887,106
+0.002747,106
+0.002781,106
+0.002797,106
+0.002784,106
+0.002768,106
+0.002771,106
+0.002777,106
+0.002746,106
+0.002824,106
+0.002789,106
+0.002930,106
+0.003093,106
+0.002806,106
+0.002859,106
+0.002835,106
+0.002773,106
+0.003069,106
+0.002904,106
+0.002781,106
+0.002778,106
+0.003197,106
+0.002853,106
+0.002909,106
+0.002748,106
+0.003053,106
+0.003029,106
+0.002944,106
+0.003028,106
+0.002922,106
+0.002943,106
+0.002805,106
+0.002842,106
+0.003043,106
+0.002790,106
+0.002891,106
+0.003061,106
+0.002766,106
+0.002845,106
+0.003088,106
+0.002893,106
+0.002975,106
+0.002841,106
+0.003258,108
+0.003219,108
+0.003353,108
+0.003234,108
+0.003371,108
+0.003265,108
+0.003275,108
+0.003025,108
+0.003320,108
+0.003132,108
+0.003040,108
+0.003275,108
+0.003107,108
+0.003192,108
+0.002982,108
+0.002944,108
+0.003102,108
+0.003042,108
+0.003119,108
+0.003389,108
+0.002972,108
+0.002947,108
+0.002959,108
+0.002946,108
+0.003023,108
+0.003080,108
+0.002959,108
+0.003009,108
+0.002963,108
+0.002908,108
+0.003800,108
+0.002959,108
+0.002980,108
+0.002962,108
+0.002907,108
+0.003076,108
+0.003053,108
+0.003043,108
+0.002974,108
+0.002942,108
+0.002948,108
+0.003255,108
+0.003202,108
+0.002996,108
+0.002961,108
+0.002941,108
+0.003798,108
+0.003248,108
+0.003472,108
+0.003765,108
+0.003114,108
+0.003797,108
+0.003137,108
+0.002941,108
+0.003015,108
+0.002948,108
+0.003830,108
+0.003539,108
+0.003319,108
+0.003370,108
+0.003390,108
+0.003863,108
+0.003414,108
+0.003166,108
+0.003177,108
+0.002997,108
+0.004755,108
+0.003511,108
+0.003067,108
+0.003015,108
+0.003014,108
+0.004106,108
+0.003278,108
+0.002963,108
+0.003018,108
+0.003021,108
+0.003756,108
+0.003218,108
+0.004016,108
+0.003551,108
+0.003735,108
+0.003652,108
+0.002973,108
+0.003049,108
+0.003021,108
+0.003233,108
+0.003566,108
+0.003014,108
+0.002982,108
+0.003015,108
+0.002909,108
+0.003506,108
+0.003099,108
+0.003016,108
+0.002987,108
+0.003012,108
+0.003344,108
+0.003108,108
+0.003036,108
+0.002986,108
+0.003121,110
+0.003308,110
+0.003645,110
+0.003130,110
+0.003139,110
+0.003119,110
+0.003193,110
+0.003599,110
+0.003218,110
+0.003943,110
+0.003833,110
+0.004163,110
+0.003342,110
+0.003072,110
+0.003193,110
+0.003109,110
+0.003806,110
+0.003317,110
+0.003172,110
+0.003261,110
+0.003104,110
+0.004003,110
+0.003298,110
+0.003116,110
+0.003148,110
+0.003104,110
+0.003832,110
+0.003439,110
+0.003874,110
+0.003440,110
+0.005118,110
+0.004115,110
+0.003377,110
+0.003371,110
+0.003585,110
+0.004081,110
+0.003263,110
+0.003363,110
+0.005218,110
+0.004327,110
+0.003541,110
+0.003458,110
+0.003406,110
+0.003481,110
+0.004168,110
+0.003612,110
+0.004007,110
+0.003247,110
+0.003406,110
+0.003569,110
+0.003616,110
+0.003771,110
+0.003692,110
+0.003914,110
+0.004257,110
+0.003764,110
+0.003408,110
+0.003849,110
+0.004592,110
+0.003795,110
+0.003294,110
+0.004595,110
+0.005149,110
+0.004321,110
+0.003406,110
+0.004178,110
+0.005475,110
+0.005511,110
+0.003782,110
+0.003560,110
+0.004343,110
+0.003608,110
+0.003263,110
+0.004953,110
+0.004977,110
+0.006301,110
+0.005646,110
+0.004369,110
+0.004527,110
+0.005416,110
+0.004751,110
+0.003676,110
+0.003736,110
+0.003644,110
+0.005144,110
+0.004847,110
+0.005405,110
+0.003992,110
+0.003676,110
+0.004584,110
+0.003187,110
+0.003931,110
+0.004963,110
+0.004742,110
+0.004872,110
+0.003628,110
+0.003541,110
+0.003228,110
+0.003850,110
+0.005009,110
+0.005836,112
+0.006242,112
+0.006106,112
+0.003673,112
+0.003781,112
+0.003425,112
+0.003692,112
+0.004829,112
+0.003334,112
+0.004316,112
+0.004068,112
+0.006432,112
+0.004738,112
+0.003701,112
+0.003584,112
+0.003472,112
+0.003439,112
+0.004773,112
+0.004372,112
+0.004500,112
+0.003843,112
+0.003317,112
+0.004180,112
+0.003587,112
+0.004891,112
+0.003355,112
+0.004367,112
+0.005543,112
+0.004212,112
+0.003753,112
+0.005279,112
+0.006208,112
+0.006200,112
+0.005718,112
+0.004388,112
+0.003853,112
+0.004592,112
+0.005675,112
+0.005520,112
+0.004401,112
+0.004859,112
+0.006026,112
+0.005075,112
+0.004250,112
+0.004091,112
+0.003717,112
+0.003554,112
+0.003785,112
+0.003421,112
+0.003694,112
+0.003385,112
+0.003369,112
+0.003600,112
+0.003460,112
+0.003418,112
+0.005473,112
+0.006749,112
+0.004214,112
+0.003674,112
+0.004082,112
+0.003621,112
+0.003577,112
+0.003567,112
+0.003612,112
+0.004367,112
+0.003855,112
+0.004755,112
+0.004980,112
+0.004530,112
+0.004115,112
+0.004447,112
+0.003744,112
+0.003871,112
+0.003347,112
+0.003526,112
+0.004476,112
+0.005915,112
+0.006213,112
+0.005642,112
+0.003939,112
+0.004915,112
+0.003862,112
+0.003666,112
+0.005661,112
+0.004728,112
+0.004609,112
+0.004075,112
+0.003584,112
+0.003461,112
+0.003718,112
+0.003806,112
+0.004843,112
+0.003594,112
+0.003614,112
+0.003549,112
+0.004039,112
+0.003723,112
+0.003414,112
+0.003796,112
+0.003973,112
+0.004787,114
+0.004136,114
+0.003698,114
+0.003936,114
+0.004186,114
+0.003469,114
+0.003586,114
+0.003563,114
+0.004120,114
+0.003981,114
+0.003613,114
+0.003603,114
+0.004202,114
+0.003610,114
+0.003615,114
+0.003970,114
+0.003713,114
+0.004594,114
+0.003967,114
+0.003705,114
+0.003533,114
+0.005343,114
+0.003616,114
+0.003937,114
+0.003666,114
+0.004701,114
+0.004117,114
+0.003791,114
+0.003927,114
+0.004133,114
+0.003919,114
+0.003650,114
+0.003989,114
+0.005745,114
+0.004907,114
+0.004419,114
+0.006310,114
+0.004878,114
+0.005730,114
+0.004555,114
+0.004293,114
+0.004167,114
+0.003760,114
+0.003707,114
+0.004708,114
+0.004830,114
+0.004394,114
+0.004506,114
+0.004576,114
+0.003709,114
+0.003710,114
+0.003735,114
+0.003963,114
+0.003603,114
+0.003639,114
+0.003622,114
+0.003918,114
+0.003500,114
+0.003536,114
+0.003496,114
+0.003747,114
+0.004614,114
+0.003626,114
+0.003560,114
+0.004132,114
+0.003929,114
+0.003513,114
+0.003639,114
+0.003501,114
+0.004693,114
+0.003638,114
+0.003510,114
+0.003523,114
+0.005249,114
+0.003929,114
+0.003533,114
+0.003540,114
+0.003679,114
+0.004028,114
+0.003837,114
+0.004211,114
+0.004641,114
+0.003909,114
+0.003980,114
+0.003944,114
+0.003978,114
+0.003950,114
+0.003711,114
+0.004290,114
+0.004783,114
+0.003931,114
+0.003651,114
+0.003681,114
+0.003937,114
+0.004409,114
+0.004043,114
+0.004928,114
+0.004647,114
+0.004604,114
+0.004061,114
+0.003837,116
+0.003813,116
+0.003887,116
+0.004217,116
+0.003743,116
+0.003736,116
+0.004412,116
+0.003754,116
+0.003727,116
+0.003773,116
+0.004102,116
+0.004182,116
+0.003631,116
+0.003809,116
+0.003794,116
+0.004108,116
+0.003639,116
+0.003756,116
+0.003689,116
+0.004026,116
+0.003754,116
+0.003671,116
+0.003682,116
+0.003978,116
+0.003798,116
+0.003636,116
+0.003711,116
+0.004586,116
+0.004441,116
+0.004037,116
+0.003830,116
+0.003782,116
+0.004104,116
+0.003632,116
+0.003748,116
+0.003665,116
+0.004122,116
+0.003719,116
+0.003682,116
+0.003697,116
+0.003930,116
+0.003940,116
+0.003639,116
+0.003774,116
+0.003674,116
+0.004208,116
+0.003627,116
+0.003687,116
+0.003675,116
+0.004086,116
+0.003825,116
+0.003594,116
+0.003723,116
+0.004457,116
+0.004397,116
+0.003899,116
+0.003694,116
+0.003790,116
+0.004091,116
+0.003629,116
+0.004212,116
+0.003711,116
+0.004105,116
+0.003695,116
+0.003939,116
+0.003718,116
+0.004045,116
+0.004201,116
+0.003629,116
+0.003789,116
+0.003828,116
+0.004067,116
+0.003635,116
+0.003762,116
+0.003638,116
+0.004158,116
+0.003709,116
+0.003672,116
+0.003669,116
+0.003834,116
+0.003983,116
+0.004511,116
+0.003747,116
+0.003918,116
+0.003984,116
+0.003632,116
+0.003687,116
+0.003700,116
+0.004324,116
+0.003912,116
+0.004117,116
+0.004163,116
+0.004294,116
+0.003923,116
+0.003681,116
+0.003711,116
+0.004289,116
+0.004412,116
+0.003677,116
+0.003650,116
+0.004346,118
+0.003991,118
+0.003824,118
+0.003865,118
+0.003964,118
+0.004073,118
+0.004120,118
+0.003890,118
+0.003943,118
+0.004015,118
+0.003822,118
+0.003899,118
+0.003838,118
+0.004025,118
+0.003836,118
+0.003853,118
+0.003892,118
+0.003903,118
+0.003821,118
+0.003811,118
+0.003981,118
+0.003875,118
+0.003817,118
+0.003806,118
+0.003877,118
+0.003795,118
+0.003856,118
+0.003790,118
+0.003831,118
+0.003843,118
+0.004057,118
+0.004039,118
+0.003847,118
+0.003866,118
+0.003882,118
+0.003810,118
+0.003817,118
+0.003938,118
+0.003862,118
+0.003835,118
+0.003787,118
+0.003868,118
+0.003877,118
+0.003898,118
+0.003814,118
+0.003827,118
+0.003906,118
+0.003855,118
+0.003836,118
+0.003836,118
+0.003881,118
+0.003875,118
+0.003795,118
+0.003789,118
+0.003846,118
+0.003810,118
+0.004143,118
+0.004031,118
+0.003871,118
+0.003842,118
+0.003850,118
+0.003794,118
+0.003790,118
+0.003881,118
+0.003891,118
+0.003850,118
+0.003791,118
+0.003886,118
+0.004017,118
+0.003790,118
+0.003787,118
+0.003825,118
+0.003930,118
+0.003822,118
+0.003789,118
+0.003793,118
+0.003874,118
+0.003793,118
+0.003789,118
+0.003789,118
+0.003855,118
+0.003809,118
+0.004019,118
+0.004125,118
+0.003866,118
+0.003863,118
+0.003847,118
+0.003883,118
+0.003818,118
+0.003886,118
+0.003990,118
+0.003835,118
+0.003814,118
+0.003876,118
+0.003837,118
+0.003814,118
+0.003791,118
+0.003847,118
+0.003900,118
+0.003798,118
+0.004000,120
+0.004003,120
+0.004077,120
+0.003994,120
+0.003974,120
+0.003978,120
+0.004037,120
+0.003980,120
+0.004235,120
+0.004179,120
+0.004089,120
+0.003979,120
+0.003974,120
+0.004010,120
+0.004069,120
+0.003998,120
+0.003995,120
+0.003976,120
+0.004063,120
+0.004007,120
+0.004009,120
+0.003985,120
+0.004014,120
+0.004230,120
+0.003977,120
+0.003984,120
+0.004036,120
+0.004071,120
+0.003974,120
+0.004011,120
+0.004010,120
+0.004069,120
+0.003974,120
+0.004183,120
+0.004231,120
+0.004194,120
+0.003994,120
+0.004074,120
+0.004010,120
+0.004118,120
+0.004167,120
+0.004004,120
+0.003977,120
+0.004067,120
+0.003977,120
+0.003979,120
+0.003978,120
+0.004116,120
+0.004197,120
+0.003985,120
+0.003974,120
+0.004189,120
+0.004266,120
+0.004054,120
+0.004065,120
+0.004118,120
+0.004036,120
+0.004116,120
+0.004106,120
+0.004314,120
+0.003997,120
+0.004074,120
+0.004018,120
+0.004176,120
+0.004099,120
+0.004020,120
+0.004015,120
+0.004070,120
+0.004088,120
+0.004059,120
+0.003995,120
+0.004057,120
+0.004145,120
+0.004015,120
+0.003982,120
+0.004031,120
+0.004070,120
+0.004034,120
+0.003996,120
+0.003981,120
+0.004161,120
+0.004040,120
+0.004191,120
+0.004170,120
+0.004290,120
+0.004079,120
+0.004132,120
+0.004137,120
+0.004106,120
+0.004235,120
+0.004068,120
+0.004007,120
+0.004126,120
+0.004024,120
+0.004011,120
+0.003998,120
+0.004253,120
+0.004004,120
+0.003992,120
+0.003978,120
+0.004298,122
+0.004239,122
+0.004193,122
+0.004273,122
+0.004511,122
+0.004250,122
+0.004320,122
+0.004322,122
+0.004460,122
+0.004300,122
+0.004190,122
+0.004215,122
+0.004357,122
+0.004246,122
+0.004205,122
+0.004235,122
+0.004389,122
+0.004201,122
+0.004194,122
+0.004306,122
+0.004595,122
+0.004326,122
+0.004256,122
+0.004449,122
+0.004713,122
+0.004423,122
+0.004446,122
+0.006128,122
+0.004411,122
+0.004457,122
+0.004512,122
+0.004526,122
+0.004402,122
+0.004343,122
+0.004366,122
+0.004230,122
+0.004355,122
+0.004229,122
+0.004364,122
+0.004227,122
+0.004440,122
+0.004216,122
+0.004329,122
+0.004527,122
+0.004341,122
+0.004345,122
+0.004381,122
+0.004347,122
+0.004344,122
+0.004340,122
+0.004348,122
+0.004345,122
+0.004357,122
+0.004451,122
+0.004466,122
+0.004447,122
+0.004343,122
+0.004389,122
+0.004335,122
+0.004316,122
+0.004315,122
+0.004398,122
+0.004329,122
+0.004331,122
+0.004306,122
+0.004485,122
+0.004364,122
+0.004366,122
+0.004397,122
+0.004434,122
+0.004343,122
+0.004308,122
+0.004346,122
+0.004389,122
+0.004326,122
+0.004366,122
+0.004459,122
+0.004491,122
+0.004347,122
+0.004341,122
+0.004427,122
+0.004351,122
+0.004329,122
+0.004334,122
+0.004406,122
+0.004350,122
+0.004357,122
+0.004361,122
+0.004495,122
+0.004339,122
+0.004342,122
+0.004354,122
+0.004483,122
+0.004325,122
+0.004302,122
+0.004377,122
+0.004309,122
+0.004324,122
+0.004372,122
+0.004457,122
+0.004703,124
+0.004598,124
+0.004443,124
+0.004476,124
+0.004466,124
+0.004408,124
+0.004476,124
+0.004529,124
+0.004481,124
+0.004412,124
+0.004553,124
+0.004512,124
+0.004408,124
+0.004450,124
+0.004573,124
+0.004461,124
+0.007765,124
+0.005173,124
+0.004744,124
+0.004438,124
+0.004704,124
+0.004726,124
+0.004482,124
+0.004423,124
+0.004644,124
+0.004437,124
+0.004417,124
+0.004424,124
+0.004531,124
+0.004459,124
+0.004431,124
+0.004436,124
+0.004615,124
+0.004449,124
+0.004406,124
+0.004666,124
+0.004435,124
+0.004412,124
+0.004413,124
+0.004490,124
+0.004397,124
+0.004397,124
+0.004487,124
+0.004666,124
+0.004561,124
+0.004433,124
+0.004493,124
+0.004520,124
+0.004441,124
+0.004409,124
+0.004517,124
+0.004419,124
+0.004487,124
+0.004420,124
+0.004562,124
+0.004588,124
+0.004433,124
+0.004631,124
+0.004484,124
+0.004458,124
+0.004426,124
+0.004541,124
+0.004425,124
+0.004432,124
+0.004439,124
+0.004638,124
+0.004596,124
+0.004526,124
+0.004487,124
+0.004598,124
+0.004609,124
+0.004424,124
+0.004537,124
+0.004436,124
+0.004412,124
+0.004425,124
+0.004503,124
+0.004560,124
+0.004420,124
+0.004558,124
+0.004533,124
+0.004439,124
+0.004428,124
+0.004719,124
+0.004512,124
+0.004412,124
+0.004443,124
+0.004649,124
+0.004616,124
+0.004498,124
+0.004453,124
+0.004595,124
+0.004456,124
+0.004447,124
+0.004518,124
+0.004489,124
+0.004441,124
+0.004410,124
+0.004513,124
+0.004580,124
+0.004662,126
+0.004719,126
+0.004843,126
+0.004653,126
+0.004644,126
+0.004688,126
+0.004709,126
+0.004654,126
+0.004646,126
+0.004866,126
+0.004883,126
+0.004728,126
+0.004737,126
+0.004719,126
+0.004731,126
+0.004628,126
+0.004735,126
+0.004633,126
+0.004650,126
+0.004696,126
+0.004805,126
+0.004666,126
+0.004765,126
+0.004727,126
+0.004697,126
+0.004747,126
+0.004852,126
+0.004697,126
+0.004709,126
+0.004681,126
+0.004790,126
+0.004838,126
+0.004740,126
+0.004898,126
+0.004784,126
+0.004648,126
+0.004651,126
+0.004750,126
+0.004659,126
+0.004632,126
+0.004671,126
+0.004750,126
+0.004914,126
+0.004887,126
+0.004847,126
+0.004825,126
+0.004675,126
+0.004664,126
+0.004737,126
+0.004657,126
+0.004647,126
+0.004924,126
+0.004950,126
+0.004737,126
+0.004776,126
+0.004728,126
+0.004695,126
+0.004665,126
+0.004781,126
+0.004666,126
+0.004647,126
+0.004690,126
+0.004912,126
+0.004696,126
+0.004686,126
+0.004803,126
+0.004740,126
+0.004676,126
+0.004654,126
+0.004776,126
+0.004657,126
+0.004629,126
+0.004816,126
+0.005045,126
+0.004844,126
+0.004628,126
+0.004776,126
+0.004704,126
+0.004647,126
+0.004736,126
+0.004655,126
+0.004628,126
+0.004640,126
+0.004790,126
+0.004961,126
+0.004783,126
+0.004804,126
+0.004800,126
+0.004720,126
+0.004644,126
+0.004755,126
+0.004661,126
+0.004621,126
+0.004692,126
+0.005043,126
+0.004882,126
+0.004638,126
+0.004839,126
+0.004672,126
+0.004690,126
+0.005225,128
+0.005116,128
+0.005117,128
+0.005175,128
+0.005454,128
+0.005123,128
+0.005107,128
+0.005244,128
+0.005112,128
+0.005123,128
+0.005198,128
+0.005114,128
+0.005077,128
+0.005257,128
+0.005528,128
+0.005315,128
+0.005355,128
+0.005147,128
+0.005106,128
+0.005195,128
+0.005178,128
+0.005105,128
+0.005101,128
+0.005230,128
+0.005409,128
+0.005327,128
+0.005247,128
+0.005288,128
+0.005124,128
+0.005236,128
+0.005127,128
+0.005086,128
+0.005232,128
+0.005578,128
+0.005388,128
+0.005298,128
+0.005190,128
+0.005099,128
+0.005194,128
+0.005261,128
+0.005117,128
+0.005080,128
+0.005250,128
+0.005435,128
+0.005136,128
+0.005334,128
+0.005132,128
+0.005104,128
+0.005230,128
+0.005121,128
+0.005105,128
+0.005130,128
+0.005415,128
+0.005546,128
+0.005168,128
+0.005223,128
+0.005133,128
+0.005122,128
+0.005209,128
+0.005182,128
+0.005085,128
+0.005205,128
+0.005457,128
+0.005141,128
+0.005219,128
+0.005170,128
+0.005112,128
+0.005161,128
+0.005167,128
+0.005112,128
+0.005090,128
+0.005313,128
+0.005500,128
+0.005229,128
+0.005250,128
+0.005178,128
+0.005094,128
+0.005220,128
+0.005137,128
+0.005098,128
+0.005203,128
+0.005323,128
+0.005221,128
+0.005148,128
+0.005209,128
+0.005150,128
+0.005138,128
+0.005215,128
+0.005138,128
+0.005098,128
+0.005285,128
+0.005508,128
+0.005329,128
+0.005309,128
+0.005242,128
+0.005208,128
+0.005242,128
+0.005098,128
+0.005136,128
+0.005154,128
+0.005345,130
+0.005109,130
+0.005101,130
+0.005213,130
+0.005168,130
+0.005101,130
+0.005221,130
+0.005093,130
+0.005125,130
+0.005204,130
+0.005441,130
+0.005309,130
+0.005259,130
+0.005137,130
+0.005116,130
+0.005168,130
+0.005155,130
+0.005108,130
+0.005112,130
+0.005368,130
+0.005092,130
+0.005176,130
+0.005233,130
+0.005154,130
+0.005104,130
+0.005250,130
+0.005092,130
+0.005104,130
+0.005175,130
+0.005286,130
+0.005459,130
+0.005212,130
+0.005176,130
+0.005118,130
+0.005108,130
+0.005281,130
+0.005082,130
+0.005103,130
+0.005340,130
+0.005336,130
+0.005093,130
+0.005294,130
+0.005209,130
+0.005164,130
+0.005152,130
+0.005189,130
+0.005329,130
+0.005140,130
+0.005263,130
+0.005501,130
+0.005242,130
+0.005252,130
+0.005155,130
+0.005076,130
+0.005336,130
+0.005101,130
+0.005096,130
+0.005204,130
+0.005323,130
+0.005099,130
+0.005217,130
+0.005142,130
+0.005118,130
+0.005215,130
+0.005208,130
+0.005089,130
+0.005125,130
+0.005244,130
+0.005430,130
+0.005506,130
+0.005299,130
+0.005211,130
+0.005093,130
+0.005205,130
+0.005145,130
+0.005165,130
+0.005192,130
+0.005181,130
+0.005061,130
+0.005089,130
+0.005094,130
+0.005067,130
+0.005056,130
+0.005117,130
+0.005075,130
+0.005056,130
+0.005119,130
+0.005140,130
+0.005332,130
+0.005271,130
+0.005136,130
+0.005077,130
+0.005105,130
+0.005112,130
+0.005063,130
+0.005056,130
+0.005156,130
+0.005151,130
+0.005054,130
+0.005122,130
+0.005310,132
+0.005291,132
+0.005352,132
+0.005298,132
+0.005291,132
+0.005321,132
+0.005322,132
+0.005535,132
+0.005626,132
+0.005791,132
+0.005476,132
+0.005464,132
+0.005361,132
+0.005298,132
+0.005315,132
+0.005324,132
+0.005383,132
+0.005287,132
+0.005357,132
+0.005293,132
+0.005288,132
+0.005351,132
+0.005338,132
+0.005285,132
+0.005348,132
+0.005316,132
+0.005635,132
+0.005557,132
+0.005343,132
+0.005305,132
+0.005344,132
+0.005322,132
+0.005313,132
+0.005343,132
+0.005423,132
+0.005314,132
+0.005394,132
+0.005388,132
+0.005292,132
+0.005315,132
+0.005354,132
+0.005294,132
+0.005286,132
+0.005360,132
+0.005639,132
+0.005569,132
+0.006009,132
+0.005312,132
+0.005299,132
+0.005374,132
+0.005315,132
+0.005288,132
+0.005413,132
+0.005389,132
+0.005398,132
+0.005396,132
+0.005329,132
+0.005370,132
+0.005364,132
+0.005331,132
+0.005289,132
+0.005350,132
+0.005295,132
+0.005458,132
+0.005831,132
+0.005349,132
+0.005310,132
+0.005362,132
+0.005319,132
+0.005291,132
+0.005315,132
+0.005331,132
+0.005644,132
+0.005542,132
+0.005394,132
+0.005322,132
+0.005315,132
+0.005354,132
+0.005291,132
+0.005286,132
+0.005589,132
+0.005461,132
+0.005522,132
+0.005612,132
+0.005323,132
+0.005350,132
+0.005379,132
+0.005328,132
+0.005358,132
+0.005373,132
+0.005383,132
+0.005312,132
+0.005371,132
+0.005300,132
+0.005297,132
+0.005343,132
+0.005318,132
+0.005354,132
+0.005344,132
+0.005297,132
+0.005727,134
+0.006001,134
+0.005604,134
+0.005544,134
+0.005591,134
+0.005575,134
+0.005543,134
+0.005602,134
+0.005628,134
+0.005538,134
+0.005601,134
+0.005582,134
+0.005604,134
+0.005593,134
+0.005555,134
+0.005542,134
+0.005612,134
+0.005551,134
+0.005696,134
+0.005928,134
+0.005598,134
+0.005536,134
+0.005602,134
+0.005548,134
+0.005540,134
+0.005598,134
+0.005626,134
+0.005551,134
+0.005602,134
+0.005581,134
+0.005547,134
+0.005591,134
+0.005553,134
+0.005532,134
+0.005735,134
+0.006111,134
+0.006117,134
+0.006362,134
+0.006082,134
+0.006000,134
+0.006281,134
+0.006361,134
+0.006285,134
+0.006281,134
+0.005964,134
+0.006317,134
+0.005929,134
+0.006001,134
+0.006070,134
+0.006045,134
+0.006063,134
+0.006067,134
+0.006021,134
+0.006119,134
+0.006383,134
+0.006022,134
+0.006130,134
+0.006054,134
+0.006025,134
+0.006338,134
+0.006325,134
+0.006297,134
+0.006315,134
+0.005940,134
+0.006068,134
+0.006203,134
+0.006115,134
+0.006111,134
+0.006095,134
+0.006063,134
+0.006335,134
+0.006279,134
+0.006346,134
+0.006127,134
+0.006091,134
+0.006185,134
+0.006060,134
+0.005912,134
+0.006329,134
+0.006379,134
+0.006502,134
+0.006095,134
+0.005933,134
+0.006228,134
+0.005815,134
+0.005759,134
+0.005961,134
+0.005614,134
+0.005607,134
+0.005765,134
+0.005981,134
+0.005591,134
+0.005644,134
+0.005614,134
+0.005600,134
+0.005722,134
+0.005538,134
+0.005589,134
+0.005558,134
+0.005544,134
+0.005834,136
+0.005784,136
+0.005778,136
+0.006098,136
+0.006070,136
+0.005775,136
+0.005948,136
+0.006690,136
+0.005806,136
+0.006403,136
+0.006005,136
+0.006340,136
+0.006973,136
+0.006158,136
+0.006490,136
+0.006354,136
+0.005946,136
+0.006281,136
+0.006280,136
+0.006033,136
+0.006958,136
+0.005882,136
+0.006158,136
+0.006321,136
+0.005967,136
+0.006395,136
+0.006145,136
+0.005931,136
+0.006476,136
+0.006284,136
+0.006077,136
+0.006248,136
+0.006011,136
+0.006106,136
+0.006188,136
+0.005986,136
+0.006076,136
+0.006000,136
+0.005937,136
+0.005843,136
+0.005895,136
+0.005877,136
+0.005874,136
+0.005772,136
+0.005883,136
+0.005784,136
+0.005777,136
+0.005908,136
+0.005777,136
+0.005814,136
+0.005822,136
+0.005816,136
+0.005897,136
+0.006165,136
+0.005819,136
+0.005870,136
+0.005808,136
+0.005839,136
+0.005863,136
+0.005844,136
+0.005773,136
+0.005864,136
+0.005783,136
+0.005776,136
+0.005863,136
+0.005780,136
+0.005784,136
+0.005877,136
+0.005782,136
+0.005913,136
+0.006143,136
+0.005873,136
+0.005858,136
+0.005805,136
+0.005825,136
+0.005900,136
+0.005794,136
+0.005851,136
+0.005868,136
+0.005780,136
+0.005806,136
+0.005853,136
+0.005777,136
+0.005772,136
+0.005847,136
+0.005780,136
+0.005777,136
+0.006138,136
+0.005983,136
+0.005805,136
+0.005818,136
+0.005781,136
+0.005883,136
+0.005782,136
+0.005879,136
+0.005866,136
+0.005825,136
+0.005798,136
+0.005845,136
+0.005789,136
+0.006144,138
+0.006206,138
+0.006050,138
+0.006082,138
+0.006384,138
+0.006272,138
+0.006127,138
+0.006058,138
+0.006054,138
+0.006137,138
+0.006182,138
+0.006050,138
+0.006651,138
+0.006438,138
+0.006146,138
+0.006533,138
+0.006085,138
+0.006288,138
+0.006086,138
+0.006083,138
+0.006998,138
+0.006314,138
+0.006406,138
+0.006107,138
+0.006110,138
+0.006393,138
+0.006200,138
+0.006092,138
+0.006353,138
+0.006054,138
+0.006401,138
+0.006207,138
+0.006265,138
+0.006150,138
+0.006073,138
+0.006086,138
+0.006353,138
+0.006384,138
+0.006190,138
+0.006075,138
+0.006109,138
+0.006160,138
+0.006171,138
+0.006062,138
+0.006181,138
+0.006079,138
+0.006195,138
+0.006082,138
+0.006056,138
+0.006119,138
+0.006057,138
+0.006043,138
+0.006311,138
+0.006433,138
+0.006132,138
+0.006261,138
+0.006091,138
+0.006167,138
+0.006054,138
+0.006126,138
+0.006143,138
+0.006052,138
+0.006045,138
+0.006127,138
+0.006047,138
+0.006085,138
+0.006126,138
+0.006050,138
+0.006128,138
+0.006386,138
+0.006225,138
+0.006126,138
+0.006080,138
+0.006061,138
+0.006171,138
+0.006165,138
+0.006168,138
+0.006123,138
+0.006081,138
+0.006128,138
+0.006048,138
+0.006047,138
+0.006126,138
+0.006076,138
+0.006082,138
+0.006268,138
+0.006333,138
+0.006179,138
+0.006075,138
+0.006054,138
+0.006144,138
+0.006149,138
+0.006059,138
+0.006157,138
+0.006082,138
+0.006094,138
+0.006091,138
+0.006047,138
+0.006129,138
+0.006050,138
+0.006337,140
+0.006400,140
+0.006574,140
+0.006676,140
+0.006315,140
+0.006319,140
+0.006404,140
+0.006336,140
+0.006425,140
+0.006379,140
+0.006310,140
+0.006384,140
+0.006309,140
+0.006344,140
+0.006387,140
+0.006314,140
+0.006349,140
+0.006525,140
+0.006626,140
+0.006451,140
+0.006317,140
+0.006307,140
+0.006405,140
+0.006402,140
+0.006386,140
+0.006310,140
+0.006303,140
+0.006385,140
+0.006305,140
+0.006345,140
+0.006347,140
+0.006308,140
+0.006397,140
+0.006469,140
+0.006585,140
+0.006423,140
+0.006313,140
+0.006412,140
+0.006308,140
+0.006395,140
+0.006382,140
+0.006307,140
+0.006343,140
+0.006368,140
+0.006309,140
+0.006386,140
+0.006307,140
+0.006304,140
+0.006382,140
+0.006535,140
+0.006571,140
+0.006345,140
+0.006319,140
+0.006407,140
+0.006317,140
+0.006471,140
+0.006446,140
+0.006339,140
+0.006411,140
+0.006311,140
+0.006303,140
+0.006465,140
+0.006307,140
+0.006342,140
+0.006347,140
+0.006552,140
+0.006571,140
+0.006321,140
+0.006361,140
+0.006429,140
+0.006384,140
+0.006402,140
+0.006311,140
+0.006303,140
+0.006386,140
+0.006306,140
+0.006354,140
+0.006357,140
+0.006309,140
+0.006384,140
+0.006307,140
+0.006558,140
+0.006513,140
+0.006311,140
+0.006354,140
+0.006346,140
+0.006407,140
+0.006385,140
+0.006308,140
+0.006305,140
+0.006381,140
+0.006309,140
+0.006383,140
+0.006312,140
+0.006313,140
+0.006383,140
+0.006480,140
+0.006622,140
+0.006399,140
+0.006320,140
+0.006685,142
+0.006591,142
+0.006702,142
+0.006625,142
+0.006589,142
+0.006665,142
+0.006586,142
+0.006584,142
+0.006666,142
+0.006587,142
+0.006679,142
+0.006590,142
+0.006811,142
+0.006806,142
+0.006596,142
+0.006669,142
+0.006599,142
+0.006663,142
+0.006728,142
+0.006585,142
+0.007004,142
+0.007236,142
+0.007073,142
+0.007474,142
+0.006630,142
+0.006928,142
+0.006732,142
+0.007071,142
+0.006601,142
+0.006587,142
+0.006673,142
+0.006685,142
+0.006709,142
+0.006656,142
+0.006584,142
+0.006663,142
+0.006588,142
+0.006665,142
+0.006650,142
+0.006594,142
+0.006675,142
+0.006671,142
+0.007029,142
+0.006622,142
+0.006624,142
+0.006750,142
+0.007873,142
+0.006733,142
+0.006849,142
+0.006880,142
+0.006839,142
+0.006767,142
+0.006828,142
+0.006757,142
+0.006806,142
+0.006630,142
+0.006778,142
+0.007067,142
+0.006704,142
+0.006746,142
+0.006644,142
+0.006692,142
+0.006747,142
+0.006707,142
+0.006716,142
+0.006660,142
+0.006632,142
+0.006743,142
+0.007173,142
+0.006932,142
+0.006678,142
+0.006988,142
+0.006903,142
+0.006596,142
+0.006914,142
+0.006590,142
+0.007036,142
+0.006830,142
+0.006713,142
+0.006756,142
+0.006656,142
+0.006650,142
+0.006702,142
+0.006673,142
+0.006853,142
+0.006643,142
+0.006941,142
+0.006973,142
+0.006675,142
+0.006820,142
+0.006726,142
+0.006739,142
+0.006694,142
+0.006696,142
+0.006955,142
+0.006669,142
+0.006780,142
+0.006669,142
+0.006774,142
+0.006784,142
+0.006946,144
+0.007180,144
+0.007175,144
+0.006981,144
+0.007011,144
+0.006981,144
+0.007058,144
+0.006979,144
+0.007020,144
+0.006891,144
+0.006974,144
+0.007013,144
+0.007064,144
+0.007010,144
+0.006935,144
+0.007171,144
+0.007264,144
+0.006881,144
+0.007101,144
+0.007048,144
+0.007135,144
+0.006928,144
+0.006969,144
+0.006954,144
+0.006935,144
+0.007018,144
+0.007033,144
+0.007058,144
+0.006911,144
+0.006959,144
+0.007164,144
+0.007034,144
+0.007004,144
+0.006925,144
+0.007048,144
+0.006911,144
+0.006925,144
+0.006982,144
+0.007009,144
+0.006980,144
+0.007044,144
+0.006942,144
+0.007042,144
+0.007044,144
+0.007140,144
+0.007128,144
+0.006992,144
+0.006979,144
+0.006992,144
+0.007026,144
+0.006894,144
+0.006992,144
+0.006908,144
+0.006913,144
+0.007092,144
+0.006903,144
+0.007016,144
+0.006961,144
+0.007095,144
+0.007097,144
+0.007115,144
+0.007031,144
+0.006934,144
+0.007039,144
+0.006954,144
+0.007028,144
+0.006887,144
+0.006999,144
+0.007085,144
+0.006888,144
+0.007021,144
+0.006992,144
+0.007038,144
+0.007296,144
+0.007040,144
+0.007109,144
+0.006944,144
+0.007045,144
+0.006961,144
+0.006940,144
+0.006953,144
+0.006940,144
+0.007063,144
+0.006913,144
+0.007011,144
+0.006932,144
+0.006881,144
+0.007184,144
+0.007128,144
+0.007072,144
+0.006937,144
+0.007065,144
+0.006980,144
+0.006957,144
+0.007054,144
+0.006988,144
+0.007102,144
+0.006926,144
+0.006940,144
+0.007007,144
+0.007310,146
+0.007503,146
+0.007518,146
+0.007639,146
+0.007285,146
+0.007494,146
+0.007291,146
+0.007312,146
+0.007408,146
+0.007292,146
+0.007390,146
+0.007326,146
+0.007384,146
+0.007387,146
+0.007313,146
+0.007532,146
+0.007562,146
+0.007357,146
+0.007306,146
+0.007373,146
+0.007276,146
+0.007394,146
+0.007270,146
+0.007294,146
+0.007332,146
+0.007257,146
+0.007375,146
+0.007292,146
+0.007418,146
+0.007439,146
+0.007513,146
+0.007323,146
+0.007384,146
+0.007416,146
+0.007336,146
+0.007373,146
+0.007230,146
+0.007855,146
+0.007391,146
+0.007525,146
+0.007321,146
+0.007766,146
+0.007705,146
+0.008125,146
+0.007839,146
+0.008005,146
+0.008066,146
+0.007611,146
+0.007603,146
+0.007924,146
+0.007917,146
+0.008697,146
+0.007902,146
+0.008156,146
+0.007777,146
+0.007991,146
+0.007792,146
+0.007690,146
+0.008070,146
+0.007532,146
+0.007425,146
+0.007711,146
+0.007342,146
+0.007745,146
+0.007388,146
+0.007762,146
+0.007380,146
+0.007572,146
+0.008872,146
+0.007442,146
+0.007244,146
+0.007486,146
+0.007478,146
+0.007317,146
+0.007404,146
+0.007255,146
+0.007393,146
+0.007261,146
+0.007373,146
+0.007560,146
+0.007425,146
+0.008690,146
+0.007781,146
+0.007627,146
+0.007529,146
+0.007442,146
+0.007458,146
+0.007404,146
+0.007270,146
+0.007425,146
+0.007276,146
+0.007546,146
+0.007440,146
+0.007283,146
+0.007965,146
+0.008321,146
+0.007419,146
+0.007291,146
+0.007481,146
+0.007402,146
+0.007778,148
+0.007615,148
+0.007758,148
+0.007670,148
+0.007914,148
+0.007726,148
+0.007688,148
+0.008380,148
+0.008756,148
+0.007832,148
+0.007708,148
+0.007808,148
+0.007701,148
+0.007684,148
+0.007601,148
+0.007729,148
+0.007646,148
+0.010019,148
+0.010566,148
+0.008456,148
+0.008756,148
+0.008002,148
+0.007720,148
+0.008182,148
+0.007676,148
+0.007769,148
+0.007617,148
+0.007762,148
+0.007616,148
+0.007896,148
+0.007661,148
+0.008434,148
+0.007774,148
+0.007898,148
+0.007938,148
+0.007794,148
+0.007770,148
+0.007682,148
+0.007740,148
+0.007658,148
+0.007811,148
+0.007639,148
+0.007765,148
+0.008333,148
+0.007766,148
+0.007792,148
+0.008049,148
+0.007656,148
+0.007810,148
+0.007844,148
+0.007735,148
+0.007690,148
+0.007637,148
+0.007724,148
+0.007651,148
+0.007805,148
+0.007719,148
+0.007757,148
+0.007824,148
+0.008019,148
+0.007648,148
+0.007793,148
+0.007652,148
+0.007700,148
+0.007683,148
+0.007605,148
+0.007735,148
+0.007639,148
+0.007750,148
+0.007703,148
+0.007735,148
+0.007821,148
+0.008072,148
+0.007652,148
+0.007801,148
+0.007742,148
+0.007765,148
+0.007639,148
+0.008044,148
+0.008433,148
+0.007989,148
+0.008329,148
+0.008245,148
+0.008221,148
+0.008322,148
+0.008063,148
+0.007857,148
+0.007852,148
+0.007735,148
+0.008152,148
+0.008043,148
+0.008220,148
+0.007921,148
+0.008088,148
+0.008168,148
+0.008056,148
+0.008000,148
+0.008362,148
+0.007909,148
+0.009064,148
+0.008346,150
+0.008128,150
+0.007978,150
+0.007981,150
+0.007997,150
+0.008024,150
+0.008138,150
+0.008056,150
+0.008012,150
+0.008554,150
+0.007982,150
+0.008079,150
+0.008173,150
+0.008247,150
+0.007963,150
+0.007973,150
+0.007973,150
+0.007978,150
+0.007963,150
+0.007982,150
+0.007996,150
+0.008331,150
+0.008317,150
+0.008052,150
+0.008038,150
+0.007984,150
+0.008001,150
+0.008107,150
+0.007991,150
+0.007992,150
+0.008025,150
+0.007979,150
+0.008018,150
+0.008062,150
+0.008459,150
+0.008003,150
+0.008107,150
+0.008063,150
+0.007981,150
+0.007958,150
+0.008063,150
+0.007984,150
+0.008013,150
+0.007974,150
+0.008009,150
+0.008056,150
+0.008926,150
+0.008235,150
+0.008700,150
+0.008811,150
+0.008310,150
+0.008023,150
+0.008036,150
+0.007984,150
+0.008003,150
+0.008007,150
+0.008060,150
+0.007973,150
+0.008231,150
+0.008441,150
+0.008058,150
+0.008011,150
+0.007978,150
+0.008027,150
+0.007937,150
+0.008053,150
+0.007993,150
+0.008003,150
+0.008118,150
+0.008002,150
+0.007976,150
+0.008652,150
+0.008004,150
+0.008149,150
+0.008675,150
+0.008305,150
+0.008023,150
+0.008031,150
+0.007990,150
+0.007980,150
+0.007962,150
+0.008021,150
+0.007980,150
+0.008286,150
+0.008263,150
+0.008098,150
+0.008096,150
+0.008071,150
+0.007968,150
+0.007976,150
+0.007980,150
+0.008035,150
+0.007977,150
+0.008001,150
+0.007974,150
+0.008073,150
+0.008516,150
+0.007981,150
+0.008411,150
+0.008241,150
+0.008650,152
+0.008546,152
+0.008398,152
+0.008301,152
+0.008325,152
+0.008319,152
+0.008371,152
+0.008372,152
+0.008826,152
+0.008335,152
+0.008408,152
+0.008364,152
+0.008326,152
+0.008344,152
+0.008336,152
+0.008302,152
+0.008316,152
+0.008305,152
+0.008350,152
+0.008368,152
+0.008856,152
+0.008355,152
+0.008551,152
+0.008376,152
+0.008291,152
+0.008303,152
+0.008329,152
+0.008321,152
+0.008396,152
+0.008476,152
+0.008333,152
+0.008421,152
+0.009212,152
+0.008451,152
+0.008314,152
+0.008375,152
+0.008240,152
+0.008306,152
+0.008367,152
+0.008485,152
+0.008341,152
+0.008528,152
+0.008268,152
+0.008497,152
+0.008824,152
+0.008429,152
+0.008309,152
+0.008354,152
+0.008250,152
+0.008309,152
+0.008308,152
+0.008352,152
+0.008268,152
+0.008575,152
+0.008266,152
+0.008708,152
+0.008738,152
+0.008758,152
+0.008415,152
+0.008447,152
+0.008256,152
+0.008588,152
+0.008314,152
+0.008504,152
+0.008304,152
+0.008422,152
+0.008275,152
+0.008529,152
+0.008792,152
+0.008401,152
+0.008369,152
+0.008584,152
+0.008314,152
+0.008303,152
+0.008326,152
+0.008382,152
+0.008319,152
+0.008334,152
+0.008260,152
+0.008533,152
+0.008883,152
+0.008571,152
+0.008472,152
+0.008538,152
+0.008479,152
+0.008707,152
+0.008450,152
+0.008625,152
+0.008442,152
+0.008723,152
+0.009167,152
+0.009004,152
+0.009271,152
+0.009005,152
+0.010127,152
+0.010188,152
+0.011063,152
+0.009559,152
+0.009838,152
+0.009961,152
+0.009792,154
+0.009499,154
+0.009653,154
+0.009494,154
+0.009772,154
+0.009646,154
+0.009619,154
+0.009178,154
+0.009863,154
+0.009757,154
+0.009511,154
+0.009677,154
+0.009544,154
+0.009983,154
+0.009500,154
+0.009243,154
+0.009506,154
+0.009279,154
+0.009287,154
+0.009049,154
+0.008765,154
+0.008746,154
+0.008860,154
+0.008931,154
+0.008970,154
+0.008748,154
+0.008955,154
+0.009060,154
+0.009114,154
+0.009070,154
+0.009268,154
+0.009261,154
+0.009288,154
+0.009213,154
+0.009292,154
+0.009037,154
+0.009542,154
+0.009994,154
+0.009146,154
+0.009390,154
+0.009094,154
+0.008783,154
+0.008926,154
+0.008703,154
+0.008679,154
+0.009198,154
+0.008700,154
+0.008618,154
+0.008616,154
+0.008538,154
+0.008603,154
+0.008568,154
+0.008587,154
+0.008565,154
+0.008594,154
+0.008616,154
+0.008779,154
+0.008935,154
+0.008574,154
+0.008673,154
+0.008572,154
+0.008687,154
+0.008556,154
+0.008651,154
+0.008531,154
+0.008601,154
+0.008538,154
+0.008599,154
+0.009100,154
+0.008690,154
+0.008595,154
+0.008651,154
+0.008587,154
+0.008598,154
+0.008538,154
+0.008612,154
+0.008553,154
+0.008637,154
+0.008539,154
+0.008770,154
+0.010257,154
+0.008723,154
+0.008869,154
+0.008579,154
+0.008621,154
+0.008552,154
+0.008607,154
+0.008537,154
+0.008603,154
+0.008534,154
+0.008603,154
+0.008690,154
+0.009026,154
+0.008675,154
+0.009593,154
+0.008742,154
+0.008727,154
+0.008825,154
+0.008665,154
+0.008692,154
+0.008984,156
+0.008931,156
+0.011467,156
+0.011223,156
+0.009128,156
+0.008904,156
+0.008958,156
+0.008882,156
+0.008937,156
+0.009507,156
+0.010447,156
+0.009244,156
+0.009419,156
+0.009403,156
+0.009228,156
+0.009477,156
+0.009392,156
+0.009371,156
+0.009207,156
+0.009178,156
+0.009348,156
+0.009250,156
+0.009315,156
+0.009246,156
+0.009537,156
+0.009041,156
+0.009492,156
+0.009271,156
+0.009272,156
+0.009327,156
+0.009955,156
+0.011658,156
+0.009964,156
+0.011695,156
+0.012714,156
+0.011539,156
+0.010104,156
+0.011475,156
+0.009902,156
+0.009919,156
+0.011891,156
+0.011584,156
+0.010316,156
+0.010424,156
+0.009976,156
+0.011155,156
+0.009782,156
+0.010686,156
+0.013995,156
+0.011084,156
+0.009411,156
+0.010324,156
+0.015872,156
+0.011228,156
+0.009864,156
+0.010520,156
+0.009239,156
+0.010670,156
+0.009977,156
+0.009525,156
+0.009844,156
+0.009151,156
+0.009747,156
+0.009790,156
+0.009815,156
+0.010218,156
+0.010520,156
+0.012190,156
+0.015521,156
+0.009509,156
+0.009140,156
+0.012884,156
+0.009942,156
+0.009681,156
+0.009923,156
+0.009139,156
+0.009531,156
+0.008975,156
+0.009821,156
+0.009291,156
+0.010210,156
+0.009505,156
+0.010075,156
+0.009369,156
+0.008945,156
+0.010025,156
+0.009424,156
+0.009071,156
+0.009673,156
+0.009162,156
+0.009764,156
+0.009041,156
+0.011949,156
+0.009617,156
+0.009074,156
+0.009598,156
+0.009052,156
+0.009570,156
+0.009098,156
+0.010041,156
+0.009708,158
+0.010064,158
+0.009928,158
+0.009806,158
+0.010372,158
+0.009740,158
+0.010422,158
+0.009990,158
+0.012470,158
+0.011446,158
+0.011016,158
+0.013338,158
+0.014195,158
+0.011668,158
+0.011490,158
+0.012130,158
+0.019081,158
+0.015487,158
+0.009681,158
+0.012794,158
+0.010850,158
+0.011093,158
+0.010817,158
+0.011067,158
+0.010525,158
+0.012347,158
+0.013523,158
+0.015113,158
+0.011413,158
+0.011253,158
+0.010759,158
+0.015331,158
+0.016442,158
+0.015369,158
+0.018370,158
+0.018265,158
+0.011872,158
+0.009907,158
+0.011238,158
+0.010150,158
+0.010105,158
+0.010182,158
+0.010156,158
+0.010646,158
+0.010022,158
+0.011163,158
+0.011613,158
+0.012204,158
+0.010184,158
+0.010941,158
+0.009729,158
+0.010241,158
+0.011784,158
+0.012669,158
+0.010926,158
+0.010744,158
+0.009868,158
+0.010450,158
+0.010083,158
+0.009632,158
+0.011187,158
+0.010271,158
+0.010291,158
+0.010722,158
+0.010145,158
+0.010388,158
+0.010175,158
+0.009634,158
+0.010690,158
+0.010194,158
+0.010933,158
+0.010413,158
+0.010111,158
+0.009954,158
+0.009935,158
+0.009513,158
+0.010208,158
+0.009461,158
+0.010033,158
+0.009768,158
+0.009675,158
+0.009992,158
+0.015378,158
+0.009805,158
+0.009962,158
+0.009615,158
+0.009814,158
+0.009782,158
+0.009562,158
+0.009641,158
+0.009396,158
+0.009651,158
+0.009703,158
+0.009545,158
+0.009404,158
+0.009308,158
+0.009399,158
+0.009599,158
+0.009542,158
+0.009624,158
+0.009764,160
+0.009766,160
+0.010419,160
+0.009815,160
+0.009659,160
+0.009766,160
+0.009896,160
+0.009800,160
+0.009621,160
+0.009634,160
+0.009769,160
+0.009709,160
+0.010182,160
+0.010103,160
+0.009729,160
+0.016327,160
+0.018110,160
+0.009952,160
+0.009734,160
+0.009748,160
+0.009848,160
+0.010281,160
+0.009908,160
+0.009824,160
+0.009719,160
+0.009832,160
+0.009633,160
+0.009759,160
+0.009556,160
+0.009787,160
+0.009659,160
+0.010176,160
+0.010140,160
+0.009638,160
+0.010102,160
+0.009776,160
+0.009687,160
+0.009705,160
+0.009597,160
+0.009634,160
+0.009557,160
+0.009941,160
+0.015949,160
+0.018097,160
+0.018372,160
+0.017274,160
+0.017383,160
+0.017845,160
+0.017787,160
+0.017123,160
+0.009852,160
+0.009752,160
+0.009764,160
+0.009808,160
+0.009696,160
+0.009943,160
+0.010198,160
+0.009885,160
+0.009826,160
+0.009636,160
+0.009895,160
+0.009603,160
+0.012460,160
+0.009786,160
+0.009703,160
+0.009974,160
+0.010484,160
+0.009772,160
+0.009750,160
+0.009698,160
+0.009840,160
+0.009727,160
+0.009810,160
+0.009745,160
+0.009768,160
+0.009757,160
+0.012811,160
+0.009725,160
+0.009802,160
+0.009732,160
+0.009781,160
+0.009819,160
+0.009776,160
+0.009768,160
+0.009759,160
+0.009821,160
+0.011373,160
+0.009787,160
+0.009738,160
+0.009744,160
+0.009732,160
+0.009770,160
+0.009758,160
+0.009691,160
+0.009695,160
+0.009737,160
+0.011340,160
+0.009818,160
+0.009742,160
+0.009665,160
+0.010148,162
+0.010251,162
+0.010111,162
+0.010181,162
+0.010023,162
+0.010160,162
+0.011832,162
+0.010147,162
+0.010344,162
+0.009981,162
+0.010106,162
+0.010133,162
+0.010074,162
+0.010133,162
+0.010118,162
+0.010709,162
+0.011354,162
+0.010097,162
+0.010123,162
+0.010064,162
+0.010051,162
+0.010191,162
+0.009993,162
+0.010145,162
+0.010079,162
+0.011254,162
+0.010817,162
+0.010116,162
+0.010152,162
+0.010225,162
+0.010111,162
+0.010227,162
+0.010041,162
+0.010084,162
+0.010101,162
+0.011673,162
+0.010321,162
+0.010229,162
+0.010453,162
+0.010441,162
+0.010382,162
+0.010084,162
+0.010164,162
+0.010015,162
+0.010080,162
+0.011790,162
+0.010053,162
+0.010139,162
+0.010015,162
+0.010101,162
+0.010225,162
+0.009966,162
+0.010188,162
+0.010130,162
+0.010811,162
+0.011149,162
+0.010074,162
+0.010151,162
+0.010192,162
+0.009983,162
+0.010172,162
+0.010086,162
+0.010313,162
+0.010065,162
+0.011288,162
+0.010595,162
+0.010108,162
+0.010117,162
+0.010081,162
+0.010025,162
+0.010051,162
+0.010062,162
+0.009960,162
+0.010127,162
+0.012434,162
+0.010552,162
+0.010108,162
+0.010048,162
+0.010067,162
+0.010161,162
+0.010022,162
+0.010066,162
+0.009953,162
+0.010138,162
+0.011683,162
+0.010006,162
+0.010122,162
+0.010041,162
+0.010038,162
+0.010052,162
+0.009980,162
+0.010051,162
+0.010021,162
+0.010381,162
+0.011370,162
+0.010045,162
+0.010075,162
+0.010103,162
+0.010161,162
+0.010138,162
+0.010413,164
+0.010478,164
+0.010468,164
+0.011700,164
+0.011035,164
+0.010514,164
+0.010441,164
+0.010456,164
+0.010483,164
+0.010397,164
+0.010585,164
+0.010424,164
+0.010495,164
+0.012097,164
+0.010512,164
+0.010464,164
+0.010491,164
+0.010400,164
+0.010487,164
+0.010544,164
+0.010423,164
+0.010437,164
+0.012053,164
+0.010544,164
+0.010522,164
+0.010433,164
+0.010460,164
+0.010495,164
+0.010396,164
+0.010457,164
+0.010480,164
+0.010995,164
+0.011689,164
+0.010565,164
+0.010388,164
+0.010465,164
+0.010401,164
+0.010423,164
+0.010470,164
+0.010378,164
+0.010484,164
+0.012143,164
+0.010831,164
+0.010480,164
+0.010462,164
+0.010407,164
+0.010435,164
+0.010439,164
+0.010430,164
+0.010510,164
+0.011330,164
+0.011362,164
+0.010723,164
+0.010432,164
+0.010464,164
+0.010741,164
+0.010533,164
+0.010585,164
+0.010826,164
+0.010397,164
+0.011904,164
+0.010379,164
+0.010397,164
+0.010446,164
+0.010295,164
+0.010390,164
+0.010363,164
+0.010311,164
+0.010359,164
+0.012203,164
+0.011248,164
+0.010458,164
+0.010732,164
+0.010783,164
+0.010587,164
+0.010392,164
+0.010336,164
+0.010346,164
+0.010453,164
+0.011919,164
+0.010390,164
+0.010326,164
+0.010369,164
+0.010723,164
+0.010331,164
+0.010576,164
+0.010334,164
+0.010446,164
+0.011779,164
+0.010543,164
+0.010437,164
+0.010399,164
+0.010404,164
+0.010340,164
+0.010328,164
+0.010594,164
+0.010360,164
+0.010354,164
+0.012024,164
+0.010405,164
+0.010744,166
+0.010745,166
+0.010723,166
+0.010712,166
+0.010866,166
+0.010727,166
+0.010759,166
+0.012288,166
+0.010952,166
+0.010841,166
+0.010858,166
+0.010729,166
+0.010668,166
+0.010714,166
+0.010732,166
+0.010707,166
+0.012446,166
+0.010702,166
+0.010806,166
+0.010861,166
+0.010752,166
+0.010744,166
+0.010715,166
+0.010670,166
+0.010739,166
+0.011991,166
+0.010997,166
+0.010792,166
+0.010768,166
+0.010704,166
+0.010760,166
+0.010717,166
+0.010701,166
+0.010783,166
+0.011691,166
+0.011293,166
+0.010739,166
+0.010756,166
+0.010708,166
+0.010774,166
+0.010693,166
+0.010799,166
+0.010777,166
+0.010820,166
+0.012218,166
+0.010780,166
+0.010711,166
+0.010703,166
+0.010750,166
+0.010693,166
+0.012657,166
+0.010827,166
+0.011021,166
+0.012073,166
+0.010826,166
+0.010750,166
+0.010721,166
+0.010735,166
+0.010689,166
+0.010798,166
+0.010740,166
+0.010746,166
+0.013313,166
+0.010825,166
+0.010754,166
+0.010796,166
+0.010818,166
+0.010668,166
+0.010738,166
+0.010805,166
+0.010845,166
+0.012153,166
+0.010795,166
+0.010743,166
+0.010758,166
+0.010742,166
+0.010670,166
+0.010774,166
+0.010884,166
+0.010697,166
+0.012186,166
+0.010813,166
+0.010782,166
+0.010716,166
+0.010772,166
+0.010932,166
+0.010732,166
+0.010799,166
+0.010905,166
+0.012334,166
+0.011287,166
+0.010728,166
+0.010781,166
+0.010719,166
+0.010703,166
+0.010891,166
+0.010675,166
+0.010746,166
+0.011915,166
+0.011197,166
+0.011188,168
+0.011176,168
+0.011134,168
+0.011091,168
+0.011122,168
+0.011091,168
+0.011333,168
+0.012676,168
+0.011323,168
+0.011132,168
+0.011158,168
+0.011182,168
+0.011040,168
+0.011103,168
+0.011119,168
+0.011032,168
+0.012494,168
+0.011247,168
+0.011090,168
+0.011127,168
+0.011116,168
+0.011033,168
+0.011132,168
+0.011111,168
+0.011323,168
+0.012560,168
+0.011198,168
+0.011052,168
+0.011112,168
+0.011170,168
+0.011056,168
+0.011182,168
+0.011106,168
+0.011096,168
+0.012608,168
+0.011202,168
+0.011168,168
+0.011096,168
+0.011665,168
+0.011273,168
+0.011239,168
+0.011162,168
+0.011810,168
+0.013018,168
+0.011296,168
+0.013346,168
+0.011301,168
+0.011328,168
+0.011371,168
+0.011118,168
+0.011642,168
+0.013363,168
+0.012294,168
+0.011239,168
+0.011365,168
+0.011286,168
+0.011206,168
+0.011182,168
+0.011193,168
+0.011358,168
+0.012980,168
+0.011323,168
+0.011290,168
+0.011096,168
+0.011324,168
+0.011231,168
+0.011120,168
+0.011345,168
+0.011328,168
+0.013012,168
+0.011295,168
+0.011217,168
+0.011203,168
+0.011287,168
+0.011296,168
+0.011253,168
+0.011104,168
+0.012233,168
+0.012366,168
+0.011131,168
+0.011286,168
+0.011339,168
+0.011209,168
+0.011334,168
+0.011235,168
+0.011186,168
+0.012163,168
+0.011562,168
+0.011245,168
+0.011236,168
+0.011327,168
+0.011180,168
+0.011227,168
+0.011246,168
+0.011389,168
+0.011467,168
+0.011451,168
+0.011252,168
+0.011184,168
+0.011440,168
+0.011803,170
+0.011633,170
+0.011754,170
+0.011733,170
+0.012118,170
+0.011671,170
+0.011704,170
+0.011708,170
+0.011543,170
+0.011757,170
+0.011879,170
+0.012707,170
+0.012234,170
+0.012154,170
+0.012029,170
+0.011819,170
+0.011794,170
+0.011707,170
+0.011739,170
+0.011616,170
+0.011782,170
+0.011894,170
+0.011620,170
+0.011676,170
+0.011737,170
+0.011665,170
+0.013483,170
+0.011864,170
+0.011862,170
+0.011783,170
+0.011887,170
+0.011690,170
+0.011598,170
+0.011614,170
+0.011786,170
+0.011668,170
+0.011574,170
+0.011753,170
+0.012154,170
+0.011741,170
+0.011661,170
+0.011731,170
+0.011587,170
+0.011728,170
+0.011885,170
+0.012014,170
+0.011749,170
+0.012165,170
+0.011731,170
+0.011691,170
+0.011632,170
+0.011787,170
+0.011654,170
+0.011534,170
+0.011671,170
+0.012229,170
+0.011720,170
+0.011710,170
+0.011681,170
+0.011628,170
+0.011850,170
+0.012076,170
+0.012006,170
+0.011998,170
+0.012166,170
+0.011650,170
+0.011619,170
+0.013339,170
+0.011921,170
+0.011944,170
+0.011613,170
+0.012039,170
+0.012333,170
+0.011874,170
+0.011528,170
+0.011718,170
+0.012276,170
+0.011680,170
+0.011720,170
+0.011750,170
+0.011871,170
+0.011891,170
+0.011765,170
+0.011748,170
+0.012251,170
+0.012336,170
+0.011824,170
+0.011639,170
+0.011552,170
+0.012302,170
+0.011869,170
+0.011699,170
+0.011653,170
+0.011691,170
+0.011702,170
+0.011613,170
+0.011693,170
+0.011867,170
+0.011884,170
+0.011810,170
+0.012074,172
+0.011974,172
+0.012033,172
+0.012139,172
+0.012091,172
+0.012195,172
+0.012515,172
+0.012144,172
+0.012095,172
+0.011989,172
+0.012052,172
+0.012197,172
+0.011944,172
+0.012017,172
+0.012634,172
+0.012185,172
+0.012032,172
+0.011984,172
+0.011944,172
+0.011948,172
+0.012013,172
+0.012059,172
+0.012414,172
+0.012556,172
+0.012083,172
+0.012123,172
+0.012035,172
+0.011958,172
+0.012100,172
+0.012146,172
+0.012187,172
+0.012415,172
+0.012021,172
+0.012361,172
+0.012271,172
+0.012159,172
+0.012322,172
+0.012592,172
+0.012602,172
+0.017974,172
+0.012685,172
+0.012590,172
+0.012584,172
+0.013232,172
+0.012474,172
+0.013220,172
+0.012502,172
+0.013119,172
+0.014392,172
+0.013448,172
+0.013295,172
+0.012219,172
+0.013097,172
+0.012303,172
+0.012687,172
+0.012114,172
+0.012033,172
+0.012130,172
+0.012114,172
+0.012187,172
+0.012298,172
+0.012147,172
+0.013105,172
+0.012013,172
+0.012057,172
+0.011979,172
+0.011942,172
+0.011856,172
+0.011861,172
+0.011924,172
+0.012072,172
+0.012259,172
+0.011844,172
+0.011881,172
+0.011843,172
+0.011926,172
+0.011862,172
+0.012586,172
+0.012893,172
+0.012599,172
+0.012343,172
+0.012339,172
+0.012494,172
+0.013816,172
+0.013387,172
+0.012774,172
+0.012310,172
+0.012798,172
+0.012672,172
+0.012516,172
+0.013154,172
+0.013189,172
+0.013596,172
+0.013207,172
+0.012189,172
+0.012599,172
+0.012129,172
+0.011997,172
+0.011920,172
+0.011909,172
+0.012384,174
+0.012414,174
+0.012323,174
+0.012920,174
+0.012416,174
+0.012512,174
+0.012308,174
+0.012340,174
+0.012355,174
+0.012403,174
+0.012300,174
+0.012744,174
+0.012276,174
+0.012355,174
+0.012279,174
+0.012386,174
+0.012333,174
+0.012360,174
+0.012270,174
+0.012730,174
+0.012328,174
+0.012354,174
+0.012453,174
+0.012383,174
+0.012623,174
+0.012689,174
+0.012315,174
+0.012723,174
+0.012302,174
+0.012564,174
+0.012282,174
+0.012302,174
+0.012277,174
+0.012412,174
+0.012272,174
+0.012768,174
+0.012377,174
+0.012371,174
+0.012361,174
+0.013034,174
+0.012987,174
+0.012628,174
+0.013998,174
+0.013698,174
+0.014008,174
+0.013889,174
+0.013980,174
+0.013791,174
+0.013426,174
+0.013223,174
+0.013151,174
+0.013028,174
+0.012541,174
+0.012331,174
+0.012293,174
+0.012333,174
+0.012407,174
+0.012313,174
+0.012564,174
+0.012576,174
+0.012471,174
+0.012335,174
+0.012304,174
+0.012388,174
+0.012524,174
+0.012404,174
+0.012559,174
+0.012668,174
+0.012388,174
+0.012343,174
+0.012292,174
+0.012377,174
+0.012352,174
+0.012424,174
+0.012519,174
+0.012774,174
+0.012341,174
+0.012310,174
+0.012281,174
+0.012314,174
+0.012306,174
+0.012409,174
+0.012421,174
+0.012911,174
+0.012366,174
+0.012398,174
+0.012284,174
+0.012317,174
+0.012333,174
+0.012430,174
+0.012790,174
+0.012808,174
+0.012425,174
+0.012461,174
+0.012323,174
+0.012311,174
+0.012329,174
+0.012341,174
+0.012318,174
+0.012892,174
+0.012960,176
+0.012683,176
+0.012958,176
+0.012756,176
+0.012903,176
+0.015272,176
+0.013608,176
+0.013179,176
+0.012783,176
+0.012762,176
+0.012756,176
+0.013141,176
+0.012996,176
+0.012790,176
+0.013298,176
+0.012712,176
+0.012703,176
+0.012714,176
+0.012706,176
+0.012737,176
+0.012772,176
+0.012755,176
+0.013546,176
+0.013366,176
+0.013516,176
+0.012994,176
+0.012751,176
+0.013049,176
+0.013413,176
+0.012935,176
+0.013297,176
+0.012956,176
+0.012993,176
+0.012823,176
+0.012865,176
+0.012933,176
+0.012857,176
+0.013186,176
+0.013147,176
+0.012913,176
+0.012906,176
+0.012921,176
+0.013084,176
+0.012999,176
+0.012901,176
+0.013274,176
+0.013093,176
+0.013013,176
+0.013214,176
+0.013072,176
+0.013100,176
+0.012980,176
+0.012936,176
+0.013306,176
+0.012931,176
+0.012915,176
+0.012792,176
+0.012953,176
+0.013011,176
+0.012916,176
+0.013064,176
+0.013292,176
+0.013001,176
+0.012893,176
+0.013025,176
+0.015394,176
+0.012886,176
+0.013035,176
+0.013505,176
+0.012926,176
+0.012864,176
+0.012822,176
+0.012955,176
+0.013117,176
+0.013025,176
+0.012799,176
+0.013449,176
+0.012980,176
+0.012970,176
+0.013047,176
+0.013065,176
+0.014701,176
+0.014472,176
+0.013191,176
+0.012983,176
+0.012964,176
+0.012861,176
+0.012866,176
+0.012829,176
+0.012984,176
+0.012747,176
+0.013213,176
+0.012899,176
+0.013713,176
+0.024383,176
+0.023947,176
+0.023787,176
+0.024533,176
+0.020622,176
+0.012850,176
+0.013423,178
+0.013214,178
+0.013369,178
+0.013415,178
+0.013215,178
+0.013210,178
+0.013217,178
+0.013262,178
+0.013397,178
+0.013134,178
+0.013471,178
+0.013426,178
+0.013207,178
+0.013239,178
+0.013152,178
+0.013520,178
+0.013238,178
+0.013340,178
+0.013517,178
+0.013335,178
+0.013132,178
+0.013216,178
+0.013238,178
+0.013494,178
+0.013076,178
+0.013547,178
+0.013249,178
+0.013361,178
+0.013213,178
+0.013097,178
+0.013363,178
+0.013336,178
+0.013284,178
+0.013659,178
+0.013276,178
+0.013364,178
+0.013297,178
+0.013291,178
+0.013249,178
+0.013256,178
+0.013445,178
+0.013561,178
+0.013437,178
+0.013181,178
+0.013125,178
+0.013279,178
+0.013336,178
+0.013215,178
+0.014821,178
+0.013188,178
+0.013328,178
+0.013293,178
+0.013606,178
+0.013379,178
+0.013260,178
+0.014431,178
+0.013638,178
+0.013395,178
+0.013212,178
+0.013191,178
+0.013361,178
+0.013519,178
+0.013701,178
+0.014332,178
+0.013212,178
+0.013294,178
+0.013222,178
+0.013290,178
+0.013266,178
+0.013418,178
+0.014835,178
+0.013408,178
+0.013361,178
+0.013201,178
+0.013219,178
+0.013530,178
+0.013478,178
+0.014482,178
+0.014100,178
+0.013266,178
+0.013233,178
+0.013167,178
+0.013363,178
+0.013241,178
+0.013262,178
+0.014768,178
+0.013224,178
+0.013219,178
+0.013202,178
+0.013827,178
+0.013347,178
+0.013195,178
+0.014322,178
+0.013850,178
+0.013280,178
+0.013235,178
+0.013249,178
+0.013219,178
+0.013212,178
+0.013230,178
+0.015233,180
+0.013626,180
+0.013766,180
+0.013514,180
+0.013690,180
+0.013639,180
+0.013634,180
+0.016223,180
+0.014035,180
+0.013553,180
+0.013603,180
+0.013822,180
+0.013851,180
+0.013732,180
+0.015221,180
+0.013563,180
+0.013429,180
+0.013443,180
+0.013436,180
+0.013512,180
+0.013390,180
+0.014203,180
+0.014348,180
+0.013512,180
+0.013476,180
+0.013443,180
+0.013712,180
+0.013452,180
+0.013452,180
+0.015234,180
+0.013533,180
+0.013496,180
+0.013369,180
+0.013502,180
+0.013443,180
+0.013460,180
+0.014897,180
+0.013679,180
+0.013442,180
+0.013460,180
+0.013442,180
+0.013522,180
+0.013461,180
+0.013933,180
+0.014692,180
+0.013510,180
+0.013534,180
+0.013457,180
+0.013455,180
+0.013410,180
+0.013439,180
+0.015126,180
+0.013476,180
+0.013476,180
+0.013371,180
+0.013891,180
+0.013455,180
+0.013458,180
+0.014949,180
+0.013609,180
+0.013448,180
+0.013444,180
+0.013600,180
+0.013514,180
+0.013525,180
+0.013936,180
+0.014586,180
+0.013585,180
+0.013459,180
+0.013418,180
+0.013584,180
+0.013392,180
+0.013459,180
+0.015049,180
+0.013426,180
+0.013406,180
+0.013403,180
+0.013465,180
+0.013494,180
+0.013467,180
+0.015478,180
+0.014293,180
+0.013425,180
+0.013365,180
+0.013495,180
+0.013476,180
+0.013442,180
+0.013944,180
+0.014480,180
+0.013447,180
+0.013480,180
+0.013425,180
+0.013722,180
+0.013414,180
+0.013474,180
+0.015276,180
+0.013472,180
+0.013435,180
+0.013424,180
+0.013643,180
+0.013902,182
+0.013907,182
+0.015443,182
+0.014029,182
+0.013959,182
+0.013974,182
+0.014015,182
+0.013872,182
+0.013870,182
+0.015263,182
+0.014036,182
+0.013872,182
+0.013946,182
+0.013903,182
+0.014017,182
+0.013900,182
+0.015056,182
+0.017820,182
+0.014901,182
+0.013865,182
+0.013997,182
+0.013866,182
+0.014549,182
+0.019217,182
+0.013981,182
+0.013916,182
+0.013907,182
+0.013986,182
+0.013927,182
+0.013883,182
+0.019150,182
+0.013907,182
+0.013926,182
+0.013915,182
+0.013980,182
+0.013910,182
+0.013977,182
+0.020017,182
+0.014346,182
+0.013972,182
+0.013997,182
+0.013899,182
+0.013899,182
+0.014963,182
+0.018291,182
+0.013958,182
+0.013986,182
+0.013974,182
+0.013918,182
+0.013935,182
+0.016002,182
+0.017890,182
+0.014267,182
+0.014013,182
+0.014023,182
+0.013904,182
+0.013822,182
+0.019177,182
+0.014132,182
+0.013980,182
+0.014011,182
+0.014188,182
+0.013923,182
+0.013921,182
+0.020269,182
+0.014097,182
+0.014227,182
+0.014711,182
+0.014058,182
+0.013927,182
+0.014158,182
+0.019033,182
+0.013974,182
+0.013980,182
+0.013983,182
+0.013825,182
+0.013902,182
+0.016214,182
+0.017030,182
+0.013948,182
+0.013924,182
+0.014053,182
+0.013955,182
+0.013969,182
+0.018330,182
+0.014625,182
+0.013950,182
+0.013899,182
+0.013992,182
+0.013903,182
+0.013896,182
+0.019139,182
+0.014123,182
+0.013892,182
+0.014028,182
+0.013953,182
+0.013911,182
+0.013905,182
+0.019032,182
+0.013962,182
+0.014479,184
+0.014455,184
+0.014369,184
+0.014412,184
+0.014929,184
+0.019210,184
+0.014443,184
+0.014334,184
+0.014386,184
+0.014356,184
+0.014315,184
+0.019437,184
+0.014461,184
+0.014292,184
+0.014367,184
+0.014483,184
+0.014369,184
+0.014329,184
+0.020059,184
+0.014497,184
+0.014341,184
+0.014386,184
+0.014289,184
+0.014306,184
+0.016362,184
+0.017521,184
+0.014389,184
+0.014344,184
+0.014387,184
+0.014368,184
+0.014352,184
+0.019472,184
+0.014474,184
+0.014347,184
+0.015075,184
+0.014360,184
+0.014348,184
+0.014399,184
+0.019423,184
+0.014507,184
+0.014438,184
+0.014416,184
+0.014332,184
+0.015185,184
+0.019410,184
+0.016408,184
+0.015864,184
+0.015536,184
+0.014972,184
+0.015582,184
+0.027270,184
+0.018104,184
+0.015220,184
+0.016124,184
+0.014965,184
+0.014821,184
+0.014793,184
+0.014504,184
+0.014466,184
+0.014458,184
+0.014914,184
+0.014509,184
+0.014484,184
+0.014877,184
+0.014463,184
+0.014389,184
+0.014486,184
+0.014340,184
+0.014570,184
+0.014492,184
+0.014879,184
+0.014335,184
+0.014371,184
+0.014412,184
+0.014258,184
+0.015139,184
+0.014796,184
+0.015086,184
+0.015209,184
+0.014670,184
+0.014514,184
+0.014402,184
+0.014345,184
+0.014389,184
+0.015136,184
+0.014319,184
+0.014330,184
+0.014358,184
+0.014303,184
+0.014298,184
+0.014372,184
+0.014798,184
+0.014356,184
+0.014343,184
+0.014388,184
+0.014325,184
+0.014326,184
+0.014415,184
+0.014743,184
+0.014389,184
+0.015259,186
+0.015109,186
+0.014963,186
+0.015024,186
+0.015551,186
+0.015172,186
+0.015104,186
+0.015000,186
+0.014967,186
+0.014994,186
+0.015068,186
+0.025382,186
+0.029037,186
+0.015744,186
+0.022137,186
+0.015311,186
+0.015295,186
+0.014945,186
+0.014972,186
+0.015185,186
+0.015195,186
+0.014981,186
+0.015459,186
+0.014972,186
+0.014958,186
+0.015054,186
+0.014974,186
+0.014953,186
+0.014940,186
+0.015495,186
+0.015012,186
+0.015054,186
+0.015140,186
+0.015008,186
+0.015085,186
+0.015402,186
+0.015411,186
+0.015059,186
+0.015014,186
+0.015397,186
+0.015012,186
+0.014989,186
+0.015490,186
+0.015117,186
+0.015029,186
+0.015152,186
+0.015804,186
+0.014965,186
+0.015016,186
+0.015574,186
+0.014951,186
+0.014957,186
+0.015062,186
+0.015000,186
+0.015073,186
+0.015221,186
+0.015300,186
+0.014961,186
+0.015027,186
+0.014961,186
+0.014952,186
+0.014975,186
+0.015491,186
+0.015028,186
+0.015032,186
+0.015069,186
+0.014967,186
+0.014969,186
+0.015113,186
+0.015516,186
+0.014974,186
+0.014906,186
+0.015022,186
+0.014984,186
+0.014992,186
+0.015205,186
+0.015358,186
+0.014973,186
+0.015069,186
+0.015046,186
+0.014976,186
+0.015026,186
+0.015461,186
+0.014995,186
+0.014958,186
+0.015029,186
+0.015035,186
+0.014989,186
+0.014946,186
+0.015537,186
+0.018234,186
+0.016711,186
+0.015068,186
+0.015017,186
+0.015000,186
+0.015504,186
+0.014981,186
+0.015016,186
+0.015108,186
+0.015070,186
+0.015702,188
+0.015573,188
+0.016011,188
+0.015475,188
+0.015665,188
+0.015472,188
+0.015559,188
+0.015475,188
+0.015965,188
+0.015482,188
+0.015496,188
+0.015608,188
+0.015600,188
+0.015478,188
+0.015600,188
+0.016119,188
+0.015570,188
+0.015585,188
+0.015472,188
+0.015473,188
+0.015478,188
+0.016057,188
+0.015521,188
+0.015449,188
+0.015591,188
+0.015474,188
+0.015849,188
+0.021293,188
+0.029933,188
+0.029273,188
+0.029209,188
+0.029517,188
+0.029054,188
+0.029225,188
+0.029937,188
+0.029164,188
+0.028743,188
+0.028933,188
+0.029663,188
+0.028790,188
+0.029312,188
+0.029178,188
+0.029934,188
+0.029684,188
+0.029071,188
+0.029666,188
+0.029133,188
+0.029237,188
+0.029800,188
+0.029108,188
+0.029052,188
+0.029270,188
+0.029256,188
+0.029173,188
+0.029406,188
+0.029462,188
+0.029302,188
+0.029582,188
+0.032099,188
+0.029381,188
+0.029352,188
+0.030201,188
+0.025227,188
+0.017845,188
+0.016191,188
+0.016249,188
+0.016641,188
+0.017521,188
+0.016085,188
+0.016326,188
+0.016309,188
+0.016209,188
+0.016283,188
+0.021234,188
+0.015879,188
+0.015915,188
+0.015630,188
+0.015712,188
+0.015935,188
+0.020878,188
+0.016506,188
+0.015879,188
+0.015805,188
+0.015917,188
+0.015749,188
+0.020783,188
+0.015975,188
+0.015752,188
+0.015739,188
+0.015889,188
+0.015739,188
+0.020795,188
+0.015937,188
+0.015899,188
+0.015682,188
+0.017630,188
+0.015786,188
+0.016189,188
+0.015989,188
+0.015832,188
+0.016330,190
+0.016433,190
+0.016326,190
+0.016356,190
+0.016731,190
+0.016684,190
+0.016410,190
+0.016675,190
+0.016609,190
+0.016545,190
+0.016663,190
+0.016281,190
+0.016178,190
+0.016171,190
+0.016348,190
+0.016273,190
+0.016541,190
+0.016366,190
+0.016309,190
+0.016257,190
+0.016565,190
+0.016389,190
+0.016721,190
+0.016352,190
+0.016311,190
+0.016366,190
+0.016356,190
+0.016395,190
+0.016891,190
+0.016458,190
+0.016458,190
+0.016651,190
+0.016730,190
+0.016754,190
+0.017093,190
+0.016874,190
+0.016853,190
+0.017064,190
+0.017028,190
+0.023721,190
+0.018242,190
+0.017103,190
+0.017085,190
+0.016747,190
+0.016366,190
+0.016701,190
+0.016568,190
+0.016367,190
+0.016247,190
+0.016355,190
+0.016363,190
+0.016749,190
+0.016560,190
+0.016463,190
+0.016335,190
+0.016366,190
+0.016223,190
+0.016496,190
+0.016825,190
+0.016327,190
+0.016257,190
+0.016236,190
+0.016298,190
+0.016230,190
+0.016841,190
+0.016357,190
+0.016425,190
+0.016208,190
+0.016314,190
+0.016231,190
+0.016985,190
+0.016357,190
+0.016317,190
+0.016216,190
+0.016243,190
+0.016221,190
+0.016878,190
+0.016325,190
+0.016272,190
+0.016287,190
+0.016271,190
+0.016204,190
+0.017171,190
+0.016317,190
+0.016377,190
+0.016395,190
+0.016442,190
+0.016784,190
+0.017779,190
+0.016077,190
+0.016126,190
+0.016031,190
+0.015989,190
+0.016613,190
+0.016412,190
+0.016562,190
+0.016252,190
+0.016061,190
+0.016037,190
+0.016055,190
+0.017758,192
+0.018130,192
+0.017835,192
+0.017625,192
+0.017569,192
+0.017560,192
+0.018093,192
+0.017590,192
+0.017646,192
+0.017595,192
+0.017589,192
+0.017593,192
+0.018053,192
+0.017857,192
+0.017576,192
+0.018595,192
+0.018000,192
+0.017856,192
+0.017902,192
+0.017668,192
+0.017556,192
+0.017600,192
+0.017589,192
+0.018096,192
+0.017726,192
+0.017848,192
+0.018263,192
+0.018465,192
+0.018469,192
+0.019493,192
+0.019087,192
+0.018881,192
+0.019300,192
+0.018882,192
+0.020475,192
+0.018907,192
+0.018425,192
+0.018675,192
+0.018796,192
+0.019180,192
+0.018455,192
+0.018796,192
+0.019406,192
+0.018863,192
+0.019209,192
+0.019241,192
+0.018335,192
+0.018386,192
+0.018598,192
+0.021133,192
+0.019768,192
+0.019792,192
+0.019381,192
+0.019887,192
+0.019157,192
+0.019405,192
+0.019352,192
+0.018494,192
+0.018213,192
+0.018221,192
+0.018205,192
+0.018568,192
+0.018134,192
+0.017751,192
+0.017784,192
+0.017656,192
+0.018212,192
+0.017853,192
+0.017730,192
+0.017663,192
+0.017586,192
+0.017701,192
+0.017985,192
+0.017648,192
+0.017545,192
+0.017614,192
+0.017532,192
+0.018059,192
+0.017754,192
+0.017547,192
+0.018010,192
+0.017615,192
+0.017596,192
+0.018172,192
+0.017703,192
+0.017613,192
+0.017505,192
+0.017577,192
+0.017640,192
+0.018077,192
+0.017675,192
+0.017876,192
+0.017800,192
+0.017545,192
+0.018172,192
+0.017663,192
+0.017645,192
+0.017551,192
+0.017570,192
+0.017639,192
+0.017723,194
+0.017201,194
+0.017217,194
+0.017284,194
+0.017187,194
+0.017117,194
+0.017673,194
+0.017179,194
+0.017058,194
+0.017121,194
+0.017032,194
+0.017173,194
+0.017470,194
+0.017173,194
+0.017038,194
+0.017035,194
+0.017031,194
+0.017312,194
+0.017448,194
+0.017117,194
+0.017095,194
+0.017161,194
+0.017030,194
+0.017458,194
+0.017410,194
+0.017029,194
+0.017090,194
+0.017150,194
+0.017056,194
+0.017628,194
+0.017249,194
+0.017056,194
+0.017107,194
+0.017040,194
+0.017043,194
+0.017798,194
+0.017358,194
+0.018198,194
+0.018354,194
+0.018124,194
+0.019318,194
+0.019823,194
+0.018403,194
+0.018274,194
+0.017861,194
+0.017662,194
+0.017762,194
+0.017314,194
+0.017294,194
+0.017188,194
+0.017390,194
+0.017211,194
+0.017584,194
+0.017199,194
+0.017207,194
+0.017087,194
+0.017136,194
+0.017488,194
+0.017390,194
+0.017213,194
+0.017064,194
+0.017075,194
+0.017029,194
+0.017756,194
+0.018961,194
+0.017272,194
+0.017127,194
+0.017087,194
+0.017077,194
+0.017945,194
+0.017222,194
+0.017054,194
+0.017034,194
+0.017032,194
+0.017027,194
+0.017971,194
+0.017141,194
+0.017032,194
+0.017031,194
+0.017031,194
+0.017108,194
+0.017596,194
+0.017183,194
+0.017266,194
+0.017126,194
+0.017049,194
+0.017203,194
+0.017470,194
+0.017219,194
+0.017033,194
+0.017059,194
+0.017057,194
+0.017218,194
+0.017503,194
+0.017104,194
+0.017073,194
+0.017095,194
+0.017032,194
+0.017256,194
+0.017648,194
+0.017649,196
+0.017528,196
+0.017527,196
+0.017525,196
+0.017969,196
+0.017686,196
+0.017538,196
+0.017524,196
+0.017531,196
+0.019247,196
+0.020003,196
+0.019093,196
+0.018780,196
+0.018794,196
+0.017793,196
+0.018126,196
+0.017694,196
+0.017561,196
+0.017558,196
+0.017488,196
+0.017509,196
+0.018199,196
+0.017556,196
+0.017535,196
+0.017544,196
+0.017471,196
+0.017794,196
+0.017866,196
+0.017479,196
+0.017464,196
+0.017628,196
+0.017493,196
+0.018101,196
+0.017621,196
+0.017466,196
+0.017535,196
+0.017462,196
+0.017503,196
+0.018121,196
+0.017712,196
+0.017655,196
+0.017517,196
+0.017495,196
+0.017710,196
+0.017903,196
+0.017532,196
+0.017483,196
+0.017467,196
+0.017495,196
+0.018009,196
+0.017698,196
+0.017549,196
+0.017547,196
+0.017500,196
+0.017464,196
+0.018189,196
+0.017632,196
+0.017809,196
+0.017598,196
+0.017607,196
+0.017754,196
+0.017993,196
+0.017522,196
+0.017505,196
+0.017483,196
+0.017663,196
+0.018069,196
+0.017601,196
+0.017471,196
+0.017477,196
+0.017527,196
+0.017463,196
+0.018090,196
+0.017821,196
+0.017606,196
+0.017499,196
+0.017503,196
+0.017560,196
+0.018135,196
+0.017621,196
+0.017612,196
+0.017501,196
+0.017469,196
+0.018569,196
+0.017776,196
+0.017502,196
+0.017464,196
+0.017463,196
+0.017467,196
+0.018028,196
+0.017664,196
+0.018535,196
+0.020325,196
+0.018020,196
+0.018523,196
+0.018185,196
+0.017650,196
+0.017807,196
+0.019012,196
+0.019560,196
+0.021297,198
+0.018879,198
+0.019415,198
+0.018237,198
+0.018151,198
+0.018833,198
+0.018286,198
+0.018125,198
+0.018174,198
+0.018090,198
+0.018107,198
+0.018952,198
+0.018206,198
+0.018143,198
+0.018094,198
+0.018124,198
+0.023542,198
+0.018220,198
+0.018218,198
+0.018148,198
+0.018384,198
+0.022983,198
+0.018703,198
+0.018196,198
+0.018158,198
+0.018113,198
+0.019203,198
+0.022723,198
+0.018422,198
+0.018436,198
+0.018288,198
+0.018514,198
+0.023999,198
+0.018266,198
+0.018654,198
+0.018360,198
+0.018278,198
+0.023968,198
+0.018381,198
+0.018400,198
+0.018328,198
+0.018368,198
+0.024078,198
+0.018356,198
+0.018515,198
+0.018419,198
+0.018498,198
+0.024293,198
+0.020207,198
+0.018954,198
+0.018380,198
+0.018465,198
+0.024021,198
+0.018793,198
+0.018296,198
+0.018294,198
+0.018455,198
+0.021622,198
+0.025022,198
+0.019093,198
+0.018406,198
+0.018466,198
+0.020783,198
+0.022209,198
+0.018543,198
+0.018451,198
+0.018320,198
+0.020868,198
+0.021467,198
+0.018890,198
+0.018451,198
+0.018416,198
+0.018991,198
+0.023501,198
+0.018466,198
+0.018396,198
+0.018622,198
+0.018818,198
+0.019036,198
+0.018999,198
+0.018954,198
+0.018368,198
+0.018850,198
+0.019231,198
+0.018180,198
+0.018262,198
+0.018089,198
+0.018069,198
+0.018296,198
+0.018660,198
+0.018183,198
+0.018072,198
+0.018069,198
+0.018087,198
+0.018824,198
+0.018486,198
+0.018444,198
+0.018565,198
+0.018482,198
+0.018686,198
+0.019614,200
+0.018985,200
+0.018951,200
+0.019013,200
+0.018900,200
+0.019752,200
+0.018977,200
+0.018916,200
+0.019042,200
+0.019185,200
+0.019620,200
+0.019126,200
+0.019041,200
+0.019046,200
+0.019005,200
+0.019648,200
+0.019398,200
+0.018984,200
+0.018921,200
+0.019097,200
+0.019108,200
+0.019361,200
+0.018982,200
+0.018946,200
+0.018984,200
+0.019093,200
+0.019620,200
+0.018948,200
+0.018868,200
+0.018854,200
+0.018931,200
+0.019449,200
+0.019022,200
+0.019014,200
+0.018844,200
+0.018885,200
+0.019446,200
+0.019151,200
+0.019011,200
+0.018906,200
+0.018898,200
+0.018926,200
+0.019673,200
+0.018902,200
+0.018821,200
+0.018833,200
+0.018963,200
+0.019687,200
+0.019112,200
+0.019051,200
+0.018897,200
+0.019042,200
+0.019607,200
+0.019062,200
+0.018903,200
+0.018925,200
+0.018920,200
+0.019317,200
+0.019451,200
+0.018919,200
+0.019014,200
+0.018887,200
+0.019028,200
+0.020660,200
+0.019032,200
+0.018857,200
+0.019030,200
+0.019124,200
+0.022260,200
+0.019522,200
+0.019082,200
+0.019479,200
+0.018689,200
+0.020167,200
+0.018665,200
+0.018714,200
+0.019436,200
+0.018740,200
+0.020238,200
+0.018807,200
+0.018606,200
+0.018601,200
+0.018634,200
+0.019663,200
+0.019381,200
+0.018664,200
+0.018644,200
+0.018625,200
+0.018611,200
+0.020134,200
+0.018772,200
+0.018611,200
+0.018597,200
+0.018606,200
+0.020143,200
+0.018630,200
+0.018587,200
+0.018580,200
+0.018601,200
+0.019625,200
+0.019955,202
+0.019270,202
+0.019276,202
+0.019466,202
+0.020023,202
+0.020513,202
+0.019293,202
+0.019209,202
+0.019191,202
+0.019206,202
+0.020959,202
+0.019258,202
+0.019271,202
+0.019220,202
+0.019201,202
+0.020855,202
+0.019424,202
+0.019376,202
+0.019329,202
+0.019204,202
+0.022095,202
+0.019331,202
+0.019276,202
+0.019260,202
+0.019274,202
+0.020895,202
+0.019298,202
+0.019362,202
+0.019265,202
+0.019339,202
+0.020935,202
+0.019314,202
+0.019344,202
+0.019257,202
+0.019289,202
+0.020819,202
+0.019280,202
+0.019256,202
+0.019269,202
+0.019241,202
+0.020638,202
+0.019632,202
+0.019357,202
+0.019642,202
+0.019539,202
+0.020262,202
+0.020131,202
+0.019248,202
+0.019233,202
+0.019343,202
+0.019285,202
+0.020917,202
+0.019276,202
+0.019215,202
+0.019297,202
+0.019431,202
+0.021968,202
+0.019440,202
+0.019328,202
+0.019243,202
+0.019206,202
+0.019737,202
+0.019363,202
+0.019230,202
+0.019292,202
+0.019199,202
+0.020305,202
+0.019640,202
+0.019347,202
+0.019220,202
+0.019197,202
+0.019628,202
+0.019511,202
+0.019280,202
+0.019240,202
+0.019250,202
+0.019447,202
+0.020550,202
+0.019445,202
+0.019274,202
+0.019406,202
+0.019407,202
+0.019588,202
+0.019275,202
+0.019281,202
+0.019254,202
+0.019371,202
+0.019940,202
+0.019374,202
+0.019312,202
+0.019333,202
+0.019288,202
+0.019764,202
+0.019403,202
+0.019297,202
+0.019224,202
+0.019246,202
+0.019714,202
+0.019373,202
+0.019290,202
+0.020346,204
+0.019918,204
+0.020338,204
+0.019947,204
+0.019849,204
+0.019833,204
+0.020035,204
+0.020295,204
+0.019921,204
+0.019865,204
+0.019769,204
+0.019774,204
+0.020104,204
+0.020178,204
+0.019959,204
+0.019820,204
+0.019834,204
+0.020111,204
+0.020052,204
+0.019878,204
+0.019775,204
+0.019783,204
+0.020072,204
+0.020188,204
+0.019887,204
+0.019811,204
+0.019828,204
+0.020040,204
+0.020067,204
+0.020056,204
+0.019794,204
+0.019855,204
+0.020051,204
+0.020079,204
+0.019893,204
+0.019762,204
+0.019778,204
+0.019882,204
+0.020157,204
+0.019869,204
+0.020606,204
+0.020034,204
+0.020459,204
+0.020252,204
+0.019838,204
+0.019776,204
+0.019760,204
+0.019930,204
+0.020156,204
+0.019840,204
+0.019778,204
+0.019795,204
+0.019914,204
+0.020118,204
+0.019836,204
+0.019809,204
+0.019894,204
+0.019863,204
+0.020166,204
+0.019825,204
+0.019781,204
+0.019731,204
+0.019851,204
+0.020210,204
+0.019788,204
+0.019774,204
+0.019908,204
+0.019780,204
+0.020163,204
+0.019885,204
+0.019818,204
+0.019725,204
+0.019835,204
+0.020265,204
+0.019733,204
+0.019779,204
+0.019784,204
+0.019784,204
+0.020236,204
+0.020084,204
+0.019783,204
+0.019811,204
+0.019831,204
+0.020212,204
+0.019767,204
+0.019805,204
+0.019774,204
+0.019814,204
+0.020358,204
+0.019773,204
+0.019830,204
+0.019771,204
+0.019804,204
+0.020233,204
+0.019854,204
+0.019767,204
+0.019772,204
+0.019890,204
+0.020138,204
+0.019739,204
+0.020474,206
+0.021390,206
+0.020503,206
+0.020879,206
+0.020554,206
+0.020528,206
+0.020522,206
+0.020726,206
+0.020909,206
+0.020593,206
+0.020475,206
+0.020340,206
+0.020749,206
+0.021044,206
+0.020424,206
+0.020461,206
+0.020456,206
+0.020496,206
+0.020875,206
+0.020437,206
+0.020355,206
+0.020425,206
+0.020503,206
+0.020988,206
+0.020476,206
+0.020374,206
+0.020402,206
+0.020521,206
+0.020866,206
+0.020498,206
+0.020491,206
+0.020461,206
+0.020494,206
+0.020731,206
+0.020377,206
+0.020408,206
+0.020478,206
+0.020558,206
+0.020627,206
+0.020435,206
+0.020376,206
+0.020436,206
+0.020589,206
+0.020674,206
+0.020367,206
+0.020386,206
+0.020430,206
+0.020825,206
+0.020477,206
+0.020425,206
+0.020371,206
+0.020455,206
+0.020832,206
+0.020454,206
+0.020433,206
+0.020450,206
+0.020546,206
+0.020845,206
+0.020509,206
+0.020404,206
+0.020361,206
+0.020545,206
+0.020790,206
+0.020547,206
+0.020483,206
+0.020445,206
+0.020497,206
+0.021000,206
+0.020620,206
+0.020432,206
+0.020507,206
+0.020377,206
+0.021019,206
+0.020574,206
+0.020587,206
+0.020427,206
+0.020517,206
+0.021153,206
+0.020512,206
+0.021221,206
+0.020608,206
+0.020599,206
+0.020907,206
+0.020395,206
+0.020442,206
+0.020490,206
+0.020755,206
+0.020848,206
+0.020516,206
+0.020425,206
+0.020515,206
+0.021067,206
+0.020579,206
+0.020578,206
+0.020460,206
+0.020519,206
+0.020952,206
+0.020452,206
+0.020415,206
+0.020555,206
+0.020937,208
+0.021447,208
+0.021110,208
+0.021063,208
+0.021080,208
+0.021059,208
+0.021476,208
+0.021106,208
+0.020988,208
+0.021031,208
+0.021058,208
+0.021473,208
+0.020970,208
+0.020922,208
+0.021063,208
+0.021414,208
+0.021251,208
+0.020921,208
+0.021078,208
+0.020971,208
+0.021575,208
+0.021036,208
+0.021007,208
+0.021015,208
+0.021137,208
+0.021794,208
+0.021007,208
+0.021026,208
+0.021033,208
+0.021063,208
+0.021563,208
+0.021013,208
+0.020908,208
+0.021028,208
+0.021103,208
+0.021375,208
+0.020978,208
+0.021054,208
+0.020989,208
+0.021518,208
+0.020965,208
+0.020957,208
+0.020970,208
+0.020899,208
+0.021561,208
+0.021345,208
+0.020959,208
+0.021026,208
+0.021020,208
+0.021515,208
+0.020916,208
+0.021116,208
+0.021035,208
+0.021011,208
+0.021544,208
+0.020938,208
+0.020971,208
+0.020993,208
+0.021331,208
+0.021146,208
+0.020975,208
+0.021000,208
+0.020880,208
+0.021581,208
+0.020919,208
+0.020933,208
+0.021065,208
+0.021079,208
+0.021627,208
+0.020984,208
+0.021031,208
+0.021143,208
+0.021434,208
+0.021466,208
+0.021069,208
+0.021036,208
+0.020908,208
+0.021261,208
+0.021241,208
+0.020960,208
+0.020993,208
+0.020928,208
+0.021676,208
+0.021072,208
+0.020921,208
+0.021194,208
+0.020953,208
+0.021478,208
+0.020900,208
+0.020952,208
+0.021031,208
+0.020963,208
+0.021564,208
+0.020987,208
+0.021018,208
+0.020997,208
+0.021287,208
+0.021463,208
+0.020961,208
+0.021010,208
+0.021837,210
+0.022359,210
+0.021703,210
+0.021722,210
+0.021748,210
+0.021800,210
+0.022293,210
+0.021726,210
+0.021681,210
+0.021713,210
+0.022189,210
+0.021968,210
+0.021695,210
+0.021828,210
+0.021751,210
+0.022327,210
+0.021710,210
+0.021823,210
+0.021882,210
+0.024530,210
+0.023167,210
+0.021845,210
+0.021955,210
+0.021629,210
+0.022300,210
+0.021750,210
+0.021700,210
+0.021613,210
+0.021707,210
+0.022299,210
+0.021728,210
+0.021733,210
+0.021715,210
+0.022258,210
+0.021667,210
+0.021689,210
+0.021675,210
+0.021617,210
+0.022322,210
+0.021623,210
+0.021723,210
+0.021755,210
+0.021899,210
+0.022125,210
+0.021792,210
+0.021803,210
+0.021650,210
+0.022226,210
+0.021704,210
+0.021738,210
+0.021623,210
+0.021700,210
+0.022291,210
+0.021647,210
+0.021842,210
+0.021684,210
+0.022042,210
+0.021837,210
+0.021654,210
+0.021712,210
+0.021604,210
+0.022472,210
+0.021726,210
+0.021741,210
+0.021754,210
+0.023545,210
+0.022155,210
+0.021975,210
+0.021686,210
+0.021615,210
+0.022360,210
+0.021625,210
+0.022446,210
+0.022446,210
+0.022270,210
+0.022792,210
+0.021866,210
+0.021678,210
+0.021673,210
+0.022255,210
+0.021645,210
+0.021740,210
+0.021689,210
+0.021647,210
+0.022128,210
+0.021689,210
+0.021829,210
+0.021827,210
+0.021905,210
+0.022211,210
+0.021896,210
+0.021644,210
+0.021800,210
+0.022196,210
+0.021754,210
+0.021831,210
+0.021608,210
+0.021701,210
+0.022241,210
+0.021665,210
+0.022333,212
+0.022289,212
+0.022824,212
+0.022219,212
+0.022375,212
+0.022238,212
+0.022223,212
+0.022961,212
+0.022227,212
+0.022258,212
+0.022534,212
+0.022837,212
+0.022326,212
+0.022341,212
+0.022220,212
+0.022228,212
+0.022974,212
+0.022232,212
+0.022573,212
+0.022355,212
+0.022848,212
+0.022325,212
+0.022381,212
+0.022277,212
+0.022785,212
+0.022947,212
+0.022319,212
+0.022236,212
+0.022260,212
+0.022802,212
+0.022282,212
+0.022393,212
+0.022251,212
+0.022384,212
+0.022750,212
+0.022347,212
+0.022354,212
+0.022219,212
+0.022789,212
+0.022340,212
+0.022302,212
+0.022216,212
+0.022453,212
+0.022677,212
+0.022374,212
+0.022228,212
+0.022263,212
+0.022823,212
+0.022218,212
+0.022228,212
+0.022198,212
+0.022395,212
+0.022869,212
+0.022323,212
+0.022361,212
+0.022268,212
+0.022801,212
+0.022334,212
+0.022253,212
+0.022175,212
+0.022361,212
+0.022652,212
+0.022286,212
+0.022231,212
+0.022339,212
+0.023049,212
+0.022210,212
+0.022239,212
+0.022321,212
+0.022345,212
+0.022578,212
+0.022393,212
+0.022224,212
+0.022156,212
+0.022832,212
+0.022247,212
+0.022352,212
+0.022454,212
+0.022399,212
+0.022739,212
+0.022451,212
+0.022183,212
+0.022177,212
+0.022833,212
+0.022297,212
+0.023886,212
+0.022259,212
+0.022521,212
+0.022645,212
+0.022403,212
+0.022249,212
+0.022298,212
+0.022748,212
+0.022594,212
+0.022305,212
+0.022199,212
+0.022525,212
+0.022699,212
+0.022429,212
+0.022883,212
+0.023026,214
+0.023601,214
+0.022894,214
+0.022924,214
+0.022801,214
+0.023424,214
+0.022784,214
+0.022958,214
+0.022937,214
+0.023036,214
+0.023292,214
+0.022977,214
+0.022910,214
+0.022914,214
+0.023308,214
+0.022945,214
+0.022868,214
+0.022820,214
+0.023361,214
+0.022903,214
+0.022967,214
+0.023011,214
+0.022831,214
+0.023594,214
+0.022994,214
+0.022835,214
+0.022873,214
+0.023355,214
+0.023009,214
+0.022910,214
+0.022801,214
+0.023142,214
+0.023126,214
+0.022873,214
+0.022995,214
+0.022831,214
+0.023499,214
+0.022909,214
+0.022804,214
+0.022903,214
+0.023405,214
+0.023121,214
+0.023190,214
+0.023021,214
+0.023059,214
+0.023475,214
+0.022920,214
+0.022871,214
+0.023039,214
+0.023400,214
+0.022957,214
+0.022797,214
+0.022976,214
+0.023346,214
+0.023228,214
+0.022894,214
+0.023023,214
+0.022950,214
+0.023304,214
+0.022880,214
+0.022979,214
+0.022820,214
+0.023251,214
+0.022990,214
+0.022892,214
+0.022999,214
+0.023206,214
+0.023043,214
+0.022884,214
+0.022835,214
+0.022819,214
+0.023492,214
+0.022915,214
+0.022874,214
+0.022853,214
+0.023394,214
+0.022965,214
+0.022915,214
+0.022892,214
+0.023037,214
+0.023072,214
+0.022953,214
+0.022892,214
+0.022866,214
+0.023559,214
+0.022908,214
+0.023742,214
+0.022807,214
+0.023526,214
+0.023016,214
+0.022789,214
+0.023650,214
+0.023282,214
+0.023171,214
+0.022981,214
+0.022893,214
+0.022843,214
+0.023337,214
+0.022931,214
+0.022935,214
+0.023484,216
+0.023960,216
+0.023784,216
+0.023437,216
+0.023560,216
+0.023767,216
+0.023759,216
+0.023548,216
+0.023554,216
+0.023648,216
+0.023907,216
+0.023504,216
+0.023411,216
+0.023361,216
+0.023976,216
+0.023612,216
+0.023527,216
+0.023568,216
+0.024065,216
+0.023642,216
+0.023505,216
+0.023500,216
+0.023761,216
+0.023708,216
+0.023398,216
+0.023390,216
+0.023527,216
+0.023995,216
+0.023649,216
+0.023565,216
+0.023520,216
+0.024105,216
+0.023535,216
+0.023515,216
+0.023435,216
+0.024056,216
+0.023549,216
+0.023436,216
+0.023527,216
+0.023797,216
+0.024015,216
+0.023496,216
+0.023743,216
+0.023574,216
+0.023869,216
+0.023564,216
+0.023412,216
+0.023448,216
+0.024012,216
+0.023638,216
+0.023633,216
+0.023510,216
+0.024206,216
+0.023510,216
+0.023539,216
+0.023430,216
+0.023712,216
+0.023728,216
+0.023420,216
+0.023466,216
+0.023403,216
+0.023832,216
+0.023598,216
+0.023477,216
+0.023488,216
+0.023875,216
+0.023622,216
+0.023453,216
+0.023399,216
+0.024021,216
+0.023578,216
+0.023585,216
+0.023475,216
+0.024381,216
+0.024930,216
+0.023957,216
+0.024402,216
+0.023838,216
+0.024771,216
+0.023503,216
+0.023520,216
+0.023429,216
+0.025026,216
+0.023553,216
+0.023468,216
+0.023556,216
+0.024949,216
+0.023713,216
+0.023406,216
+0.023559,216
+0.024893,216
+0.023608,216
+0.023511,216
+0.023548,216
+0.025018,216
+0.023749,216
+0.023568,216
+0.023493,216
+0.023500,216
+0.025098,216
+0.024321,218
+0.024253,218
+0.024154,218
+0.025959,218
+0.024192,218
+0.024190,218
+0.024139,218
+0.025750,218
+0.024191,218
+0.024242,218
+0.024402,218
+0.030602,218
+0.024774,218
+0.024360,218
+0.024410,218
+0.024888,218
+0.024177,218
+0.024285,218
+0.024374,218
+0.024681,218
+0.024682,218
+0.024262,218
+0.024223,218
+0.024665,218
+0.024532,218
+0.024227,218
+0.024309,218
+0.024826,218
+0.024397,218
+0.024196,218
+0.024256,218
+0.024776,218
+0.024537,218
+0.024244,218
+0.024336,218
+0.024614,218
+0.024646,218
+0.024301,218
+0.024200,218
+0.024366,218
+0.024733,218
+0.024201,218
+0.024230,218
+0.024197,218
+0.024804,218
+0.024310,218
+0.024180,218
+0.024274,218
+0.024824,218
+0.024214,218
+0.024201,218
+0.024154,218
+0.025116,218
+0.024334,218
+0.024319,218
+0.024365,218
+0.024794,218
+0.024186,218
+0.024323,218
+0.024177,218
+0.024657,218
+0.024300,218
+0.024207,218
+0.024112,218
+0.024419,218
+0.024600,218
+0.024227,218
+0.024217,218
+0.024233,218
+0.024734,218
+0.024214,218
+0.025253,218
+0.024190,218
+0.024788,218
+0.024715,218
+0.024626,218
+0.024456,218
+0.024755,218
+0.024196,218
+0.024166,218
+0.024235,218
+0.024681,218
+0.024260,218
+0.024331,218
+0.024221,218
+0.024686,218
+0.024356,218
+0.024330,218
+0.024253,218
+0.024664,218
+0.024319,218
+0.024420,218
+0.025809,218
+0.024817,218
+0.024451,218
+0.024223,218
+0.024401,218
+0.024759,218
+0.024375,218
+0.024219,218
+0.024873,220
+0.025108,220
+0.025061,220
+0.024885,220
+0.024765,220
+0.025074,220
+0.025367,220
+0.024839,220
+0.024765,220
+0.025052,220
+0.025111,220
+0.024817,220
+0.024792,220
+0.025239,220
+0.025257,220
+0.025068,220
+0.024841,220
+0.025115,220
+0.025180,220
+0.024913,220
+0.024890,220
+0.025050,220
+0.025184,220
+0.024911,220
+0.024798,220
+0.025013,220
+0.025192,220
+0.024926,220
+0.024795,220
+0.024976,220
+0.025252,220
+0.024912,220
+0.024793,220
+0.024958,220
+0.025602,220
+0.024894,220
+0.024824,220
+0.024999,220
+0.025398,220
+0.024906,220
+0.024775,220
+0.024963,220
+0.025427,220
+0.024907,220
+0.024832,220
+0.024869,220
+0.025427,220
+0.025238,220
+0.024822,220
+0.024873,220
+0.025321,220
+0.024911,220
+0.024858,220
+0.024902,220
+0.025402,220
+0.024943,220
+0.024956,220
+0.024943,220
+0.025503,220
+0.024872,220
+0.024849,220
+0.024872,220
+0.025515,220
+0.024940,220
+0.024794,220
+0.024854,220
+0.025468,220
+0.025027,220
+0.024804,220
+0.024812,220
+0.025526,220
+0.024885,220
+0.024797,220
+0.024926,220
+0.025620,220
+0.024928,220
+0.024839,220
+0.024926,220
+0.025429,220
+0.025009,220
+0.024797,220
+0.024856,220
+0.025474,220
+0.024913,220
+0.024784,220
+0.024895,220
+0.025441,220
+0.025252,220
+0.024798,220
+0.024784,220
+0.025461,220
+0.024823,220
+0.024757,220
+0.025039,220
+0.026051,220
+0.025156,220
+0.026092,220
+0.024877,220
+0.025423,220
+0.024875,220
+0.025803,222
+0.025612,222
+0.026133,222
+0.025814,222
+0.026533,222
+0.025811,222
+0.026799,222
+0.028307,222
+0.026128,222
+0.026274,222
+0.026490,222
+0.025989,222
+0.025987,222
+0.027747,222
+0.026207,222
+0.025834,222
+0.026027,222
+0.027656,222
+0.025946,222
+0.025867,222
+0.025983,222
+0.027567,222
+0.025950,222
+0.025924,222
+0.025934,222
+0.027547,222
+0.025963,222
+0.025842,222
+0.026992,222
+0.026363,222
+0.025988,222
+0.025937,222
+0.027749,222
+0.025962,222
+0.026520,222
+0.026097,222
+0.027628,222
+0.025700,222
+0.026003,222
+0.025730,222
+0.027521,222
+0.025729,222
+0.026208,222
+0.025815,222
+0.027381,222
+0.025782,222
+0.025681,222
+0.025890,222
+0.027240,222
+0.025703,222
+0.026188,222
+0.028180,222
+0.026576,222
+0.025724,222
+0.025760,222
+0.027488,222
+0.026379,222
+0.026555,222
+0.027810,222
+0.029167,222
+0.026614,222
+0.027743,222
+0.027495,222
+0.029081,222
+0.028671,222
+0.027525,222
+0.026388,222
+0.026126,222
+0.026361,222
+0.026159,222
+0.027152,222
+0.026343,222
+0.026092,222
+0.026325,222
+0.026569,222
+0.026080,222
+0.026654,222
+0.026354,222
+0.026697,222
+0.026229,222
+0.026825,222
+0.027730,222
+0.028674,222
+0.027830,222
+0.028155,222
+0.028284,222
+0.028044,222
+0.026559,222
+0.028011,222
+0.033725,222
+0.027623,222
+0.028418,222
+0.031350,222
+0.028729,222
+0.026083,222
+0.026010,222
+0.032434,222
+0.027779,222
+0.026996,222
+0.028396,222
+0.028949,224
+0.027685,224
+0.026853,224
+0.027342,224
+0.026836,224
+0.026846,224
+0.027353,224
+0.027514,224
+0.035273,224
+0.032047,224
+0.027517,224
+0.026843,224
+0.026461,224
+0.026823,224
+0.026482,224
+0.026429,224
+0.026592,224
+0.026880,224
+0.026321,224
+0.026325,224
+0.026351,224
+0.026876,224
+0.026249,224
+0.026443,224
+0.026446,224
+0.026957,224
+0.026337,224
+0.026385,224
+0.026553,224
+0.026630,224
+0.026286,224
+0.026370,224
+0.026752,224
+0.026410,224
+0.026253,224
+0.026425,224
+0.027212,224
+0.026683,224
+0.026352,224
+0.026306,224
+0.026796,224
+0.026319,224
+0.026409,224
+0.027414,224
+0.027239,224
+0.026580,224
+0.026598,224
+0.026857,224
+0.026380,224
+0.026298,224
+0.026425,224
+0.026794,224
+0.026301,224
+0.026350,224
+0.026489,224
+0.027160,224
+0.026314,224
+0.026349,224
+0.026421,224
+0.026793,224
+0.026374,224
+0.026456,224
+0.026503,224
+0.026953,224
+0.026346,224
+0.026434,224
+0.026791,224
+0.026370,224
+0.026421,224
+0.026372,224
+0.026847,224
+0.026371,224
+0.026353,224
+0.026352,224
+0.026915,224
+0.026435,224
+0.026356,224
+0.026417,224
+0.026870,224
+0.026376,224
+0.026433,224
+0.026624,224
+0.027409,224
+0.026897,224
+0.026468,224
+0.026801,224
+0.026327,224
+0.026391,224
+0.026394,224
+0.026912,224
+0.026554,224
+0.026577,224
+0.026535,224
+0.026772,224
+0.026386,224
+0.026433,224
+0.026597,224
+0.026615,224
+0.026654,224
+0.026921,224
+0.028603,226
+0.027266,226
+0.027135,226
+0.027072,226
+0.027474,226
+0.027131,226
+0.027086,226
+0.027116,226
+0.027478,226
+0.027045,226
+0.027091,226
+0.027592,226
+0.027407,226
+0.027063,226
+0.027063,226
+0.027425,226
+0.027157,226
+0.027344,226
+0.027210,226
+0.027718,226
+0.027114,226
+0.027143,226
+0.027466,226
+0.027005,226
+0.027020,226
+0.026995,226
+0.027437,226
+0.027026,226
+0.026995,226
+0.027142,226
+0.027541,226
+0.026967,226
+0.027073,226
+0.027470,226
+0.026976,226
+0.027179,226
+0.027682,226
+0.027688,226
+0.027113,226
+0.027033,226
+0.027071,226
+0.027531,226
+0.026931,226
+0.027160,226
+0.027355,226
+0.027081,226
+0.026994,226
+0.027038,226
+0.027578,226
+0.027147,226
+0.027222,226
+0.027132,226
+0.027484,226
+0.026990,226
+0.027118,226
+0.027287,226
+0.027333,226
+0.027106,226
+0.027130,226
+0.027430,226
+0.027058,226
+0.026931,226
+0.027072,226
+0.027519,226
+0.027034,226
+0.027094,226
+0.027110,226
+0.027528,226
+0.027124,226
+0.027042,226
+0.027476,226
+0.027152,226
+0.027089,226
+0.027805,226
+0.027947,226
+0.027093,226
+0.027021,226
+0.026933,226
+0.027671,226
+0.027016,226
+0.026995,226
+0.027477,226
+0.027034,226
+0.027993,226
+0.027066,226
+0.027560,226
+0.027294,226
+0.027060,226
+0.027045,226
+0.027400,226
+0.027050,226
+0.026985,226
+0.027514,226
+0.027799,226
+0.027884,226
+0.027555,226
+0.027529,226
+0.026994,226
+0.027625,226
+0.027030,226
+0.028396,228
+0.027789,228
+0.027706,228
+0.028292,228
+0.027713,228
+0.027641,228
+0.027753,228
+0.028166,228
+0.027764,228
+0.027839,228
+0.027917,228
+0.028371,228
+0.027708,228
+0.027819,228
+0.028142,228
+0.027675,228
+0.027806,228
+0.027774,228
+0.028090,228
+0.027691,228
+0.028016,228
+0.028347,228
+0.027715,228
+0.027710,228
+0.027669,228
+0.028135,228
+0.027709,228
+0.027739,228
+0.028289,228
+0.027917,228
+0.027731,228
+0.027709,228
+0.028199,228
+0.027688,228
+0.027750,228
+0.027957,228
+0.028081,228
+0.027754,228
+0.027762,228
+0.028137,228
+0.027730,228
+0.027760,228
+0.027624,228
+0.028232,228
+0.027763,228
+0.027841,228
+0.027998,228
+0.028292,228
+0.027739,228
+0.027804,228
+0.028145,228
+0.027705,228
+0.027735,228
+0.027768,228
+0.028157,228
+0.027802,228
+0.027793,228
+0.028159,228
+0.027800,228
+0.027955,228
+0.027726,228
+0.028202,228
+0.027815,228
+0.027765,228
+0.027927,228
+0.028082,228
+0.027911,228
+0.028507,228
+0.029761,228
+0.029541,228
+0.030357,228
+0.029105,228
+0.030264,228
+0.030174,228
+0.028764,228
+0.028345,228
+0.028749,228
+0.028297,228
+0.031972,228
+0.027970,228
+0.028245,228
+0.027927,228
+0.033471,228
+0.029183,228
+0.030954,228
+0.030335,228
+0.029571,228
+0.029664,228
+0.029525,228
+0.029456,228
+0.029034,228
+0.028302,228
+0.028582,228
+0.027869,228
+0.027958,228
+0.032860,228
+0.054217,228
+0.055905,228
+0.032124,228
+0.030037,228
+0.031212,230
+0.031446,230
+0.029493,230
+0.028981,230
+0.029714,230
+0.029217,230
+0.029330,230
+0.029472,230
+0.028810,230
+0.028966,230
+0.028912,230
+0.029368,230
+0.029060,230
+0.028714,230
+0.029201,230
+0.028925,230
+0.029145,230
+0.029026,230
+0.029022,230
+0.028966,230
+0.028870,230
+0.029391,230
+0.028822,230
+0.029057,230
+0.029450,230
+0.028822,230
+0.029209,230
+0.029746,230
+0.029454,230
+0.028988,230
+0.029127,230
+0.029064,230
+0.029241,230
+0.029435,230
+0.029081,230
+0.031390,230
+0.029498,230
+0.029355,230
+0.029553,230
+0.028982,230
+0.028996,230
+0.028980,230
+0.029188,230
+0.029060,230
+0.028818,230
+0.029422,230
+0.029067,230
+0.028992,230
+0.029280,230
+0.029486,230
+0.029258,230
+0.029168,230
+0.029584,230
+0.029309,230
+0.029174,230
+0.029294,230
+0.028859,230
+0.029155,230
+0.028960,230
+0.029254,230
+0.029074,230
+0.030576,230
+0.030232,230
+0.029177,230
+0.029131,230
+0.030245,230
+0.029385,230
+0.028945,230
+0.028784,230
+0.029233,230
+0.029134,230
+0.029420,230
+0.029514,230
+0.028832,230
+0.028563,230
+0.028667,230
+0.029067,230
+0.028526,230
+0.028438,230
+0.028899,230
+0.029096,230
+0.028589,230
+0.028424,230
+0.029054,230
+0.028619,230
+0.028536,230
+0.028929,230
+0.028593,230
+0.029794,230
+0.038274,230
+0.028631,230
+0.028745,230
+0.028442,230
+0.028873,230
+0.028448,230
+0.028783,230
+0.028461,230
+0.028953,230
+0.028479,230
+0.028411,230
+0.029688,232
+0.029182,232
+0.029007,232
+0.029212,232
+0.030177,232
+0.029792,232
+0.030598,232
+0.033744,232
+0.033655,232
+0.030829,232
+0.032066,232
+0.032223,232
+0.031038,232
+0.030659,232
+0.030033,232
+0.029460,232
+0.029567,232
+0.029924,232
+0.029216,232
+0.029134,232
+0.029829,232
+0.029198,232
+0.029112,232
+0.029550,232
+0.029096,232
+0.029180,232
+0.029056,232
+0.029627,232
+0.029195,232
+0.029088,232
+0.029468,232
+0.029486,232
+0.030023,232
+0.029728,232
+0.029768,232
+0.029106,232
+0.029068,232
+0.029595,232
+0.029140,232
+0.029497,232
+0.029585,232
+0.029460,232
+0.029183,232
+0.029034,232
+0.029641,232
+0.029115,232
+0.029208,232
+0.029817,232
+0.029447,232
+0.029239,232
+0.029114,232
+0.029866,232
+0.029166,232
+0.029146,232
+0.029593,232
+0.029066,232
+0.029145,232
+0.029049,232
+0.029621,232
+0.029042,232
+0.029041,232
+0.029647,232
+0.029164,232
+0.029283,232
+0.029343,232
+0.029674,232
+0.029265,232
+0.029332,232
+0.029687,232
+0.029218,232
+0.029087,232
+0.029494,232
+0.029337,232
+0.029189,232
+0.029091,232
+0.029642,232
+0.029189,232
+0.029207,232
+0.029540,232
+0.029594,232
+0.029035,232
+0.029327,232
+0.032385,232
+0.030660,232
+0.029237,232
+0.029852,232
+0.029299,232
+0.029156,232
+0.029341,232
+0.029562,232
+0.029221,232
+0.029107,232
+0.029742,232
+0.029237,232
+0.029049,232
+0.029655,232
+0.029219,232
+0.029072,232
+0.029165,232
+0.029762,232
+0.030358,234
+0.030127,234
+0.030604,234
+0.030153,234
+0.030130,234
+0.030406,234
+0.030486,234
+0.030233,234
+0.030003,234
+0.030490,234
+0.030202,234
+0.030074,234
+0.030438,234
+0.030215,234
+0.030018,234
+0.031065,234
+0.032074,234
+0.030253,234
+0.030099,234
+0.030677,234
+0.031515,234
+0.031204,234
+0.033240,234
+0.031116,234
+0.030199,234
+0.030712,234
+0.030225,234
+0.030108,234
+0.030597,234
+0.030284,234
+0.030132,234
+0.030359,234
+0.030782,234
+0.030082,234
+0.030109,234
+0.030729,234
+0.030159,234
+0.030105,234
+0.030472,234
+0.030409,234
+0.030108,234
+0.030038,234
+0.030701,234
+0.030097,234
+0.032153,234
+0.032187,234
+0.030610,234
+0.030178,234
+0.030790,234
+0.030180,234
+0.030011,234
+0.030187,234
+0.030570,234
+0.030096,234
+0.030133,234
+0.031568,234
+0.030319,234
+0.030084,234
+0.030822,234
+0.030645,234
+0.030130,234
+0.030539,234
+0.031045,234
+0.030107,234
+0.030286,234
+0.030675,234
+0.030380,234
+0.030718,234
+0.031886,234
+0.032856,234
+0.033020,234
+0.032307,234
+0.031610,234
+0.032002,234
+0.032058,234
+0.031528,234
+0.030505,234
+0.030506,234
+0.030780,234
+0.030169,234
+0.030483,234
+0.030792,234
+0.030206,234
+0.030239,234
+0.031256,234
+0.030443,234
+0.030501,234
+0.030984,234
+0.030521,234
+0.030428,234
+0.030373,234
+0.030966,234
+0.030462,234
+0.030669,234
+0.030869,234
+0.030494,234
+0.030628,234
+0.031014,234
+0.031166,234
+0.033034,234
+0.033777,236
+0.033994,236
+0.033944,236
+0.034148,236
+0.031757,236
+0.030948,236
+0.032556,236
+0.031320,236
+0.031032,236
+0.031013,236
+0.032891,236
+0.032434,236
+0.032233,236
+0.034586,236
+0.033126,236
+0.033744,236
+0.034739,236
+0.031994,236
+0.031318,236
+0.033039,236
+0.031272,236
+0.031136,236
+0.032828,236
+0.031334,236
+0.031468,236
+0.032985,236
+0.031576,236
+0.031285,236
+0.033451,236
+0.035104,236
+0.034135,236
+0.032739,236
+0.032981,236
+0.032480,236
+0.032441,236
+0.032488,236
+0.033266,236
+0.031990,236
+0.031856,236
+0.031373,236
+0.031471,236
+0.031751,236
+0.032149,236
+0.031541,236
+0.031784,236
+0.031390,236
+0.031234,236
+0.031803,236
+0.031537,236
+0.031533,236
+0.032068,236
+0.031771,236
+0.031798,236
+0.031953,236
+0.031569,236
+0.031234,236
+0.031939,236
+0.031545,236
+0.031601,236
+0.031578,236
+0.031932,236
+0.031237,236
+0.031325,236
+0.031721,236
+0.031366,236
+0.031220,236
+0.031750,236
+0.031240,236
+0.032455,236
+0.033766,236
+0.031280,236
+0.030793,236
+0.031328,236
+0.030853,236
+0.030771,236
+0.031968,236
+0.031074,236
+0.030757,236
+0.030916,236
+0.032139,236
+0.032433,236
+0.034592,236
+0.033978,236
+0.032397,236
+0.032334,236
+0.031628,236
+0.031247,236
+0.031339,236
+0.031525,236
+0.032272,236
+0.034320,236
+0.035302,236
+0.033631,236
+0.032443,236
+0.031868,236
+0.036478,236
+0.032029,236
+0.031947,236
+0.030840,236
+0.030834,236
+0.032290,238
+0.031663,238
+0.031577,238
+0.033485,238
+0.033872,238
+0.035361,238
+0.035761,238
+0.032871,238
+0.032131,238
+0.032473,238
+0.031940,238
+0.031745,238
+0.032728,238
+0.032135,238
+0.031720,238
+0.032094,238
+0.033397,238
+0.032657,238
+0.034607,238
+0.034474,238
+0.034204,238
+0.038265,238
+0.033422,238
+0.032119,238
+0.032749,238
+0.032330,238
+0.033634,238
+0.034926,238
+0.036489,238
+0.034506,238
+0.033690,238
+0.032542,238
+0.032052,238
+0.032223,238
+0.033186,238
+0.034131,238
+0.034831,238
+0.034710,238
+0.033838,238
+0.032466,238
+0.032274,238
+0.032050,238
+0.031949,238
+0.032542,238
+0.031693,238
+0.031649,238
+0.032263,238
+0.031716,238
+0.031614,238
+0.032194,238
+0.033197,238
+0.035426,238
+0.035452,238
+0.033799,238
+0.034757,238
+0.033376,238
+0.032357,238
+0.032370,238
+0.033924,238
+0.031932,238
+0.031730,238
+0.033355,238
+0.031602,238
+0.032070,238
+0.033182,238
+0.031728,238
+0.031650,238
+0.033281,238
+0.031678,238
+0.031882,238
+0.034564,238
+0.031760,238
+0.031552,238
+0.033319,238
+0.031600,238
+0.031533,238
+0.032823,238
+0.032028,238
+0.031525,238
+0.031993,238
+0.032756,238
+0.031828,238
+0.031746,238
+0.033238,238
+0.031641,238
+0.031616,238
+0.033137,238
+0.031554,238
+0.031585,238
+0.033085,238
+0.031562,238
+0.031473,238
+0.033401,238
+0.031639,238
+0.031512,238
+0.033092,238
+0.031949,238
+0.031735,238
+0.033181,238
+0.031755,238
+0.032343,240
+0.033862,240
+0.034092,240
+0.032217,240
+0.033336,240
+0.032581,240
+0.032189,240
+0.032208,240
+0.033655,240
+0.032166,240
+0.032460,240
+0.033617,240
+0.032209,240
+0.032333,240
+0.033738,240
+0.032283,240
+0.032250,240
+0.033561,240
+0.033114,240
+0.034166,240
+0.035387,240
+0.034878,240
+0.034778,240
+0.035309,240
+0.032956,240
+0.032670,240
+0.034152,240
+0.032453,240
+0.032523,240
+0.033747,240
+0.032219,240
+0.032256,240
+0.034852,240
+0.032188,240
+0.032216,240
+0.033476,240
+0.032083,240
+0.033007,240
+0.034557,240
+0.032568,240
+0.032249,240
+0.033585,240
+0.032223,240
+0.032403,240
+0.033472,240
+0.032224,240
+0.032070,240
+0.032631,240
+0.032187,240
+0.032076,240
+0.032691,240
+0.032156,240
+0.032070,240
+0.032641,240
+0.032126,240
+0.032065,240
+0.032322,240
+0.032443,240
+0.032428,240
+0.032233,240
+0.032845,240
+0.032217,240
+0.032185,240
+0.032981,240
+0.032174,240
+0.032270,240
+0.032766,240
+0.032613,240
+0.032274,240
+0.032744,240
+0.032155,240
+0.032178,240
+0.032682,240
+0.032216,240
+0.032185,240
+0.032755,240
+0.032373,240
+0.032354,240
+0.032655,240
+0.032702,240
+0.032727,240
+0.033254,240
+0.032606,240
+0.032792,240
+0.033288,240
+0.032707,240
+0.032698,240
+0.032970,240
+0.033131,240
+0.032702,240
+0.032809,240
+0.032904,240
+0.032723,240
+0.032811,240
+0.033252,240
+0.032700,240
+0.032779,240
+0.033331,240
+0.032580,240
+0.032634,240
+0.034677,242
+0.034333,242
+0.035353,242
+0.037132,242
+0.035416,242
+0.035410,242
+0.034834,242
+0.033790,242
+0.034383,242
+0.033788,242
+0.033457,242
+0.034437,242
+0.035468,242
+0.036031,242
+0.038102,242
+0.036129,242
+0.036671,242
+0.038472,242
+0.034601,242
+0.034189,242
+0.036864,242
+0.036533,242
+0.036482,242
+0.037213,242
+0.036504,242
+0.038268,242
+0.036324,242
+0.038244,242
+0.035677,242
+0.035634,242
+0.034792,242
+0.036135,242
+0.036817,242
+0.037817,242
+0.037462,242
+0.036281,242
+0.036753,242
+0.036863,242
+0.035234,242
+0.034721,242
+0.034226,242
+0.034461,242
+0.035540,242
+0.036877,242
+0.036143,242
+0.036095,242
+0.035628,242
+0.034672,242
+0.034271,242
+0.034081,242
+0.034506,242
+0.035000,242
+0.035985,242
+0.035727,242
+0.036704,242
+0.037648,242
+0.035403,242
+0.034006,242
+0.033905,242
+0.034223,242
+0.036224,242
+0.036299,242
+0.038138,242
+0.036845,242
+0.036640,242
+0.036335,242
+0.036843,242
+0.034545,242
+0.033487,242
+0.036115,242
+0.036344,242
+0.036293,242
+0.035307,242
+0.038131,242
+0.045884,242
+0.042915,242
+0.035826,242
+0.036449,242
+0.035700,242
+0.036295,242
+0.039672,242
+0.035614,242
+0.035382,242
+0.034891,242
+0.033864,242
+0.034920,242
+0.035236,242
+0.036033,242
+0.037853,242
+0.036326,242
+0.036606,242
+0.035340,242
+0.038935,242
+0.033753,242
+0.033520,242
+0.038138,242
+0.035472,242
+0.035660,242
+0.035369,242
+0.034935,242
+0.035351,244
+0.035871,244
+0.035230,244
+0.035925,244
+0.038724,244
+0.040129,244
+0.039379,244
+0.038537,244
+0.040497,244
+0.036633,244
+0.035343,244
+0.038747,244
+0.038757,244
+0.045130,244
+0.036858,244
+0.041927,244
+0.039854,244
+0.037641,244
+0.038082,244
+0.043394,244
+0.039307,244
+0.038785,244
+0.037869,244
+0.037780,244
+0.035217,244
+0.034456,244
+0.036203,244
+0.037800,244
+0.040150,244
+0.050008,244
+0.049812,244
+0.041325,244
+0.045832,244
+0.052610,244
+0.052008,244
+0.042045,244
+0.067749,244
+0.072703,244
+0.072166,244
+0.046886,244
+0.038491,244
+0.039296,244
+0.037777,244
+0.049037,244
+0.036943,244
+0.036475,244
+0.036480,244
+0.036279,244
+0.036979,244
+0.035601,244
+0.037431,244
+0.035981,244
+0.035024,244
+0.035396,244
+0.035535,244
+0.035078,244
+0.035980,244
+0.035874,244
+0.035106,244
+0.034888,244
+0.034206,244
+0.034227,244
+0.034895,244
+0.038662,244
+0.034279,244
+0.039300,244
+0.035010,244
+0.034118,244
+0.034979,244
+0.034239,244
+0.034100,244
+0.047447,244
+0.034204,244
+0.034705,244
+0.034445,244
+0.034354,244
+0.034837,244
+0.034082,244
+0.034278,244
+0.034973,244
+0.034284,244
+0.034085,244
+0.034760,244
+0.034259,244
+0.034188,244
+0.034593,244
+0.034133,244
+0.034105,244
+0.034614,244
+0.034142,244
+0.034141,244
+0.034646,244
+0.034292,244
+0.034239,244
+0.034943,244
+0.034119,244
+0.034072,244
+0.034719,244
+0.034357,244
+0.034145,244
+0.035788,246
+0.035212,246
+0.035194,246
+0.035476,246
+0.035298,246
+0.036709,246
+0.035462,246
+0.035223,246
+0.035805,246
+0.035209,246
+0.035165,246
+0.035768,246
+0.035274,246
+0.035219,246
+0.035662,246
+0.035250,246
+0.035914,246
+0.036826,246
+0.038206,246
+0.044112,246
+0.041421,246
+0.043092,246
+0.042983,246
+0.036796,246
+0.039207,246
+0.038178,246
+0.037697,246
+0.039172,246
+0.038369,246
+0.038217,246
+0.037788,246
+0.039724,246
+0.043731,246
+0.039567,246
+0.039280,246
+0.036046,246
+0.035558,246
+0.037500,246
+0.037027,246
+0.037366,246
+0.038814,246
+0.037329,246
+0.036223,246
+0.036504,246
+0.035596,246
+0.036479,246
+0.037131,246
+0.035821,246
+0.036483,246
+0.035860,246
+0.035607,246
+0.036814,246
+0.035801,246
+0.035939,246
+0.036605,246
+0.036062,246
+0.036307,246
+0.035925,246
+0.036517,246
+0.037065,246
+0.036557,246
+0.035529,246
+0.036068,246
+0.036164,246
+0.035511,246
+0.036099,246
+0.035529,246
+0.035457,246
+0.036358,246
+0.035706,246
+0.035986,246
+0.037572,246
+0.035684,246
+0.036861,246
+0.035794,246
+0.035796,246
+0.036792,246
+0.035434,246
+0.035464,246
+0.036024,246
+0.035524,246
+0.035594,246
+0.036032,246
+0.035576,246
+0.036133,246
+0.035656,246
+0.035641,246
+0.036242,246
+0.035668,246
+0.035511,246
+0.036249,246
+0.035679,246
+0.035835,246
+0.036350,246
+0.035769,246
+0.035779,246
+0.036081,246
+0.035742,246
+0.036305,246
+0.035666,246
+0.036538,248
+0.036950,248
+0.036891,248
+0.037282,248
+0.037122,248
+0.035963,248
+0.035966,248
+0.036533,248
+0.035865,248
+0.036491,248
+0.036088,248
+0.035918,248
+0.036324,248
+0.036204,248
+0.036010,248
+0.036408,248
+0.036022,248
+0.035875,248
+0.036484,248
+0.035847,248
+0.035988,248
+0.036638,248
+0.035939,248
+0.036479,248
+0.036101,248
+0.035841,248
+0.037387,248
+0.035967,248
+0.036096,248
+0.036605,248
+0.037319,248
+0.036080,248
+0.036739,248
+0.035905,248
+0.036373,248
+0.036001,248
+0.035857,248
+0.036426,248
+0.036060,248
+0.036116,248
+0.036435,248
+0.036006,248
+0.035934,248
+0.036601,248
+0.036661,248
+0.038456,248
+0.037034,248
+0.036383,248
+0.037245,248
+0.036645,248
+0.036301,248
+0.036790,248
+0.036420,248
+0.036386,248
+0.039304,248
+0.037737,248
+0.036706,248
+0.037622,248
+0.039952,248
+0.039045,248
+0.039536,248
+0.038979,248
+0.037102,248
+0.040524,248
+0.047871,248
+0.039514,248
+0.038784,248
+0.036877,248
+0.036276,248
+0.036576,248
+0.036445,248
+0.036307,248
+0.038011,248
+0.036560,248
+0.036393,248
+0.039587,248
+0.037070,248
+0.038024,248
+0.036550,248
+0.036464,248
+0.039896,248
+0.040696,248
+0.039671,248
+0.037722,248
+0.037045,248
+0.037030,248
+0.036760,248
+0.036654,248
+0.036918,248
+0.036292,248
+0.036506,248
+0.036907,248
+0.036397,248
+0.036666,248
+0.037172,248
+0.036737,248
+0.037231,248
+0.036764,248
+0.037268,248
+0.037170,248
+0.038086,250
+0.038827,250
+0.038990,250
+0.037656,250
+0.039527,250
+0.037633,250
+0.037549,250
+0.038221,250
+0.037844,250
+0.038290,250
+0.037835,250
+0.037638,250
+0.038288,250
+0.037639,250
+0.037595,250
+0.038418,250
+0.037800,250
+0.038053,250
+0.037847,250
+0.037909,250
+0.038100,250
+0.037897,250
+0.037869,250
+0.038147,250
+0.037684,250
+0.038149,250
+0.038995,250
+0.043489,250
+0.045378,250
+0.039512,250
+0.043945,250
+0.041917,250
+0.046253,250
+0.051930,250
+0.061852,250
+0.060873,250
+0.055203,250
+0.056209,250
+0.049196,250
+0.052504,250
+0.054557,250
+0.049361,250
+0.055008,250
+0.048738,250
+0.048519,250
+0.040005,250
+0.052799,250
+0.053327,250
+0.043411,250
+0.044696,250
+0.042284,250
+0.040053,250
+0.043783,250
+0.040671,250
+0.043014,250
+0.041375,250
+0.039464,250
+0.038793,250
+0.037435,250
+0.037281,250
+0.037981,250
+0.037245,250
+0.037327,250
+0.037564,250
+0.037241,250
+0.037451,250
+0.039258,250
+0.037382,250
+0.037922,250
+0.037268,250
+0.037188,250
+0.037485,250
+0.037387,250
+0.038525,250
+0.038325,250
+0.038383,250
+0.038073,250
+0.040982,250
+0.074718,250
+0.038744,250
+0.038323,250
+0.038145,250
+0.037754,250
+0.039391,250
+0.037818,250
+0.038091,250
+0.038323,250
+0.037743,250
+0.038526,250
+0.037601,250
+0.037652,250
+0.038597,250
+0.037943,250
+0.038059,250
+0.037976,250
+0.037702,250
+0.038592,250
+0.037895,250
+0.037840,250
+0.038815,250
+0.038699,252
+0.039045,252
+0.038515,252
+0.038525,252
+0.039196,252
+0.038629,252
+0.038606,252
+0.039003,252
+0.038791,252
+0.039151,252
+0.038370,252
+0.038741,252
+0.039158,252
+0.038488,252
+0.039305,252
+0.038434,252
+0.038216,252
+0.039576,252
+0.038537,252
+0.038717,252
+0.038729,252
+0.038565,252
+0.039139,252
+0.038482,252
+0.038509,252
+0.039110,252
+0.038557,252
+0.039360,252
+0.038386,252
+0.038276,252
+0.039334,252
+0.038254,252
+0.038748,252
+0.038706,252
+0.038297,252
+0.039110,252
+0.038381,252
+0.038306,252
+0.038858,252
+0.038423,252
+0.039294,252
+0.038163,252
+0.037901,252
+0.038654,252
+0.037990,252
+0.038164,252
+0.038542,252
+0.037878,252
+0.038594,252
+0.038343,252
+0.038125,252
+0.038493,252
+0.037896,252
+0.038614,252
+0.038042,252
+0.037831,252
+0.038678,252
+0.038131,252
+0.038024,252
+0.038536,252
+0.042861,252
+0.038422,252
+0.037953,252
+0.037943,252
+0.038348,252
+0.037991,252
+0.038721,252
+0.038117,252
+0.037917,252
+0.038919,252
+0.037938,252
+0.038027,252
+0.039191,252
+0.037861,252
+0.038955,252
+0.040984,252
+0.038092,252
+0.040819,252
+0.038052,252
+0.039542,252
+0.037981,252
+0.037802,252
+0.039468,252
+0.037887,252
+0.037890,252
+0.038429,252
+0.037804,252
+0.038395,252
+0.038648,252
+0.037949,252
+0.038276,252
+0.037851,252
+0.038169,252
+0.039792,252
+0.042231,252
+0.039571,252
+0.038210,252
+0.038467,252
+0.038717,252
+0.038249,252
+0.039936,254
+0.039465,254
+0.039334,254
+0.040065,254
+0.039383,254
+0.040090,254
+0.039435,254
+0.039177,254
+0.040657,254
+0.039187,254
+0.040312,254
+0.039448,254
+0.039488,254
+0.040645,254
+0.040085,254
+0.041609,254
+0.039331,254
+0.039357,254
+0.041614,254
+0.039211,254
+0.041913,254
+0.039449,254
+0.039495,254
+0.041637,254
+0.039478,254
+0.041623,254
+0.039509,254
+0.039517,254
+0.043351,254
+0.039365,254
+0.041827,254
+0.039644,254
+0.039558,254
+0.041600,254
+0.039541,254
+0.041388,254
+0.039354,254
+0.039592,254
+0.041203,254
+0.039634,254
+0.041391,254
+0.039556,254
+0.039549,254
+0.041227,254
+0.039462,254
+0.041692,254
+0.039581,254
+0.039455,254
+0.041425,254
+0.039442,254
+0.041406,254
+0.039491,254
+0.039306,254
+0.042753,254
+0.039219,254
+0.041637,254
+0.039697,254
+0.039207,254
+0.043401,254
+0.039485,254
+0.041004,254
+0.038971,254
+0.039117,254
+0.041379,254
+0.038966,254
+0.040863,254
+0.038944,254
+0.038962,254
+0.042000,254
+0.039254,254
+0.039711,254
+0.039101,254
+0.038850,254
+0.040741,254
+0.039132,254
+0.039386,254
+0.039018,254
+0.038897,254
+0.039604,254
+0.039720,254
+0.039484,254
+0.039226,254
+0.039947,254
+0.039878,254
+0.039104,254
+0.039400,254
+0.040058,254
+0.039104,254
+0.039540,254
+0.039171,254
+0.039434,254
+0.039560,254
+0.039144,254
+0.039675,254
+0.039228,254
+0.039316,254
+0.039891,254
+0.038911,254
+0.039681,254
+0.039048,254
+0.045297,256
+0.045849,256
+0.045395,256
+0.046163,256
+0.045344,256
+0.046896,256
+0.045613,256
+0.048069,256
+0.045930,256
+0.046376,256
+0.045710,256
+0.046088,256
+0.047383,256
+0.045935,256
+0.047501,256
+0.045963,256
+0.047293,256
+0.046090,256
+0.047512,256
+0.045820,256
+0.047847,256
+0.045723,256
+0.047504,256
+0.045714,256
+0.046280,256
+0.048077,256
+0.045847,256
+0.047505,256
+0.045955,256
+0.047295,256
+0.045545,256
+0.047311,256
+0.045926,256
+0.047432,256
+0.045836,256
+0.047683,256
+0.045752,256
+0.047709,256
+0.046274,256
+0.046592,256
+0.047855,256
+0.050953,256
+0.047916,256
+0.045931,256
+0.047817,256
+0.046053,256
+0.049004,256
+0.046315,256
+0.048031,256
+0.046460,256
+0.048593,256
+0.046224,256
+0.047719,256
+0.045832,256
+0.047828,256
+0.046105,256
+0.045767,256
+0.047757,256
+0.045915,256
+0.048175,256
+0.046601,256
+0.047080,256
+0.045218,256
+0.046985,256
+0.045308,256
+0.046867,256
+0.045136,256
+0.047985,256
+0.045647,256
+0.045707,256
+0.046499,256
+0.045497,256
+0.047160,256
+0.045219,256
+0.047095,256
+0.045170,256
+0.046713,256
+0.045684,256
+0.046960,256
+0.045355,256
+0.046547,256
+0.045593,256
+0.045185,256
+0.046832,256
+0.045076,256
+0.047068,256
+0.045091,256
+0.046798,256
+0.045298,256
+0.048013,256
+0.045422,256
+0.046954,256
+0.045552,256
+0.046425,256
+0.046089,256
+0.045377,256
+0.045881,256
+0.045229,256
+0.045887,256
+0.045230,256
+0.042081,258
+0.042614,258
+0.041833,258
+0.042086,258
+0.041492,258
+0.043070,258
+0.042303,258
+0.042069,258
+0.042106,258
+0.041970,258
+0.042518,258
+0.041982,258
+0.042699,258
+0.041835,258
+0.042066,258
+0.042568,258
+0.042002,258
+0.042405,258
+0.042074,258
+0.042611,258
+0.042106,258
+0.041835,258
+0.042608,258
+0.041898,258
+0.042480,258
+0.042001,258
+0.041909,258
+0.042463,258
+0.045149,258
+0.043737,258
+0.042288,258
+0.042411,258
+0.041625,258
+0.042247,258
+0.042165,258
+0.041585,258
+0.042754,258
+0.041842,258
+0.043590,258
+0.041990,258
+0.043031,258
+0.044013,258
+0.041785,258
+0.043605,258
+0.041802,258
+0.043916,258
+0.041727,258
+0.041861,258
+0.043481,258
+0.042282,258
+0.043696,258
+0.042073,258
+0.043473,258
+0.041695,258
+0.041836,258
+0.043509,258
+0.041741,258
+0.043380,258
+0.042463,258
+0.041709,258
+0.042632,258
+0.042106,258
+0.042620,258
+0.042544,258
+0.045255,258
+0.043871,258
+0.041508,258
+0.041967,258
+0.041501,258
+0.041899,258
+0.041971,258
+0.041960,258
+0.041676,258
+0.041295,258
+0.042285,258
+0.041558,258
+0.042110,258
+0.041293,258
+0.041305,258
+0.042215,258
+0.041494,258
+0.041830,258
+0.041343,258
+0.041394,258
+0.042209,258
+0.041295,258
+0.042063,258
+0.043349,258
+0.045494,258
+0.043548,258
+0.041453,258
+0.046725,258
+0.041732,258
+0.046617,258
+0.041177,258
+0.046633,258
+0.041518,258
+0.045840,258
+0.042901,258
+0.041345,258
+0.048255,260
+0.042324,260
+0.047944,260
+0.042678,260
+0.047935,260
+0.042694,260
+0.044666,260
+0.046949,260
+0.042397,260
+0.048135,260
+0.042603,260
+0.047941,260
+0.042574,260
+0.048251,260
+0.042447,260
+0.047803,260
+0.042785,260
+0.042291,260
+0.048307,260
+0.042330,260
+0.048392,260
+0.042397,260
+0.048226,260
+0.042667,260
+0.047873,260
+0.042525,260
+0.042523,260
+0.048155,260
+0.042379,260
+0.049098,260
+0.042286,260
+0.048006,260
+0.042583,260
+0.047957,260
+0.042498,260
+0.043690,260
+0.046701,260
+0.042336,260
+0.048451,260
+0.042400,260
+0.048644,260
+0.042495,260
+0.048564,260
+0.042649,260
+0.045546,260
+0.045037,260
+0.042463,260
+0.048389,260
+0.042364,260
+0.047973,260
+0.042311,260
+0.048661,260
+0.042668,260
+0.047775,260
+0.043000,260
+0.042421,260
+0.049528,260
+0.042978,260
+0.048586,260
+0.042669,260
+0.048119,260
+0.042438,260
+0.048009,260
+0.042556,260
+0.043498,260
+0.047218,260
+0.042378,260
+0.048384,260
+0.042388,260
+0.048305,260
+0.042455,260
+0.048446,260
+0.042351,260
+0.044113,260
+0.047139,260
+0.042322,260
+0.048408,260
+0.042434,260
+0.048234,260
+0.042494,260
+0.048293,260
+0.042480,260
+0.047994,260
+0.042675,260
+0.042313,260
+0.048334,260
+0.042412,260
+0.048358,260
+0.042306,260
+0.048182,260
+0.042543,260
+0.048056,260
+0.042424,260
+0.042349,260
+0.048096,260
+0.042478,260
+0.049024,260
+0.042525,260
+0.048152,260
+0.042303,260
+0.051544,262
+0.045612,262
+0.050535,262
+0.045288,262
+0.048709,262
+0.047252,262
+0.045144,262
+0.051457,262
+0.045062,262
+0.051046,262
+0.045063,262
+0.050513,262
+0.045180,262
+0.051306,262
+0.045181,262
+0.050392,262
+0.045029,262
+0.051435,262
+0.045635,262
+0.050680,262
+0.045062,262
+0.050670,262
+0.045119,262
+0.050427,262
+0.045001,262
+0.046788,262
+0.049032,262
+0.045134,262
+0.050543,262
+0.045412,262
+0.051262,262
+0.045004,262
+0.050438,262
+0.045083,262
+0.051226,262
+0.045002,262
+0.050308,262
+0.045029,262
+0.052155,262
+0.045088,262
+0.050504,262
+0.045078,262
+0.050475,262
+0.045118,262
+0.050361,262
+0.046407,262
+0.045584,262
+0.050035,262
+0.045313,262
+0.051202,262
+0.045060,262
+0.051355,262
+0.045182,262
+0.051282,262
+0.049080,262
+0.046642,262
+0.045015,262
+0.045746,262
+0.045166,262
+0.045918,262
+0.045070,262
+0.045495,262
+0.045338,262
+0.045044,262
+0.045700,262
+0.045056,262
+0.045916,262
+0.045165,262
+0.045669,262
+0.045212,262
+0.045766,262
+0.045216,262
+0.045616,262
+0.045724,262
+0.045022,262
+0.045808,262
+0.045308,262
+0.047476,262
+0.045366,262
+0.045937,262
+0.045114,262
+0.045810,262
+0.045430,262
+0.045258,262
+0.045845,262
+0.045254,262
+0.045789,262
+0.045173,262
+0.045872,262
+0.045020,262
+0.045713,262
+0.045355,262
+0.045629,262
+0.045504,262
+0.045357,262
+0.045746,262
+0.045122,262
+0.045805,262
+0.045116,262
+0.045932,262
+0.045572,264
+0.045377,264
+0.044911,264
+0.045498,264
+0.045480,264
+0.045013,264
+0.045361,264
+0.044835,264
+0.045345,264
+0.044850,264
+0.045363,264
+0.044819,264
+0.045119,264
+0.045038,264
+0.044929,264
+0.045277,264
+0.045018,264
+0.045337,264
+0.044766,264
+0.045071,264
+0.045004,264
+0.045191,264
+0.044777,264
+0.044833,264
+0.045091,264
+0.044788,264
+0.045319,264
+0.044897,264
+0.045363,264
+0.045009,264
+0.045403,264
+0.044783,264
+0.044908,264
+0.045218,264
+0.044848,264
+0.045603,264
+0.044800,264
+0.045850,264
+0.047181,264
+0.045717,264
+0.044871,264
+0.045471,264
+0.044947,264
+0.044940,264
+0.045371,264
+0.044852,264
+0.045318,264
+0.044823,264
+0.045581,264
+0.044927,264
+0.045449,264
+0.045173,264
+0.044880,264
+0.045276,264
+0.045357,264
+0.045468,264
+0.044777,264
+0.045276,264
+0.044682,264
+0.047804,264
+0.046794,264
+0.046725,264
+0.044823,264
+0.044911,264
+0.049118,264
+0.045572,264
+0.045130,264
+0.045017,264
+0.045110,264
+0.044772,264
+0.045407,264
+0.045054,264
+0.045183,264
+0.045040,264
+0.044867,264
+0.045725,264
+0.044958,264
+0.045318,264
+0.044947,264
+0.045226,264
+0.044847,264
+0.045403,264
+0.045587,264
+0.045449,264
+0.045266,264
+0.044929,264
+0.045318,264
+0.044923,264
+0.045372,264
+0.045250,264
+0.045429,264
+0.044795,264
+0.044988,264
+0.045278,264
+0.045132,264
+0.045579,264
+0.044765,264
+0.045500,264
+0.044827,264
+0.045411,264
+0.048093,266
+0.048554,266
+0.047857,266
+0.048832,266
+0.048130,266
+0.048065,266
+0.048130,266
+0.047908,266
+0.048489,266
+0.048060,266
+0.048360,266
+0.047964,266
+0.048440,266
+0.047902,266
+0.048555,266
+0.048409,266
+0.048603,266
+0.047875,266
+0.048451,266
+0.047899,266
+0.048415,266
+0.047878,266
+0.048513,266
+0.048003,266
+0.048460,266
+0.048109,266
+0.048418,266
+0.047827,266
+0.048355,266
+0.048271,266
+0.048101,266
+0.048250,266
+0.047861,266
+0.048418,266
+0.047947,266
+0.048736,266
+0.047898,266
+0.048680,266
+0.047957,266
+0.048521,266
+0.048046,266
+0.048546,266
+0.048040,266
+0.049049,266
+0.047991,266
+0.048726,266
+0.048007,266
+0.048397,266
+0.047939,266
+0.048432,266
+0.047919,266
+0.048511,266
+0.048066,266
+0.048158,266
+0.048293,266
+0.048010,266
+0.048770,266
+0.048032,266
+0.048726,266
+0.047981,266
+0.048417,266
+0.048049,266
+0.048393,266
+0.048031,266
+0.048320,266
+0.048281,266
+0.049239,266
+0.047884,266
+0.048425,266
+0.047931,266
+0.048400,266
+0.047844,266
+0.048448,266
+0.048015,266
+0.048546,266
+0.048001,266
+0.048574,266
+0.048322,266
+0.048336,266
+0.048125,266
+0.048212,266
+0.048421,266
+0.048035,266
+0.048492,266
+0.047906,266
+0.048542,266
+0.048039,266
+0.048647,266
+0.047852,266
+0.048421,266
+0.047796,266
+0.048576,266
+0.047807,266
+0.048873,266
+0.047809,266
+0.048401,266
+0.047913,266
+0.048670,266
+0.048133,266
+0.048864,266
+0.048275,268
+0.048696,268
+0.048144,268
+0.048465,268
+0.048125,268
+0.048255,268
+0.048431,268
+0.048170,268
+0.048705,268
+0.048052,268
+0.048540,268
+0.048015,268
+0.048595,268
+0.048046,268
+0.048586,268
+0.048002,268
+0.049067,268
+0.048110,268
+0.048884,268
+0.048117,268
+0.048584,268
+0.048039,268
+0.048778,268
+0.048048,268
+0.048461,268
+0.048128,268
+0.048589,268
+0.048218,268
+0.048745,268
+0.048078,268
+0.048564,268
+0.048037,268
+0.048153,268
+0.048413,268
+0.047985,268
+0.048706,268
+0.048094,268
+0.048498,268
+0.048325,268
+0.048784,268
+0.048145,268
+0.048614,268
+0.048069,268
+0.048603,268
+0.048081,268
+0.048666,268
+0.048397,268
+0.048522,268
+0.048516,268
+0.048846,268
+0.048086,268
+0.048523,268
+0.048044,268
+0.048577,268
+0.048127,268
+0.048515,268
+0.048060,268
+0.048525,268
+0.048301,268
+0.048229,268
+0.048670,268
+0.048532,268
+0.048557,268
+0.048008,268
+0.048688,268
+0.048004,268
+0.048554,268
+0.048121,268
+0.048588,268
+0.048915,268
+0.048832,268
+0.048046,268
+0.048471,268
+0.048041,268
+0.048648,268
+0.048166,268
+0.048498,268
+0.048032,268
+0.048534,268
+0.048124,268
+0.048592,268
+0.048203,268
+0.048449,268
+0.048046,268
+0.048568,268
+0.048168,268
+0.048328,268
+0.048358,268
+0.048142,268
+0.048514,268
+0.048489,268
+0.048674,268
+0.048018,268
+0.048568,268
+0.048246,268
+0.048617,268
+0.048178,268
+0.048707,268
+0.048113,268
+0.048557,268
+0.051342,270
+0.051541,270
+0.051119,270
+0.051441,270
+0.051187,270
+0.051469,270
+0.050958,270
+0.051311,270
+0.051083,270
+0.051505,270
+0.051255,270
+0.051646,270
+0.050894,270
+0.051497,270
+0.050975,270
+0.051511,270
+0.050891,270
+0.051461,270
+0.051058,270
+0.051288,270
+0.051191,270
+0.051547,270
+0.051195,270
+0.051279,270
+0.051556,270
+0.051011,270
+0.051468,270
+0.050985,270
+0.051403,270
+0.051001,270
+0.051945,270
+0.050997,270
+0.051442,270
+0.051165,270
+0.051447,270
+0.051047,270
+0.051476,270
+0.051056,270
+0.051486,270
+0.051006,270
+0.051561,270
+0.051181,270
+0.051743,270
+0.051012,270
+0.051433,270
+0.050948,270
+0.051489,270
+0.051084,270
+0.051561,270
+0.051276,270
+0.051648,270
+0.050909,270
+0.051372,270
+0.051003,270
+0.051535,270
+0.050986,270
+0.051464,270
+0.050818,270
+0.051522,270
+0.050939,270
+0.051597,270
+0.050956,270
+0.051504,270
+0.050854,270
+0.051526,270
+0.050830,270
+0.051485,270
+0.050898,270
+0.051404,270
+0.056755,270
+0.052415,270
+0.051187,270
+0.051174,270
+0.051398,270
+0.050898,270
+0.051421,270
+0.051019,270
+0.051525,270
+0.050984,270
+0.051634,270
+0.051033,270
+0.051498,270
+0.050999,270
+0.051528,270
+0.050991,270
+0.051460,270
+0.050919,270
+0.051540,270
+0.051221,270
+0.051615,270
+0.050929,270
+0.051637,270
+0.051243,270
+0.051707,270
+0.051443,270
+0.051519,270
+0.050925,270
+0.051655,270
+0.051174,270
+0.051755,270
+0.049435,272
+0.049712,272
+0.049166,272
+0.049631,272
+0.049171,272
+0.049689,272
+0.049117,272
+0.049701,272
+0.049306,272
+0.049876,272
+0.049086,272
+0.049662,272
+0.049139,272
+0.049734,272
+0.049166,272
+0.049868,272
+0.049411,272
+0.049673,272
+0.049128,272
+0.049832,272
+0.049201,272
+0.049724,272
+0.051215,272
+0.050721,272
+0.049178,272
+0.050670,272
+0.049205,272
+0.050658,272
+0.049243,272
+0.050589,272
+0.049139,272
+0.050582,272
+0.049158,272
+0.050957,272
+0.049261,272
+0.050503,272
+0.049055,272
+0.050749,272
+0.049715,272
+0.051716,272
+0.049319,272
+0.050582,272
+0.049194,272
+0.050733,272
+0.049297,272
+0.051079,272
+0.049202,272
+0.050302,272
+0.049431,272
+0.050735,272
+0.049148,272
+0.050486,272
+0.049299,272
+0.050421,272
+0.049318,272
+0.050266,272
+0.049265,272
+0.050209,272
+0.049803,272
+0.051081,272
+0.049932,272
+0.050271,272
+0.049587,272
+0.050158,272
+0.049592,272
+0.050020,272
+0.049635,272
+0.050008,272
+0.050422,272
+0.049948,272
+0.049773,272
+0.049773,272
+0.050027,272
+0.049700,272
+0.050082,272
+0.049474,272
+0.050181,272
+0.049382,272
+0.050677,272
+0.049202,272
+0.052091,272
+0.049543,272
+0.050200,272
+0.049158,272
+0.050576,272
+0.049119,272
+0.050529,272
+0.049232,272
+0.050573,272
+0.049112,272
+0.050611,272
+0.049247,272
+0.050781,272
+0.049196,272
+0.050974,272
+0.049342,272
+0.050484,272
+0.049243,272
+0.050431,272
+0.049244,272
+0.055936,274
+0.053476,274
+0.053482,274
+0.054314,274
+0.052765,274
+0.054135,274
+0.052769,274
+0.054386,274
+0.053011,274
+0.054183,274
+0.052823,274
+0.054154,274
+0.052873,274
+0.054188,274
+0.052746,274
+0.054069,274
+0.052887,274
+0.054350,274
+0.054909,274
+0.053474,274
+0.053989,274
+0.052878,274
+0.054203,274
+0.052980,274
+0.054277,274
+0.052768,274
+0.054341,274
+0.052917,274
+0.054331,274
+0.052932,274
+0.054125,274
+0.052855,274
+0.054084,274
+0.053899,274
+0.053103,274
+0.054212,274
+0.052839,274
+0.055637,274
+0.053230,274
+0.054193,274
+0.052798,274
+0.054121,274
+0.052883,274
+0.054491,274
+0.053176,274
+0.054155,274
+0.052861,274
+0.054216,274
+0.053711,274
+0.053177,274
+0.054143,274
+0.052794,274
+0.054244,274
+0.052822,274
+0.054396,274
+0.052789,274
+0.055424,274
+0.052788,274
+0.054105,274
+0.052730,274
+0.054005,274
+0.052820,274
+0.054166,274
+0.053538,274
+0.053382,274
+0.054193,274
+0.053835,274
+0.055035,274
+0.055093,274
+0.055100,274
+0.054008,274
+0.055025,274
+0.053819,274
+0.054744,274
+0.053556,274
+0.056024,274
+0.054414,274
+0.053970,274
+0.055162,274
+0.053304,274
+0.055780,274
+0.053383,274
+0.055202,274
+0.053354,274
+0.054638,274
+0.053250,274
+0.054771,274
+0.053860,274
+0.054538,274
+0.054270,274
+0.053734,274
+0.054906,274
+0.053493,274
+0.055184,274
+0.053665,274
+0.053948,274
+0.053557,274
+0.054322,274
+0.053787,274
+0.053672,274
+0.054128,276
+0.054896,276
+0.054354,276
+0.054290,276
+0.054894,276
+0.053618,276
+0.054930,276
+0.053730,276
+0.054892,276
+0.054017,276
+0.056243,276
+0.054117,276
+0.056417,276
+0.054062,276
+0.055307,276
+0.055088,276
+0.054532,276
+0.054670,276
+0.053246,276
+0.054359,276
+0.053118,276
+0.054349,276
+0.053165,276
+0.054354,276
+0.053115,276
+0.054216,276
+0.053150,276
+0.054336,276
+0.054530,276
+0.053243,276
+0.055437,276
+0.053164,276
+0.054328,276
+0.053144,276
+0.054764,276
+0.054260,276
+0.054312,276
+0.056166,276
+0.055131,276
+0.053252,276
+0.053969,276
+0.054267,276
+0.053053,276
+0.054094,276
+0.053045,276
+0.053980,276
+0.053225,276
+0.055082,276
+0.053120,276
+0.053623,276
+0.053141,276
+0.054539,276
+0.053074,276
+0.053560,276
+0.053681,276
+0.053762,276
+0.055634,276
+0.053254,276
+0.053405,276
+0.054822,276
+0.054325,276
+0.053122,276
+0.053438,276
+0.053207,276
+0.053634,276
+0.053511,276
+0.053607,276
+0.053119,276
+0.053694,276
+0.053250,276
+0.053541,276
+0.053725,276
+0.053152,276
+0.053525,276
+0.053539,276
+0.053485,276
+0.053115,276
+0.053708,276
+0.053342,276
+0.053600,276
+0.053844,276
+0.053480,276
+0.053116,276
+0.053744,276
+0.053231,276
+0.053467,276
+0.053083,276
+0.053788,276
+0.053221,276
+0.053674,276
+0.053589,276
+0.053146,276
+0.053575,276
+0.053412,276
+0.053608,276
+0.053061,276
+0.053592,276
+0.053129,276
+0.053909,276
+0.052992,276
+0.056686,278
+0.056121,278
+0.056500,278
+0.056478,278
+0.055945,278
+0.056477,278
+0.055941,278
+0.056564,278
+0.055995,278
+0.056528,278
+0.056414,278
+0.056325,278
+0.056512,278
+0.056066,278
+0.056793,278
+0.056123,278
+0.056582,278
+0.055945,278
+0.056602,278
+0.056426,278
+0.056327,278
+0.056475,278
+0.056034,278
+0.056723,278
+0.056029,278
+0.056717,278
+0.056075,278
+0.056660,278
+0.056743,278
+0.056300,278
+0.056511,278
+0.055932,278
+0.056550,278
+0.056184,278
+0.056580,278
+0.056058,278
+0.056266,278
+0.056487,278
+0.056185,278
+0.056611,278
+0.055784,278
+0.056613,278
+0.056066,278
+0.056499,278
+0.056814,278
+0.055931,278
+0.056476,278
+0.056853,278
+0.056435,278
+0.055918,278
+0.056794,278
+0.057376,278
+0.056570,278
+0.056438,278
+0.055998,278
+0.056864,278
+0.056111,278
+0.056630,278
+0.055871,278
+0.056763,278
+0.056253,278
+0.056417,278
+0.056558,278
+0.055982,278
+0.056670,278
+0.055937,278
+0.056469,278
+0.055934,278
+0.056489,278
+0.056263,278
+0.056659,278
+0.056447,278
+0.056029,278
+0.056709,278
+0.056107,278
+0.056422,278
+0.055829,278
+0.056632,278
+0.056431,278
+0.055938,278
+0.056483,278
+0.055816,278
+0.056627,278
+0.055849,278
+0.056359,278
+0.055843,278
+0.057168,278
+0.056457,278
+0.055904,278
+0.056399,278
+0.055899,278
+0.057277,278
+0.055828,278
+0.056306,278
+0.055929,278
+0.056550,278
+0.056387,278
+0.055821,278
+0.056925,278
+0.056030,278
+0.056039,280
+0.054997,280
+0.056157,280
+0.055203,280
+0.055545,280
+0.055597,280
+0.055629,280
+0.055476,280
+0.055143,280
+0.055797,280
+0.055150,280
+0.055650,280
+0.055104,280
+0.055887,280
+0.055714,280
+0.055130,280
+0.055771,280
+0.055378,280
+0.055863,280
+0.055104,280
+0.055756,280
+0.055104,280
+0.055971,280
+0.055739,280
+0.055151,280
+0.055592,280
+0.055293,280
+0.055854,280
+0.055124,280
+0.055650,280
+0.055182,280
+0.055857,280
+0.055306,280
+0.055486,280
+0.055568,280
+0.055182,280
+0.055911,280
+0.055098,280
+0.055473,280
+0.055237,280
+0.055612,280
+0.055152,280
+0.055658,280
+0.055459,280
+0.055312,280
+0.055762,280
+0.055169,280
+0.055615,280
+0.055152,280
+0.055908,280
+0.055204,280
+0.055705,280
+0.055386,280
+0.055221,280
+0.056019,280
+0.055110,280
+0.055731,280
+0.055292,280
+0.056103,280
+0.055521,280
+0.055667,280
+0.055302,280
+0.055408,280
+0.055828,280
+0.055129,280
+0.055558,280
+0.055119,280
+0.055847,280
+0.055210,280
+0.055756,280
+0.055195,280
+0.055800,280
+0.055859,280
+0.055122,280
+0.055436,280
+0.055093,280
+0.055607,280
+0.055062,280
+0.055480,280
+0.055228,280
+0.055440,280
+0.055857,280
+0.055213,280
+0.055463,280
+0.055038,280
+0.055800,280
+0.055128,280
+0.055669,280
+0.055285,280
+0.055366,280
+0.055615,280
+0.055130,280
+0.055400,280
+0.055457,280
+0.055801,280
+0.056098,280
+0.055713,280
+0.055297,280
+0.055464,280
+0.055897,280
+0.061178,282
+0.060940,282
+0.060385,282
+0.061193,282
+0.060907,282
+0.060585,282
+0.060973,282
+0.061083,282
+0.060710,282
+0.060792,282
+0.060495,282
+0.060994,282
+0.060557,282
+0.060853,282
+0.060833,282
+0.060674,282
+0.061016,282
+0.060525,282
+0.060771,282
+0.060985,282
+0.060689,282
+0.060932,282
+0.060415,282
+0.060865,282
+0.065272,282
+0.060795,282
+0.060861,282
+0.060535,282
+0.060739,282
+0.060891,282
+0.060540,282
+0.060519,282
+0.060961,282
+0.060622,282
+0.060677,282
+0.060447,282
+0.060994,282
+0.060663,282
+0.060750,282
+0.060640,282
+0.060824,282
+0.061117,282
+0.060853,282
+0.060488,282
+0.061053,282
+0.060691,282
+0.060881,282
+0.060800,282
+0.060519,282
+0.060955,282
+0.060484,282
+0.060771,282
+0.061039,282
+0.060620,282
+0.061179,282
+0.060412,282
+0.060860,282
+0.061263,282
+0.060412,282
+0.060798,282
+0.060409,282
+0.061082,282
+0.060783,282
+0.060369,282
+0.060791,282
+0.060680,282
+0.060823,282
+0.060749,282
+0.060454,282
+0.060993,282
+0.060702,282
+0.060723,282
+0.060732,282
+0.060771,282
+0.060674,282
+0.060352,282
+0.060997,282
+0.060970,282
+0.060575,282
+0.060690,282
+0.060320,282
+0.061755,282
+0.060964,282
+0.060513,282
+0.060540,282
+0.060371,282
+0.060994,282
+0.061590,282
+0.060600,282
+0.061419,282
+0.060636,282
+0.060621,282
+0.060998,282
+0.060314,282
+0.060860,282
+0.060558,282
+0.060567,282
+0.060689,282
+0.060647,282
+0.060750,282
+0.058921,284
+0.058936,284
+0.059176,284
+0.058603,284
+0.059371,284
+0.058771,284
+0.060202,284
+0.059112,284
+0.058822,284
+0.059130,284
+0.058993,284
+0.059290,284
+0.059066,284
+0.058856,284
+0.059348,284
+0.059093,284
+0.059185,284
+0.058805,284
+0.059290,284
+0.059479,284
+0.059320,284
+0.059182,284
+0.058853,284
+0.059464,284
+0.059027,284
+0.058661,284
+0.058992,284
+0.058628,284
+0.060052,284
+0.058768,284
+0.058889,284
+0.058936,284
+0.058981,284
+0.059222,284
+0.058769,284
+0.059221,284
+0.059170,284
+0.059063,284
+0.059002,284
+0.058687,284
+0.059421,284
+0.058926,284
+0.058686,284
+0.059023,284
+0.058684,284
+0.059015,284
+0.058624,284
+0.059053,284
+0.059106,284
+0.058753,284
+0.059009,284
+0.058660,284
+0.059045,284
+0.058886,284
+0.059208,284
+0.058953,284
+0.058749,284
+0.059335,284
+0.058585,284
+0.059025,284
+0.059127,284
+0.058718,284
+0.059328,284
+0.058785,284
+0.059074,284
+0.059040,284
+0.059038,284
+0.059060,284
+0.058690,284
+0.059024,284
+0.058809,284
+0.062781,284
+0.062612,284
+0.059017,284
+0.062422,284
+0.061937,284
+0.058787,284
+0.062778,284
+0.058929,284
+0.062076,284
+0.062005,284
+0.058849,284
+0.062248,284
+0.058850,284
+0.061965,284
+0.061794,284
+0.060139,284
+0.063142,284
+0.059049,284
+0.061887,284
+0.061915,284
+0.058789,284
+0.061870,284
+0.058607,284
+0.061869,284
+0.062020,284
+0.058899,284
+0.061880,284
+0.058643,284
+0.062002,284
+0.065981,286
+0.063085,286
+0.065705,286
+0.066395,286
+0.063186,286
+0.065908,286
+0.065949,286
+0.062979,286
+0.065761,286
+0.063785,286
+0.064798,286
+0.064375,286
+0.062746,286
+0.063914,286
+0.063989,286
+0.062908,286
+0.064041,286
+0.063173,286
+0.062956,286
+0.063980,286
+0.063076,286
+0.063271,286
+0.063561,286
+0.062711,286
+0.063212,286
+0.063110,286
+0.063045,286
+0.063386,286
+0.062728,286
+0.063221,286
+0.063484,286
+0.063042,286
+0.063231,286
+0.063095,286
+0.062986,286
+0.063989,286
+0.062867,286
+0.063241,286
+0.063624,286
+0.062800,286
+0.063251,286
+0.063172,286
+0.062871,286
+0.063358,286
+0.062740,286
+0.063326,286
+0.063316,286
+0.062790,286
+0.063419,286
+0.063193,286
+0.062935,286
+0.063784,286
+0.063122,286
+0.064094,286
+0.067483,286
+0.062756,286
+0.063161,286
+0.063158,286
+0.062857,286
+0.063157,286
+0.063145,286
+0.062850,286
+0.063292,286
+0.062744,286
+0.063340,286
+0.063324,286
+0.062920,286
+0.063674,286
+0.063221,286
+0.064689,286
+0.063610,286
+0.062748,286
+0.064264,286
+0.063843,286
+0.062842,286
+0.063239,286
+0.063366,286
+0.063586,286
+0.063319,286
+0.063017,286
+0.063736,286
+0.063332,286
+0.062838,286
+0.063847,286
+0.063231,286
+0.063415,286
+0.063301,286
+0.063123,286
+0.062875,286
+0.063330,286
+0.063156,286
+0.063569,286
+0.063378,286
+0.063101,286
+0.063237,286
+0.063325,286
+0.062859,286
+0.063421,286
+0.062976,286
+0.063373,286
+0.065231,288
+0.065049,288
+0.065202,288
+0.065060,288
+0.064777,288
+0.065043,288
+0.064091,288
+0.063515,288
+0.064231,288
+0.064605,288
+0.063848,288
+0.064219,288
+0.063622,288
+0.063975,288
+0.064850,288
+0.064732,288
+0.065307,288
+0.065324,288
+0.064693,288
+0.065179,288
+0.065310,288
+0.064844,288
+0.065290,288
+0.064943,288
+0.065224,288
+0.065342,288
+0.064823,288
+0.065187,288
+0.063950,288
+0.063716,288
+0.064065,288
+0.064224,288
+0.063697,288
+0.064055,288
+0.063800,288
+0.063614,288
+0.064130,288
+0.063993,288
+0.063986,288
+0.064079,288
+0.063585,288
+0.064072,288
+0.065238,288
+0.065154,288
+0.065189,288
+0.065756,288
+0.064803,288
+0.065795,288
+0.065136,288
+0.064741,288
+0.065112,288
+0.064663,288
+0.065022,288
+0.065250,288
+0.064910,288
+0.065307,288
+0.065144,288
+0.064645,288
+0.065135,288
+0.065097,288
+0.064721,288
+0.065196,288
+0.065120,288
+0.064938,288
+0.065088,288
+0.064598,288
+0.065139,288
+0.065346,288
+0.064673,288
+0.065012,288
+0.065111,288
+0.064899,288
+0.064962,288
+0.065290,288
+0.064877,288
+0.065087,288
+0.065402,288
+0.064656,288
+0.065058,288
+0.064950,288
+0.064708,288
+0.064946,288
+0.064646,288
+0.064967,288
+0.065059,288
+0.064819,288
+0.064989,288
+0.065037,288
+0.064656,288
+0.065418,288
+0.065141,288
+0.065037,288
+0.064033,288
+0.063644,288
+0.063892,288
+0.063866,288
+0.064388,288
+0.065006,288
+0.065188,288
+0.064741,288
+0.066894,290
+0.066439,290
+0.065936,290
+0.066189,290
+0.066283,290
+0.065873,290
+0.066252,290
+0.066334,290
+0.066409,290
+0.066338,290
+0.066291,290
+0.065812,290
+0.066247,290
+0.066345,290
+0.065786,290
+0.066483,290
+0.066503,290
+0.066027,290
+0.065965,290
+0.066054,290
+0.066133,290
+0.066230,290
+0.065766,290
+0.066377,290
+0.066257,290
+0.065813,290
+0.066228,290
+0.066223,290
+0.065864,290
+0.066141,290
+0.066147,290
+0.065878,290
+0.066227,290
+0.066032,290
+0.065745,290
+0.066243,290
+0.066123,290
+0.066314,290
+0.066257,290
+0.066300,290
+0.065877,290
+0.066223,290
+0.066203,290
+0.066044,290
+0.066232,290
+0.066328,290
+0.065944,290
+0.066421,290
+0.066077,290
+0.066266,290
+0.066172,290
+0.066210,290
+0.065911,290
+0.066374,290
+0.065973,290
+0.066060,290
+0.066242,290
+0.065823,290
+0.066221,290
+0.066933,290
+0.065836,290
+0.066934,290
+0.066470,290
+0.065773,290
+0.066684,290
+0.066227,290
+0.065889,290
+0.066280,290
+0.066238,290
+0.065969,290
+0.066354,290
+0.066274,290
+0.065947,290
+0.066260,290
+0.066301,290
+0.065937,290
+0.066530,290
+0.066418,290
+0.066328,290
+0.066159,290
+0.066282,290
+0.065979,290
+0.066425,290
+0.066258,290
+0.066737,290
+0.066388,290
+0.066281,290
+0.065948,290
+0.066293,290
+0.066228,290
+0.066327,290
+0.066376,290
+0.066135,290
+0.066085,290
+0.066672,290
+0.066038,290
+0.066262,290
+0.066243,290
+0.065868,290
+0.067703,290
+0.068319,292
+0.065282,292
+0.066127,292
+0.066207,292
+0.065202,292
+0.065459,292
+0.065341,292
+0.065483,292
+0.065563,292
+0.065269,292
+0.065137,292
+0.065553,292
+0.066180,292
+0.065189,292
+0.065532,292
+0.065671,292
+0.065080,292
+0.065441,292
+0.065277,292
+0.066142,292
+0.065382,292
+0.065143,292
+0.065610,292
+0.065445,292
+0.064946,292
+0.065470,292
+0.065479,292
+0.065502,292
+0.065399,292
+0.065523,292
+0.065342,292
+0.065557,292
+0.065380,292
+0.065116,292
+0.065437,292
+0.065276,292
+0.065088,292
+0.065440,292
+0.065563,292
+0.065113,292
+0.065422,292
+0.067850,292
+0.065228,292
+0.065730,292
+0.065117,292
+0.065829,292
+0.065496,292
+0.065036,292
+0.065513,292
+0.065588,292
+0.065061,292
+0.065361,292
+0.065541,292
+0.065403,292
+0.065816,292
+0.065784,292
+0.065190,292
+0.065547,292
+0.065565,292
+0.065511,292
+0.066175,292
+0.065516,292
+0.065099,292
+0.065469,292
+0.065223,292
+0.065155,292
+0.065435,292
+0.065118,292
+0.065490,292
+0.065777,292
+0.064977,292
+0.065431,292
+0.065489,292
+0.065406,292
+0.065351,292
+0.065495,292
+0.067420,292
+0.065514,292
+0.065273,292
+0.065096,292
+0.065467,292
+0.065280,292
+0.065053,292
+0.065718,292
+0.065420,292
+0.065287,292
+0.065960,292
+0.065394,292
+0.065229,292
+0.066330,292
+0.065249,292
+0.065580,292
+0.065533,292
+0.065008,292
+0.065597,292
+0.065550,292
+0.065213,292
+0.065404,292
+0.065527,292
+0.065221,292
+0.070272,294
+0.069894,294
+0.069447,294
+0.069989,294
+0.070190,294
+0.069640,294
+0.069925,294
+0.069958,294
+0.069810,294
+0.069592,294
+0.070002,294
+0.069833,294
+0.069407,294
+0.070111,294
+0.070008,294
+0.069346,294
+0.069899,294
+0.070334,294
+0.074104,294
+0.069582,294
+0.073152,294
+0.072409,294
+0.069674,294
+0.073156,294
+0.072663,294
+0.072446,294
+0.069788,294
+0.072631,294
+0.073153,294
+0.069503,294
+0.072394,294
+0.072529,294
+0.072809,294
+0.069747,294
+0.073212,294
+0.072429,294
+0.069558,294
+0.072261,294
+0.072765,294
+0.072226,294
+0.069624,294
+0.073477,294
+0.072357,294
+0.069487,294
+0.072482,294
+0.072561,294
+0.072795,294
+0.069543,294
+0.073329,294
+0.072326,294
+0.069506,294
+0.072625,294
+0.072249,294
+0.072306,294
+0.069604,294
+0.072639,294
+0.072928,294
+0.069496,294
+0.072464,294
+0.072455,294
+0.104865,294
+0.123952,294
+0.086093,294
+0.070427,294
+0.070317,294
+0.071085,294
+0.070397,294
+0.070592,294
+0.070531,294
+0.070553,294
+0.070144,294
+0.070019,294
+0.070232,294
+0.070128,294
+0.069989,294
+0.070661,294
+0.070622,294
+0.070228,294
+0.070136,294
+0.070735,294
+0.071010,294
+0.070106,294
+0.072252,294
+0.070903,294
+0.070173,294
+0.071147,294
+0.070767,294
+0.070937,294
+0.070518,294
+0.071030,294
+0.070945,294
+0.070058,294
+0.070628,294
+0.070684,294
+0.070469,294
+0.070892,294
+0.070566,294
+0.070380,294
+0.069266,294
+0.070158,294
+0.066924,296
+0.065989,296
+0.066792,296
+0.071059,296
+0.066570,296
+0.066726,296
+0.066726,296
+0.065890,296
+0.066737,296
+0.066712,296
+0.065697,296
+0.067572,296
+0.066782,296
+0.065651,296
+0.066919,296
+0.066653,296
+0.065605,296
+0.066935,296
+0.069359,296
+0.065816,296
+0.066748,296
+0.069562,296
+0.065701,296
+0.066538,296
+0.066545,296
+0.065713,296
+0.066771,296
+0.066588,296
+0.065797,296
+0.066558,296
+0.066710,296
+0.065667,296
+0.066725,296
+0.067926,296
+0.066058,296
+0.067089,296
+0.066650,296
+0.066134,296
+0.067048,296
+0.066233,296
+0.066122,296
+0.066731,296
+0.065608,296
+0.066676,296
+0.066550,296
+0.065618,296
+0.066656,296
+0.066657,296
+0.065731,296
+0.067849,296
+0.066753,296
+0.065648,296
+0.066515,296
+0.066662,296
+0.065703,296
+0.066702,296
+0.066753,296
+0.065804,296
+0.066577,296
+0.066754,296
+0.065707,296
+0.066704,296
+0.066666,296
+0.065873,296
+0.068169,296
+0.066783,296
+0.065783,296
+0.066619,296
+0.066828,296
+0.065808,296
+0.066684,296
+0.066990,296
+0.065875,296
+0.066807,296
+0.065919,296
+0.065617,296
+0.065887,296
+0.065956,296
+0.066141,296
+0.065855,296
+0.065801,296
+0.065621,296
+0.066005,296
+0.067027,296
+0.065780,296
+0.065900,296
+0.065676,296
+0.065972,296
+0.066076,296
+0.065811,296
+0.065789,296
+0.078423,296
+0.070391,296
+0.088537,296
+0.083934,296
+0.074624,296
+0.074875,296
+0.074878,296
+0.072253,296
+0.072570,296
+0.081909,298
+0.079450,298
+0.073185,298
+0.072747,298
+0.072461,298
+0.072164,298
+0.072826,298
+0.072595,298
+0.072652,298
+0.072581,298
+0.072825,298
+0.078690,298
+0.080412,298
+0.079329,298
+0.080308,298
+0.079911,298
+0.077494,298
+0.073448,298
+0.077835,298
+0.073131,298
+0.081008,298
+0.079288,298
+0.080261,298
+0.076548,298
+0.075494,298
+0.079484,298
+0.082832,298
+0.078936,298
+0.079092,298
+0.078865,298
+0.075786,298
+0.079212,298
+0.077011,298
+0.074678,298
+0.074451,298
+0.072372,298
+0.073247,298
+0.072424,298
+0.074625,298
+0.074462,298
+0.076295,298
+0.073360,298
+0.072790,298
+0.073887,298
+0.074409,298
+0.073295,298
+0.072906,298
+0.073051,298
+0.072361,298
+0.072727,298
+0.072425,298
+0.073496,298
+0.072491,298
+0.072717,298
+0.072248,298
+0.073342,298
+0.072399,298
+0.072332,298
+0.072550,298
+0.072592,298
+0.072652,298
+0.073236,298
+0.076327,298
+0.074498,298
+0.073960,298
+0.072665,298
+0.072811,298
+0.073851,298
+0.078967,298
+0.077097,298
+0.076110,298
+0.075197,298
+0.075843,298
+0.075148,298
+0.076042,298
+0.074501,298
+0.075122,298
+0.073719,298
+0.074472,298
+0.074512,298
+0.073973,298
+0.074826,298
+0.073913,298
+0.073266,298
+0.072438,298
+0.073866,298
+0.073519,298
+0.074649,298
+0.072506,298
+0.073378,298
+0.073498,298
+0.072656,298
+0.073167,298
+0.074034,298
+0.073469,298
+0.072580,298
+0.073423,298
+0.073679,298
+0.078404,298
+0.079920,298
diff --git a/buch/papers/multiplikation/code/meas/winograd.txt b/buch/papers/multiplikation/code/meas/winograd.txt
new file mode 100644
index 0000000..3a4d88b
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/winograd.txt
@@ -0,0 +1,11 @@
+0.000000,2
+0.000001,4
+0.000002,8
+0.000011,16
+0.000091,32
+0.000663,64
+0.005182,128
+0.046038,256
+0.533429,512
+4.257458,1024
+130.378038,2048
diff --git a/buch/papers/multiplikation/code/meas_1024.pdf b/buch/papers/multiplikation/code/meas_1024.pdf
new file mode 100644
index 0000000..fd0a108
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_1024.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_1024.txt b/buch/papers/multiplikation/code/meas_1024.txt
new file mode 100644
index 0000000..c5ce619
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_1024.txt
@@ -0,0 +1,6 @@
+2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02 2.560000000000000000e+02 5.120000000000000000e+02 1.024000000000000000e+03
+1.502037048339843750e-05 6.628036499023437500e-05 4.780292510986328125e-04 2.713203430175781250e-03 2.115225791931152344e-02 1.758832931518554688e-01 1.338865518569946289e+00 1.009106445312500000e+01 8.192077994346618652e+01 7.835870332717895508e+02
+6.675720214843750000e-06 7.200241088867187500e-05 5.540847778320312500e-04 3.144979476928710938e-03 2.545046806335449219e-02 2.083067893981933594e-01 1.659256219863891602e+00 1.319160294532775879e+01 1.046767003536224365e+02 9.679818902015686035e+02
+1.668930053710937500e-05 1.628398895263671875e-04 7.648468017578125000e-04 4.426956176757812500e-03 2.922415733337402344e-02 1.800994873046875000e-01 1.286747694015502930e+00 9.412034273147583008e+00 6.263725924491882324e+01 4.427414393424987793e+02
+2.408027648925781250e-05 8.463859558105468750e-05 4.761219024658203125e-04 2.339839935302734375e-03 1.682758331298828125e-02 1.299476623535156250e-01 1.048770904541015625e+00 8.114667415618896484e+00 6.373566389083862305e+01 6.489995403289794922e+02
+1.573562622070312500e-05 7.152557373046875000e-06 7.152557373046875000e-06 2.074241638183593750e-05 5.388259887695312500e-05 6.365776062011718750e-05 3.257751464843750000e-03 1.396179199218750000e-03 3.274917602539062500e-03 2.186250686645507812e-02
diff --git a/buch/papers/multiplikation/code/meas_128.pdf b/buch/papers/multiplikation/code/meas_128.pdf
new file mode 100644
index 0000000..ed1ec63
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_128.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_128.txt b/buch/papers/multiplikation/code/meas_128.txt
new file mode 100644
index 0000000..976bbdf
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_128.txt
@@ -0,0 +1,6 @@
+2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02
+1.978874206542968750e-05 1.134872436523437500e-04 4.298686981201171875e-04 2.815246582031250000e-03 2.616596221923828125e-02 1.767718791961669922e-01 1.293319463729858398e+00
+6.675720214843750000e-06 1.251697540283203125e-04 4.818439483642578125e-04 3.490447998046875000e-03 2.465796470642089844e-02 2.014584541320800781e-01 1.630620479583740234e+00
+2.408027648925781250e-05 2.126693725585937500e-04 1.172780990600585938e-03 4.364490509033203125e-03 3.148293495178222656e-02 2.010228633880615234e-01 1.429297924041748047e+00
+2.932548522949218750e-05 1.466274261474609375e-04 4.270076751708984375e-04 2.837419509887695312e-03 1.723575592041015625e-02 1.308519840240478516e-01 1.015527009963989258e+00
+3.337860107421875000e-05 1.096725463867187500e-05 9.536743164062500000e-06 3.600120544433593750e-05 2.837181091308593750e-05 5.912780761718750000e-05 1.981019973754882812e-03
diff --git a/buch/papers/multiplikation/code/meas_16.pdf b/buch/papers/multiplikation/code/meas_16.pdf
new file mode 100644
index 0000000..c2c3834
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_16.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_16.txt b/buch/papers/multiplikation/code/meas_16.txt
new file mode 100644
index 0000000..69f85bd
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_16.txt
@@ -0,0 +1,6 @@
+2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01
+1.549720764160156250e-05 6.914138793945312500e-05 5.259513854980468750e-04 2.841711044311523438e-03
+6.914138793945312500e-06 7.557868957519531250e-05 4.496574401855468750e-04 3.437519073486328125e-03
+1.883506774902343750e-05 1.499652862548828125e-04 8.952617645263671875e-04 4.348516464233398438e-03
+2.694129943847656250e-05 1.082420349121093750e-04 4.131793975830078125e-04 2.580165863037109375e-03
+1.621246337890625000e-05 1.120567321777343750e-05 9.298324584960937500e-06 1.239776611328125000e-05
diff --git a/buch/papers/multiplikation/code/meas_256.pdf b/buch/papers/multiplikation/code/meas_256.pdf
new file mode 100644
index 0000000..5f049dc
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_256.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_256.txt b/buch/papers/multiplikation/code/meas_256.txt
new file mode 100644
index 0000000..15035c6
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_256.txt
@@ -0,0 +1,6 @@
+2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02 2.560000000000000000e+02
+1.049041748046875000e-05 5.340576171875000000e-05 5.936622619628906250e-04 2.707719802856445312e-03 2.246093750000000000e-02 1.631326675415039062e-01 1.335460901260375977e+00 1.052024245262145996e+01
+4.768371582031250000e-06 5.531311035156250000e-05 8.208751678466796875e-04 3.099203109741210938e-03 2.490711212158203125e-02 2.070860862731933594e-01 1.739669799804687500e+00 1.384817218780517578e+01
+1.478195190429687500e-05 1.132488250732421875e-04 5.970001220703125000e-04 3.906726837158203125e-03 3.041696548461914062e-02 2.000186443328857422e-01 1.392681598663330078e+00 9.388872385025024414e+00
+1.716613769531250000e-05 6.866455078125000000e-05 5.314350128173828125e-04 2.688407897949218750e-03 1.695108413696289062e-02 1.297233104705810547e-01 1.087257385253906250e+00 8.699601650238037109e+00
+2.336502075195312500e-05 4.529953002929687500e-06 8.106231689453125000e-06 4.291534423828125000e-05 6.008148193359375000e-05 8.988380432128906250e-05 1.647472381591796875e-04 4.460811614990234375e-04
diff --git a/buch/papers/multiplikation/code/meas_32.pdf b/buch/papers/multiplikation/code/meas_32.pdf
new file mode 100644
index 0000000..94c3731
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_32.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_32.txt b/buch/papers/multiplikation/code/meas_32.txt
new file mode 100644
index 0000000..afdb6d5
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_32.txt
@@ -0,0 +1,6 @@
+2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01
+1.215934753417968750e-05 5.459785461425781250e-05 3.700256347656250000e-04 3.249406814575195312e-03 1.996850967407226562e-02
+4.529953002929687500e-06 5.650520324707031250e-05 4.577636718750000000e-04 4.029273986816406250e-03 2.444481849670410156e-02
+1.311302185058593750e-05 1.165866851806640625e-04 6.275177001953125000e-04 4.323244094848632812e-03 2.624726295471191406e-02
+1.835823059082031250e-05 6.890296936035156250e-05 3.914833068847656250e-04 2.423048019409179688e-03 1.761770248413085938e-02
+1.263618469238281250e-05 5.006790161132812500e-06 5.960464477539062500e-06 1.144409179687500000e-05 3.600120544433593750e-05
diff --git a/buch/papers/multiplikation/code/meas_512.pdf b/buch/papers/multiplikation/code/meas_512.pdf
new file mode 100644
index 0000000..4d8f04b
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_512.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_512.txt b/buch/papers/multiplikation/code/meas_512.txt
new file mode 100644
index 0000000..1b2089d
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_512.txt
@@ -0,0 +1,6 @@
+2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02 2.560000000000000000e+02 5.120000000000000000e+02
+1.358985900878906250e-05 5.817413330078125000e-05 4.582405090332031250e-04 3.082036972045898438e-03 2.020335197448730469e-02 1.636352539062500000e-01 1.280331134796142578e+00 1.093638324737548828e+01 8.666778349876403809e+01
+6.198883056640625000e-06 6.270408630371093750e-05 4.820823669433593750e-04 3.279924392700195312e-03 2.462601661682128906e-02 2.034928798675537109e-01 1.630282878875732422e+00 1.372955965995788574e+01 1.104150602817535400e+02
+1.621246337890625000e-05 1.292228698730468750e-04 6.661415100097656250e-04 4.615545272827148438e-03 2.836179733276367188e-02 1.843333244323730469e-01 1.310264825820922852e+00 9.937873125076293945e+00 6.667592120170593262e+01
+2.217292785644531250e-05 7.486343383789062500e-05 4.060268402099609375e-04 2.455949783325195312e-03 1.685857772827148438e-02 1.299629211425781250e-01 1.173750638961791992e+00 8.648802757263183594e+00 6.876212453842163086e+01
+2.431869506835937500e-05 5.006790161132812500e-06 6.914138793945312500e-06 8.106231689453125000e-06 2.717971801757812500e-05 6.461143493652343750e-05 1.480579376220703125e-04 5.280971527099609375e-04 3.390312194824218750e-03
diff --git a/buch/papers/multiplikation/code/meas_64.pdf b/buch/papers/multiplikation/code/meas_64.pdf
new file mode 100644
index 0000000..3a90949
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_64.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_64.txt b/buch/papers/multiplikation/code/meas_64.txt
new file mode 100644
index 0000000..ae6ff9b
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_64.txt
@@ -0,0 +1,6 @@
+2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01
+1.645088195800781250e-05 7.295608520507812500e-05 3.807544708251953125e-04 2.672195434570312500e-03 2.010774612426757812e-02 1.662156581878662109e-01
+7.390975952148437500e-06 7.843971252441406250e-05 4.265308380126953125e-04 3.107070922851562500e-03 2.457642555236816406e-02 2.122807502746582031e-01
+1.931190490722656250e-05 1.568794250488281250e-04 7.593631744384765625e-04 3.937005996704101562e-03 3.596329689025878906e-02 2.131938934326171875e-01
+2.622604370117187500e-05 9.226799011230468750e-05 3.504753112792968750e-04 2.469539642333984375e-03 1.652932167053222656e-02 1.281068325042724609e-01
+1.788139343261718750e-05 7.152557373046875000e-06 6.914138793945312500e-06 1.120567321777343750e-05 2.884864807128906250e-05 6.914138793945312500e-05
diff --git a/buch/papers/multiplikation/code/meas_8.pdf b/buch/papers/multiplikation/code/meas_8.pdf
new file mode 100644
index 0000000..16d177d
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_8.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_8.txt b/buch/papers/multiplikation/code/meas_8.txt
new file mode 100644
index 0000000..6cf6515
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_8.txt
@@ -0,0 +1,6 @@
+2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00
+1.144409179687500000e-05 5.412101745605468750e-05 3.845691680908203125e-04
+4.768371582031250000e-06 5.698204040527343750e-05 5.209445953369140625e-04
+1.382827758789062500e-05 1.180171966552734375e-04 6.978511810302734375e-04
+1.859664916992187500e-05 7.033348083496093750e-05 3.886222839355468750e-04
+1.525878906250000000e-05 4.529953002929687500e-06 7.390975952148437500e-06
diff --git a/buch/papers/multiplikation/code/test.tex b/buch/papers/multiplikation/code/test.tex
new file mode 100644
index 0000000..40ea239
--- /dev/null
+++ b/buch/papers/multiplikation/code/test.tex
@@ -0,0 +1,92 @@
+% This file was created by tikzplotlib v0.9.8.
+\begin{tikzpicture}
+
+\definecolor{color0}{rgb}{0.886274509803922,0.290196078431373,0.2}
+\definecolor{color1}{rgb}{0.203921568627451,0.541176470588235,0.741176470588235}
+\definecolor{color2}{rgb}{0.596078431372549,0.556862745098039,0.835294117647059}
+\definecolor{color3}{rgb}{0.984313725490196,0.756862745098039,0.368627450980392}
+
+\begin{axis}[
+axis background/.style={fill=white!89.8039215686275!black},
+axis line style={white},
+legend cell align={left},
+legend style={
+ fill opacity=0.8,
+ draw opacity=1,
+ text opacity=1,
+ at={(0.03,0.97)},
+ anchor=north west,
+ draw=white!80!black,
+ fill=white!89.8039215686275!black
+},
+tick align=outside,
+tick pos=left,
+x grid style={white},
+xlabel={n},
+xmajorgrids,
+xmin=-4.3, xmax=134.3,
+xtick style={color=white!33.3333333333333!black},
+y grid style={white},
+ylabel={time (s)},
+ymajorgrids,
+ymin=-0.0834965705871582, ymax=1.75356960296631,
+ytick style={color=white!33.3333333333333!black}
+]
+\addplot [line width=2pt, color0]
+table {%
+2 1.57356262207031e-05
+4 5.96046447753906e-05
+8 0.000428915023803711
+16 0.00276041030883789
+32 0.0217020511627197
+64 0.160412073135376
+128 1.3419406414032
+};
+\addlegendentry{Standard MM}
+\addplot [line width=2pt, color1]
+table {%
+2 6.43730163574219e-06
+4 6.69956207275391e-05
+8 0.00048065185546875
+16 0.00336766242980957
+32 0.0257236957550049
+64 0.231612205505371
+128 1.67006659507751
+};
+\addlegendentry{Divide and conquer MM}
+\addplot [line width=2pt, color2]
+table {%
+2 2.90870666503906e-05
+4 0.000133275985717773
+8 0.000703096389770508
+16 0.00453472137451172
+32 0.0282893180847168
+64 0.181003332138062
+128 1.40816903114319
+};
+\addlegendentry{Strassen MM}
+\addplot [line width=2pt, white!46.6666666666667!black]
+table {%
+2 2.19345092773438e-05
+4 9.01222229003906e-05
+8 0.000406503677368164
+16 0.00258469581604004
+32 0.0171687602996826
+64 0.126588344573975
+128 1.02698183059692
+};
+\addlegendentry{Winograd MM}
+\addplot [line width=2pt, color3]
+table {%
+2 1.45435333251953e-05
+4 1.1444091796875e-05
+8 7.39097595214844e-06
+16 1.28746032714844e-05
+32 2.83718109130859e-05
+64 0.000111103057861328
+128 0.000159025192260742
+};
+\addlegendentry{np MM}
+\end{axis}
+
+\end{tikzpicture}
diff --git a/buch/papers/multiplikation/einlteung.tex b/buch/papers/multiplikation/einlteung.tex
new file mode 100755
index 0000000..bc4bfcf
--- /dev/null
+++ b/buch/papers/multiplikation/einlteung.tex
@@ -0,0 +1,52 @@
+%
+% einleitung.tex -- Beispiel-File für die Einleitung
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Einleitung \label{multiplikation:section:einleitung}}
+\rhead{Einleitung}
+
+Die Multiplikation zweier Matrizen ist eine wichtige Operation die in verschiedensten Teilen der Mathematik Anwendung findet.
+Die Beschreibung der Multiplikation aus der Definition 2.10 (\textcolor{blue} {Kein Hyperlink zu einer Definition?)}:
+
+Eine $m\times n$-Matrix $\mathbf{A}\in M_{m\times n}(\Bbbk)$ und eine
+$n\times p$-Matrix $\mathbf{B}\in M_{n\times l}(\Bbbk)$ haben als Produkt
+eine $n\times l$-Matrix $\mathbf{C}=\mathbf{AB}\in M_{n\times l}(\Bbbk)$ mit den
+Koeffizienten
+\begin{equation}
+c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.
+\label{multiplikation:eq:MM}
+\end{equation}
+Grafisch kann die Matrizenmultiplikation $AB=C$ wie in \ref{multiplikation:fig:mm_viz} visualisiert werden.
+\begin{figure}
+ \center
+ \includegraphics[]{papers/multiplikation/images/mm_visualisation}
+ \caption{Matrizen Multiplikation}
+ \label{multiplikation:fig:mm_viz}
+\end{figure}
+Im Fall einer Matrizengr\"osse von $2\times 2$
+\begin{equation}
+ \begin{bmatrix}
+A_{11} & A_{12}\\
+A_{21} & A_{22}
+\end{bmatrix}
+\begin{bmatrix}
+B_{11} & B_{12}\\
+B_{21} & B_{22}
+\end{bmatrix}
+=
+\begin{bmatrix}
+C_{11} & C_{12}\\
+C_{21} & C_{22}
+\end{bmatrix}
+\end{equation}
+kann die Gleichung der einzelnen Terme
+\begin{equation} \label{multiplikation:eq:MM_exp}
+\begin{split}
+C_{11} &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21}\\
+C_{12} &= A_{11} \cdot B_{12} + A_{12} \cdot B_{22}\\
+C_{21} &= A_{21} \cdot B_{11} + A_{22} \cdot B_{21}\\
+C_{22} &= A_{21} \cdot B_{12} + A_{22} \cdot B_{22}
+\end{split}
+\end{equation}
+explizit geschrieben werden.
diff --git a/buch/papers/multiplikation/images/bigo.pdf b/buch/papers/multiplikation/images/bigo.pdf
new file mode 100644
index 0000000..dfa2ba4
--- /dev/null
+++ b/buch/papers/multiplikation/images/bigo.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/bigo.tex b/buch/papers/multiplikation/images/bigo.tex
new file mode 100644
index 0000000..e3293e4
--- /dev/null
+++ b/buch/papers/multiplikation/images/bigo.tex
@@ -0,0 +1,107 @@
+\documentclass[border=10pt,varwidth]{standalone}
+\usepackage[left=25mm,right=25mm,top=25mm,bottom=25mm]{geometry}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{times}
+\usepackage{geometry}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{mathrsfs}
+\usepackage{amsfonts}
+\usepackage{amsthm}
+\usepackage{lipsum}
+\usepackage{amscd}
+\usepackage{graphicx}
+\usepackage{fancyhdr}
+\usepackage{textcomp}
+\usepackage{pgfplots}
+\usepackage{txfonts}
+\usepackage[all]{xy}
+\usepackage{paralist}
+\usepackage[colorlinks=true]{hyperref}
+\usepackage{array}
+\usepackage{tikz}
+\usepackage{slashed}
+\usepackage{pdfpages}
+\usepackage{cite}
+\usepackage{url}
+\usepackage{amsmath,amsfonts,amssymb}
+\usepackage{tikz}
+\usetikzlibrary{arrows,matrix,positioning}
+\usetikzlibrary{overlay-beamer-styles}
+\usetikzlibrary{matrix.skeleton}
+\usetikzlibrary{automata,positioning}
+\usetikzlibrary{decorations.text}
+\usepackage{listings}
+\usepackage{multirow}
+\usepackage{color}
+
+\begin{document}
+
+\begin{tikzpicture}
+\begin{axis}[
+ axis lines = left,
+ xlabel = $n$ (Data Input),
+ ylabel = {$t$ (time)},
+ legend pos=north east,
+ very thick,
+ ymax = 500,
+ yticklabels=\empty,
+ xticklabels=\empty,
+ scale only axis=true,
+ width=12cm, height=6cm,
+ ]
+\addplot [
+ domain= 1:20,
+ samples=100,
+ color=red,
+]
+{1};
+\addlegendentry{$\mathcal{O}(1)$}
+\addplot [
+ domain= 1:20,
+ samples=100,
+ color=green,
+]
+{x};
+\addlegendentry{$\mathcal{O}(n)$}
+\addplot [
+ domain= 1:20,
+ samples=100,
+ color=blue,
+]
+{x^2};
+\addlegendentry{$\mathcal{O}(n^2)$}
+\addplot [
+ domain= 1:10,
+ samples=100,
+ color=purple,
+]
+{x^3};
+\addlegendentry{$\mathcal{O}(n^3)$}
+\addplot [
+ domain= 1:10,
+ samples=100,
+ color=black,
+]
+{exp(x)};
+\addlegendentry{$\mathcal{O}(e^n)$}
+\addplot [
+ domain= 1:20,
+ samples=100,
+ color=orange,
+]
+{log2(x)};
+\addlegendentry{$\mathcal{O}(\log n)$}
+
+\addplot [
+ domain= 1:20,
+ samples=100,
+ color=gray,
+]
+{x*log2(x)};
+\addlegendentry{$\mathcal{O}(n \log n)$}
+\end{axis}
+\end{tikzpicture}
+
+\end{document}
diff --git a/buch/papers/multiplikation/images/mm_visualisation.pdf b/buch/papers/multiplikation/images/mm_visualisation.pdf
new file mode 100644
index 0000000..9309df1
--- /dev/null
+++ b/buch/papers/multiplikation/images/mm_visualisation.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/mm_visualisation.tex b/buch/papers/multiplikation/images/mm_visualisation.tex
new file mode 100644
index 0000000..6e8f789
--- /dev/null
+++ b/buch/papers/multiplikation/images/mm_visualisation.tex
@@ -0,0 +1,45 @@
+
+ \begin{tikzpicture}[ampersand replacement=\&]
+
+ \matrix (A)[matrix of math nodes, label skeleton, left delimiter=[,right delimiter={]}] at (0,0)
+ {
+ A_{1,1} \& \cdots \& A_{1,k} \& \cdots \& A_{1,n} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ A_{i,1} \& \cdots \& A_{i,k} \& \cdots \& A_{i,n} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ A_{m,1} \& \cdots \& A_{m,k} \& \cdots \& A_{m,n} \\
+ };
+
+ \node [right=0.1 of A] (mul) {$\cdot$};
+
+
+ \matrix (B)[right=0.1 of mul, matrix of math nodes, label skeleton, left delimiter=[,right delimiter={]}]
+ {
+ B_{1,1} \& \cdots \& B_{1,j} \& \cdots \& B_{1,p} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ B_{k,1} \& \cdots \& B_{k,j} \& \cdots \& B_{k,p} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ B_{n,1} \& \cdots \& B_{n,j} \& \cdots \& B_{n,p} \\
+ };
+
+ \node [right=0.1 of B] (eq) {$=$};
+
+ \matrix (C)[right=0.1 of eq, matrix of math nodes, label skeleton, left delimiter=[,right delimiter={]}]
+ {
+ C_{1,1} \& \cdots \& C_{1,j} \& \cdots \& C_{1,p} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ C_{i,1} \& \cdots \& C_{i,j} \& \cdots \& C_{i,p} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ C_{m,1} \& \cdots \& C_{m,j} \& \cdots \& C_{m,p} \\
+ };
+
+
+ \node[opacity=0.5, rounded corners=2pt, inner sep=-1pt, fill=green, fit=(A-3-1)(A-3-5)] {};
+ \node[opacity=0.5, rounded corners=2pt, inner sep=-1pt, fill=blue, fit=(B-1-3)(B-5-3)] {};
+ \node[opacity=0.5, rounded corners=2pt, inner sep=-1pt, fill=red, fit=(C-3-3)] {};
+
+
+ \end{tikzpicture}
+
+\end{document}
+
diff --git a/buch/papers/multiplikation/images/strassen.pdf b/buch/papers/multiplikation/images/strassen.pdf
new file mode 100644
index 0000000..9899dcb
--- /dev/null
+++ b/buch/papers/multiplikation/images/strassen.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/strassen.tex b/buch/papers/multiplikation/images/strassen.tex
new file mode 100644
index 0000000..797772b
--- /dev/null
+++ b/buch/papers/multiplikation/images/strassen.tex
@@ -0,0 +1,140 @@
+\documentclass[border=10pt]{standalone}
+\usepackage[left=25mm,right=25mm,top=25mm,bottom=25mm]{geometry}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{times}
+\usepackage{geometry}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{mathrsfs}
+\usepackage{amsfonts}
+\usepackage{amsthm}
+\usepackage{lipsum}
+\usepackage{amscd}
+\usepackage{graphicx}
+\usepackage{fancyhdr}
+\usepackage{textcomp}
+\usepackage{pgfplots}
+\usepackage{txfonts}
+\usepackage[all]{xy}
+\usepackage{paralist}
+\usepackage[colorlinks=true]{hyperref}
+\usepackage{array}
+\usepackage{tikz}
+\usepackage{slashed}
+\usepackage{pdfpages}
+\usepackage{cite}
+\usepackage{url}
+\usepackage{amsmath,amsfonts,amssymb}
+\usepackage{tikz}
+\usetikzlibrary{arrows,matrix,positioning}
+\usetikzlibrary{overlay-beamer-styles}
+\usetikzlibrary{matrix.skeleton}
+\usetikzlibrary{automata,positioning}
+\usetikzlibrary{decorations.text}
+\usepackage{listings}
+\usepackage{multirow}
+\usepackage{color}
+
+\begin{document}
+
+\begin{tikzpicture}[ampersand replacement=\&]
+
+\foreach \i in {1,...,4}
+{
+ \small{
+ \matrix (X\i)[matrix of math nodes,nodes in empty cells,
+ nodes = {draw, minimum size=10mm,
+ anchor=center,
+ inner sep=0pt, outer sep=0pt},
+ column sep=-\pgflinewidth,
+ row sep=-\pgflinewidth,
+ ] at (0,-\i*5)
+ {
+ A_{11}B_{11} \& A_{12}B_{11} \& A_{21}B_{11} \& A_{22}B_{11} \\
+ A_{11}B_{21} \& A_{12}B_{21} \& A_{21}B_{21} \& A_{22}B_{21} \\
+ A_{11}B_{11} \& A_{12}B_{12} \& A_{21}B_{12} \& A_{22}B_{12} \\
+ A_{11}B_{22} \& A_{12}B_{22} \& A_{21}B_{22} \& A_{22}B_{22} \\
+ };}
+
+ \foreach \j in {1,...,7}
+ {
+ \matrix(M\i\j)[matrix of math nodes,nodes in empty cells,
+ nodes = {draw, minimum size=10mm,
+ anchor=center,
+ inner sep=0pt, outer sep=0pt},
+ column sep=-\pgflinewidth,
+ row sep=-\pgflinewidth,
+ ] at (\j*5,-\i*5)
+ {
+ \& \& \& \\
+ \& \& \& \\
+ \& \& \& \\
+ \& \& \& \\
+ };
+ }
+}
+
+\huge{
+ \node at (-3,-20) {$C_{22}=$};
+ \node at (-3,-15) {$C_{21}=$} ;
+ \node at (-3,-10) {$C_{12}=$} ;
+ \node at (-3,-5) {$C_{11}=$} ;
+
+ \node at (5,-2) {I};
+ \node at (10,-2) {II};
+ \node at (15,-2) {III};
+ \node at (20,-2) {IV};
+ \node at (25,-2) {V};
+ \node at (30,-2) {VI};
+ \node at (35,-2) {VII};
+}
+
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X1-1-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X1-2-2)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X2-3-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X2-4-2)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X3-1-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X3-2-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X4-3-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X4-4-4)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-4-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-1-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M14-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M14-2-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M15-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M15-4-2)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M17-2-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M17-4-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M17-2-2)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M17-4-2)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M23-3-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M23-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M25-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M25-4-2)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M32-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M32-1-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M34-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M34-2-4)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-4-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-1-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M42-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M42-1-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M43-3-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M43-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M46-1-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M46-1-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M46-3-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M46-3-1)] {};
+\end{tikzpicture}
+
+\end{document}
diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex
new file mode 100755
index 0000000..83be814
--- /dev/null
+++ b/buch/papers/multiplikation/loesungsmethoden.tex
@@ -0,0 +1,309 @@
+%
+% teil2.tex -- Beispiel-File für teil2
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+\section{L\"osungsmethoden}
+\rhead{L\"osungsmethoden}
+
+In diesem Abschnitt werden mehrere Algorithmen zur Berechnung der Matrizenmultiplikation vorgestellt, auch werden Libraries zur automatisierten Verwendung von vordefinierten Algorithmen gezeigt.
+
+\subsection{Standard Algorithmus}
+
+Der Standard Methode kann im Algorithmus \ref{multiplikation:alg:smm} entnommen werden.
+Hierf\"ur wurde die Gleichung \eqref{multiplikation:eq:MM} direkt implementiert.
+Die \texttt{For i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{For j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{For k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten.
+
+\begin{algorithm}\caption{Matrix Multiplication}
+ \label{multiplikation:alg:smm}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}[1]
+ \Function{MM}{$\textbf{A}, \textbf{B}$}
+ \State $sum \gets 0$
+ \State $n \gets columns(\textbf{A}) == rows(\textbf{B})$
+ \State $m \gets rows(\textbf{A})$
+ \State $p \gets columns(\textbf{B})$
+ \State $\textbf{C} \gets zeros(m,p)$
+ \For{$i = 0,1,2 \dots,m-1$}
+ \For{$j = 0,1,2 \dots,p-1$}
+ \State $sum \gets 0$
+ \For{$k = 0,1,2 \dots,n-1$}
+ \State $sum \gets sum + \textbf{A}[i][k] \cdot \textbf{B}[k][j]$
+ \EndFor
+ \State $\textbf{C}[i][j] \gets sum $
+ \EndFor
+ \EndFor
+ \State \textbf{return} $\textbf{C}$
+ \EndFunction
+ \end{algorithmic}
+\end{algorithm}
+
+Die Laufzeit dieser Struktur mit drei \texttt{For} Schleifen ist $\mathcal{O}(n^3)$
+
+\subsubsection{Divide and Conquer Methode}
+
+F\"ur gewisse Algorithmen f\"uhren \textit{Divide and Conquer} Ans\"atze zu markant besseren Laufzeiten.
+Das bekannteste Beispiel ist wohl die \textit{Fast Fourier Transform} wobei die Laufzeit von $\mathcal{O}(n^2)$ zu $\mathcal{O}(n \log n)$ verbessert werden kann.
+
+Die Matrizenmultiplikation kann ebenfalls mit solch einem Ansatz berechnet werden.
+Zur vereinfachten Veranschaulichung kann die Situation, mit $\mathbf{A}$ und $\mathbf{B}$ der gr\"osse $2^n \times 2^n$ verwendet werden.
+Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen der gr\"osse $2^{n-1} \times 2^{n-1}$
+\begin{equation}
+\mathbf{A}\mathbf{B}=
+\begin{bmatrix}
+\mathbf{A}_{11} & \mathbf{A}_{12}\\
+\mathbf{A}_{21} & \mathbf{A}_{22}
+\end{bmatrix}
+\begin{bmatrix}
+\mathbf{B}_{11} & \mathbf{B}_{12}\\
+\mathbf{B}_{21} & \mathbf{B}_{22}
+\end{bmatrix}
+=
+\begin{bmatrix}
+\mathbf{C}_{11} & \mathbf{C}_{12}\\
+\mathbf{C}_{21} & \mathbf{C}_{22}
+\end{bmatrix}
+\end{equation}
+aufgeteilt.
+Die Berechnung
+\begin{equation}
+\mathbf{C}_{ij} = \sum_{k=1}^n \mathbf{A}_{ik} \mathbf{B}_{kj}
+\label{multiplikation:eq:MM_block}
+\end{equation}
+ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, wobei hier f\"ur die Multiplikation die Matrizenmultiplikation verwendet wird.
+
+Der Algorithmus \ref{multiplikation:alg:devide_mm} zeigt den \textit{Divide and Conquer} Ansatz,
+Der Grundstruktur dieser Methode besteht aus dem rekursiven Aufruf der Funktion mit den erzeugten Blockmatrizen.
+Der rekursive Aufruf wird bis zu der Gr\"osse der Matrizen von $N = 2 \times 2$ durchgef\"uhrt.
+\begin{algorithm}\caption{Divide and Conquer Matrix Multiplication}
+ \setlength{\lineskip}{7pt}
+ \label{multiplikation:alg:devide_mm}
+ \begin{algorithmic}
+ \Function{MM}{$\textbf{A}, \textbf{B}, n$}
+ \If{$n = 2$}
+ \State $ \mathbf{C} \gets zeros(n, n)$
+ \State $C[0, 0] \gets A[0][0]\cdot B[0][0]+A[0][1]\cdot B[1][0]$
+ \State $C[0, 1] \gets A[0][0]\cdot B[0][1]+A[0][1]\cdot B[1][1]$
+ \State $C[1, 0] \gets A[1][0]\cdot B[0][0]+A[1][1]\cdot B[1][0]$
+ \State $C[1, 1] \gets A[1][0]\cdot B[0][1]+A[1][1]\cdot B[1][1]$
+ \Else
+ \State $ m \gets n/2$
+ \State $\mathbf{A11}, \mathbf{A12}, \mathbf{A21}, \mathbf{A22} \gets \mathbf{A}[:m][:m], \mathbf{A}[:m][m:], \mathbf{A}[m:][:m], \mathbf{A}[m:][m:]$
+ \State $\mathbf{B11}, \mathbf{B12}, \mathbf{B21}, \mathbf{B22} \gets \mathbf{B}[:m][:m], \mathbf{B}[:m][m:], \mathbf{B}[m:][:m], \mathbf{B}[m:][m:]$
+
+ \State $\mathbf{C11} \gets \text{MM}(\mathbf{A11}, \mathbf{B11},n) + \text{MM}(\mathbf{A12}, \mathbf{B21},n)$
+ \State $\mathbf{C12} \gets \text{MM}(\mathbf{A11},\mathbf{B12},n) + \text{MM}(\mathbf{A12}, \mathbf{B22},n)$
+ \State $\mathbf{C21} \gets \text{MM}(\mathbf{A21}, \mathbf{B11},n) + \text{MM}(\mathbf{A22}, \mathbf{B21},n)$
+ \State $\mathbf{C22} \gets \text{MM}(\mathbf{A21}, \mathbf{B12},n) + \text{MM}(\mathbf{A22}, \mathbf{B22},n)$
+ \State $ C \gets vstack(hstack(C11, C12), hstack(C21, C22))$
+
+ \EndIf
+ \State \textbf{return} $\textbf{C}$
+
+ \EndFunction
+ \end{algorithmic}
+\end{algorithm}
+
+Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} berechnet werden.
+Ohne auf diesen vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe der Funktion die Laufzeit.
+In diesem Fall wird die Funktion pro Durchlauf acht mal rekursiv aufgerufen, dies f\"uhrt
+\begin{equation} \label{multiplikation:eq:laufzeitdac}
+ \mathcal{T}(n) =
+ \begin{cases}
+ 1 & \text{if } n \leq 2\\
+ 8 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
+ \end{cases} = \mathcal{O}(n^{\log_2 8}) = \mathcal{O}(n^{3})
+\end{equation}
+zu einer kubischen Laufzeit.
+Die Addition zweier Matrizen $\mathbf{A} + \mathbf{B} = \mathbf{C}$ hat eine Laufzeit von $\mathcal{O}(n^{2})$ und kann neben dem dominierendem Anteil von $\mathcal{O}(n^{3})$ ignoriert werden.
+In diesem Fall hat der \textit{Divide and Conquer} Ansatz zu keiner Verbesserung gef\"uhrt.
+
+
+\subsection{Strassen's Algorithmus}
+
+Strassen's Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen.
+Die Grundlegenden Terme
+\begin{equation} \label{multiplikation:eq:strassen}
+\begin{split}
+\text{\textbf{P}} &= (\mathbf{A}_{11} + \mathbf{A}_{22}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{22}) \\
+\text{\textbf{Q}} &= (\mathbf{A}_{21} + \mathbf{A}_{22}) \cdot \mathbf{B}_{11} \\
+\text{\textbf{R}} &= \mathbf{A}_{11} \cdot (\mathbf{B}_{12}-\mathbf{B}_{22}) \\
+\text{\textbf{S}} &= \mathbf{A}_{22} \cdot (-\mathbf{B}_{11}+\mathbf{B}_{21}) \\
+\text{\textbf{T}} &= (\mathbf{A}_{11} + \mathbf{A}_{12}) \cdot \mathbf{B}_{22} \\
+\text{\textbf{U}} &= (-\mathbf{A}_{11} + \mathbf{A}_{21}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{12}) \\
+\text{\textbf{V}} &= (\mathbf{A}_{12} - \mathbf{A}_{22}) \cdot (\mathbf{B}_{21} + \mathbf{B}_{22})
+\end{split}
+\end{equation}
+aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Matrix $\mathbf{C}$
+\begin{equation} \label{multiplikation:eq:strassen2}
+\begin{split}
+\mathbf{C}_{11} &= \text{\textbf{P}} + \text{\textbf{S}} - \text{\textbf{T}} + \text{\textbf{V}} \\
+\mathbf{C}_{21} &= \text{\textbf{R}} + \text{\textbf{T}} \\
+\mathbf{C}_{12} &= \text{\textbf{Q}} + \text{\textbf{S}}\\
+\mathbf{C}_{22} &= \text{\textbf{P}} + \text{\textbf{R}} - \text{\textbf{Q}} + \text{\textbf{U}}
+\end{split}
+\end{equation}
+gebraucht.
+\begin{algorithm}\caption{Strassen Matrix Multiplication}
+ \label{multiplikation:alg:strassen}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{strassen}{$\textbf{A}, \textbf{B}, n$}
+ \If{$n = 2$}
+ \State $ \mathbf{C} \gets zeros((n, n))$
+ \State $P \gets (A[0][0]+A[1][1])\cdot( B[0][0]+B[1][1])$
+ \State $Q \gets (A[1][0]+A[1][1])\cdot B[0][0]$
+ \State $R \gets A[0][0]\cdot (B[0][1]-B[1][1])$
+ \State $S \gets A[1][1]\cdot (B[1][0]-B[0][0])$
+ \State $T \gets (A[0][0]+A[0][1])\cdot B[1][1]$
+ \State $U \gets (A[1][0]-A[0][0])\cdot (B[0][0]+B[0][1])$
+ \State $V \gets (A[0][1]-A[1][1])\cdot (B[1][0]+B[1][1])$
+ \State $C[0][0] \gets P+S-T+V$
+ \State $C[0][1] \gets R+T$
+ \State $C[1][0] \gets Q+S$
+ \State $C[1][1] \gets P+R-Q+U$
+ \Else
+ \State $ m \gets n/2$
+ \State $\mathbf{A11}, \mathbf{A12}, \mathbf{A21}, \mathbf{A22} \gets \mathbf{A}[:m][:m], \mathbf{A}[:m][m:], \mathbf{A}[m:][:m], \mathbf{A}[m:][m:]$
+ \State $\mathbf{B11}, \mathbf{B12}, \mathbf{B21}, \mathbf{B22} \gets \mathbf{B}[:m][:m], \mathbf{B}[:m][m:], \mathbf{B}[m:][:m], \mathbf{B}[m:][m:]$
+
+ \State $ \mathbf{P} \gets \text{strassen}((\mathbf{A11}+ \mathbf{A22}),(\mathbf{B11}+\mathbf{B22}), m)$
+ \State $ \mathbf{Q} \gets \text{strassen}((\mathbf{A21}+ \mathbf{A22}), \mathbf{B11},m)$
+ \State $ \mathbf{R} \gets \text{strassen}( \mathbf{A11},(\mathbf{B12}- \mathbf{B22}),m)$
+ \State $ \mathbf{S} \gets \text{strassen}( \mathbf{A22},(\mathbf{B21}- \mathbf{B11}),m)$
+ \State $ \mathbf{T} \gets \text{strassen}((\mathbf{A11}+ \mathbf{A12}), \mathbf{B22},m)$
+ \State $ \mathbf{U} \gets \text{strassen}((\mathbf{A21}- \mathbf{A11}),(\mathbf{B11}+\mathbf{B12}),m)$
+ \State $ \mathbf{V} \gets \text{strassen}((\mathbf{A12}- \mathbf{A22}),(\mathbf{B21}+\mathbf{B22}),m)$
+
+
+
+ \State $\mathbf{C11} \gets \mathbf{P+S-T+V}$
+ \State $\mathbf{C12} \gets \mathbf{R+T}$
+ \State $\mathbf{C21} \gets \mathbf{Q+S}$
+ \State $\mathbf{C22} \gets \mathbf{P+R-Q+U}$
+ \State $ C \gets vstack(hstack(C11, C12), hstack(C21, C22))$
+
+ \EndIf
+ \State \textbf{return} $\textbf{C}$
+
+ \EndFunction
+ \end{algorithmic}
+\end{algorithm}
+Strassens's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt.
+\begin{figure}
+ \center
+ \includegraphics[width=\linewidth]{papers/multiplikation/images/strassen.pdf}
+ \caption{Strassen's Algorithmus}
+ \label{multiplikation:fig:strassen}
+\end{figure}
+
+Die Funktion wird sieben mal rekursiv aufgerufen.
+Dies f\"uhrt zu einer Laufzeit von
+\begin{equation} \label{multiplikation:eq:laufzeitstrassen}
+\mathcal{T}(n) =
+\begin{cases}
+1 & \text{if } n \leq 2\\
+7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
+\end{cases} = \mathcal{O}(n^{\log_2 7}) = \mathcal{O}(n^{2.8074})
+\end{equation}
+und ist somit schneller als die Standard Methode.
+
+\subsection{Winograd's Algorithmus}
+
+Ein weiterer Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}.
+Er zeigte einen neuen Algorithmus f\"ur das
+\begin{equation}
+ \langle x,y \rangle = \sum_{i=1}^{n}x_i y_i
+\end{equation}
+Skalarprodukt.
+F\"ur jeden Vektor berechne
+\begin{equation}
+ \xi = \sum_{j=1}^{ \lfloor n/2 \rfloor} x_{2j-1} \cdot x_{2j}
+\end{equation}
+und
+\begin{equation}
+ \eta = \sum_{j=1}^{ \lfloor n/2 \rfloor} y_{2j-1} \cdot y_{2j}.
+\end{equation}
+Das Skalarprodukt ist nun geben mit
+\begin{equation}
+ \langle x,y \rangle =
+ \begin{cases}
+ \displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta & \text{if $n$ is even}\\
+ \displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta + x_n y_n & \text{if $n$ is odd}.
+ \end{cases}
+\end{equation}
+
+Angenommen man hat $N$ Vektoren mit welchen man $T$ Skalarprodukte berechnen m\"ochte.
+Daf\"ur werden $N\lfloor n/2 \rfloor + T\lfloor (n+1)/2 \rfloor $ Multiplikationen ben\"otigt.
+Eine Matrizenmultiplikation mit $\mathbf{A}$ einer $m \times n$ und $\mathbf{B}$ einer $n \times p$ Matrix, entspricht $N=m+p$ Vektoren mit welchen man $T=mp$ Skalarprodukte berechnet.
+Dies f\"uhrt zu
+\begin{equation}
+ (m+p) \left \lfloor \frac{n}{2} \right \rfloor + mp \left \lfloor \frac{n+1}{2} \right \rfloor = \frac{mn}{2} + \frac{pn}{2} + \frac{mpn}{2} + \frac{mp}{2}
+\end{equation}
+Multiplikationen.
+Wenn $m,p,n$ gross werden, dominiert der Term $\frac{mpn}{2}$ und es werden $\frac{mpn}{2}$ Multiplikationen ben\"otigt.
+Was im Vergleich zu den $mpn$ Multiplikation der Standard Methode nur die H\"alfte ist.
+Die Implementation kann im Algorithmus \ref{multiplikation:alg:winograd} entnommen werden.
+
+\begin{algorithm}\caption{Winograd Matrix Multiplication}
+ \setlength{\lineskip}{7pt}
+ \label{multiplikation:alg:winograd}
+ \begin{algorithmic}
+ \Function{Winograd}{$\textbf{A}, \textbf{B}, n$}
+ \State $ m \gets rows(\mathbf{A})$
+ \State $ n \gets columns(\mathbf{A}) == rows(\mathbf{B})$
+ \State $ p \gets columns(\mathbf{B})$
+ \State $ \mathbf{\xi} \gets zeros(m)$
+ \State $ \mathbf{\eta} \gets zeros(p)$
+
+
+ \For{$i = 0,1,2 \dots,m-1$}
+ \For{$j = 0,1,2 \dots,\lfloor n/2 \rfloor-1$}
+ \State $\xi[i] \gets \xi[i]+A[i,2 j]A[i,2 j+1]$
+ \EndFor
+ \EndFor
+
+ \For{$i = 0,1,2 \dots,p-1$}
+ \For{$j = 0,1,2 \dots,\lfloor n/2 \rfloor-1$}
+ \State $\eta[i] \gets \eta[i]+B[2 j,i]B[2 j+1,i]$
+ \EndFor
+ \EndFor
+
+ \If{$n \% 2 == 0$}
+ \For{$i = 0,1,2 \dots,m-1$}
+ \For{$j = 0,1,2 \dots,p-1$}
+ \State $ab \gets 0$
+ \For{$k = 0,1,2 \dots,\lfloor n/2 \rfloor-1$}
+ \State $ab \gets ab + (A[i,2k]+B[2k+1,j])(A[i,2k+1]+B[2k,j])$
+ \EndFor
+ \State $C[i,j] \gets ab-\eta[j]-\xi[i]$
+ \EndFor
+ \EndFor
+ \Else
+ \For{$i = 0,1,2 \dots,n-1$}
+ \For{$j = 0,1,2 \dots,n-1$}
+ \State $ab \gets 0$
+ \For{$k = 0,1,2 \dots,\lfloor n/2 \rfloor-1$}
+ \State $ab \gets ab + (A[i,2k]+B[2k+1,j])(A[i,2k+1]+B[2k,j])$
+ \EndFor
+ \State $C[i,j] \gets ab-\eta[j]-\xi[i]+A[i,-1]B[-1,j]$
+ \EndFor
+ \EndFor
+ \EndIf
+ \State \textbf{return} $\textbf{C}$
+
+ \EndFunction
+ \end{algorithmic}
+\end{algorithm}
+
+\subsection{Weitere Algorithmen}
+
+\textcolor{red}{TODO: BLAS}
+
+\section{Implementation}
+\rhead{Implementation}
+\textcolor{red}{TODO: messresultate}
+
+\section{Fazit}
+\rhead{Fazit}
diff --git a/buch/papers/multiplikation/main.tex b/buch/papers/multiplikation/main.tex
index 42f2768..8d0a8df 100644..100755
--- a/buch/papers/multiplikation/main.tex
+++ b/buch/papers/multiplikation/main.tex
@@ -1,36 +1,18 @@
+% !TEX root = ../../buch.tex
%
% main.tex -- Paper zum Thema <multiplikation>
%
-% (c) 2020 Hochschule Rapperswil
+% (c) 2021 Hochschule Rapperswil
%
-\chapter{Thema\label{chapter:multiplikation}}
-\lhead{Thema}
+\chapter{Schnelle Matrizen Multiplikation\label{chapter:multiplikation}}
+\lhead{FMM}
\begin{refsection}
-\chapterauthor{Hans Muster}
+\chapterauthor{Michael Schmid}
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
-\input{papers/multiplikation/teil0.tex}
-\input{papers/multiplikation/teil1.tex}
-\input{papers/multiplikation/teil2.tex}
-\input{papers/multiplikation/teil3.tex}
+\input{papers/multiplikation/einlteung.tex}
+\input{papers/multiplikation/problemstellung.tex}
+\input{papers/multiplikation/loesungsmethoden.tex}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/multiplikation/packages.tex b/buch/papers/multiplikation/packages.tex
index e4173c0..e4173c0 100644..100755
--- a/buch/papers/multiplikation/packages.tex
+++ b/buch/papers/multiplikation/packages.tex
diff --git a/buch/papers/multiplikation/papers/Strassen_GPU.pdf b/buch/papers/multiplikation/papers/Strassen_GPU.pdf
new file mode 100755
index 0000000..4ce7625
--- /dev/null
+++ b/buch/papers/multiplikation/papers/Strassen_GPU.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/papers/Strassen_original_1969.pdf b/buch/papers/multiplikation/papers/Strassen_original_1969.pdf
new file mode 100755
index 0000000..b647fc0
--- /dev/null
+++ b/buch/papers/multiplikation/papers/Strassen_original_1969.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/papers/assay_fast_MM.pdf b/buch/papers/multiplikation/papers/assay_fast_MM.pdf
new file mode 100755
index 0000000..3cd6b63
--- /dev/null
+++ b/buch/papers/multiplikation/papers/assay_fast_MM.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/papers/strassen_video.txt b/buch/papers/multiplikation/papers/strassen_video.txt
new file mode 100755
index 0000000..f84122c
--- /dev/null
+++ b/buch/papers/multiplikation/papers/strassen_video.txt
@@ -0,0 +1 @@
+https://www.youtube.com/watch?v=0oJyNmEbS4w
diff --git a/buch/papers/multiplikation/papers/winograd_original.pdf b/buch/papers/multiplikation/papers/winograd_original.pdf
new file mode 100755
index 0000000..a7aba36
--- /dev/null
+++ b/buch/papers/multiplikation/papers/winograd_original.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/presentation/common.tex b/buch/papers/multiplikation/presentation/common.tex
new file mode 100644
index 0000000..200d244
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/common.tex
@@ -0,0 +1,79 @@
+%
+% common.tex -- gemeinsame Definitionen
+%
+% (c) 2021 Michael Schmid, OST Campus Rapperswil
+%
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{epic}
+\usepackage{color}
+\usepackage{array}
+\usepackage{algorithm}
+\usepackage{ifthen}
+\usepackage{adjustbox}
+\usepackage[noend]{algpseudocode}
+\usepackage{neuralnetwork}
+\usepackage{amsmath}
+\usepackage{lmodern}
+\usepackage{tikz}
+\usetikzlibrary{decorations.text}
+\usetikzlibrary{arrows,matrix,positioning}
+\usetikzlibrary{overlay-beamer-styles}
+\usetikzlibrary{matrix.skeleton}
+\usepackage{pgfplots}
+\usepackage{listings}
+\usepackage{svg}
+
+\definecolor{codegreen}{rgb}{0,0.6,0}
+\definecolor{codegray}{rgb}{0.5,0.5,0.5}
+\definecolor{codepurple}{rgb}{0.58,0,0.82}
+\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
+\definecolor{ost}{rgb}{164,0,136}
+
+\lstdefinestyle{mystyle}{
+ backgroundcolor=\color{backcolour},
+ commentstyle=\color{codegreen},
+ keywordstyle=\color{magenta},
+ numberstyle=\tiny\color{codegray},
+ stringstyle=\color{codepurple},
+ basicstyle=\footnotesize,
+ breakatwhitespace=false,
+ breaklines=true,
+ captionpos=b,
+ keepspaces=true,
+ numbers=left,
+ numbersep=2pt,
+ showspaces=false,
+ showstringspaces=false,
+ showtabs=false,
+ tabsize=2
+}
+
+\usetikzlibrary{fit}
+\tikzset{%
+ highlight/.style={rectangle,rounded corners,fill=red!15,draw,fill opacity=0.5,inner sep=0pt}
+}
+\newcommand{\tikzmark}[2]{\tikz[overlay,remember picture,baseline=(#1.base)] \node (#1) {#2};}
+%
+\newcommand{\Highlight}[1][submatrix]{%
+ \tikz[overlay,remember picture]{
+ \node[highlight,fit=(left.north west) (right.south east)] (#1) {};}
+}
+
+
+\lstset{style=mystyle}
+\lstdefinestyle{mystyle}{
+ morekeywords={cwt,contourf,datetick}
+}
+
+
+\usetikzlibrary{shapes.geometric}
+\mode<beamer>{%
+\usetheme[]{Frankfurt}}
+\beamertemplatenavigationsymbolsempty
+\title[]{Fast Matrix Multiplication}
+\author[]{Michael Schmid}
+\usecolortheme[named=ost]{structure}
+
+\date[]{31.05.2021}
+\newboolean{presentation}
diff --git a/buch/papers/multiplikation/presentation/presentation.nav b/buch/papers/multiplikation/presentation/presentation.nav
new file mode 100644
index 0000000..2a01568
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/presentation.nav
@@ -0,0 +1,59 @@
+\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
+\headcommand {\beamer@framepages {1}{1}}
+\headcommand {\beamer@sectionpages {1}{1}}
+\headcommand {\beamer@subsectionpages {1}{1}}
+\headcommand {\sectionentry {1}{Big $\mathcal {O}$}{2}{Big $\mathcal {O}$}{0}}
+\headcommand {\slideentry {1}{0}{1}{2/4}{}{0}}
+\headcommand {\beamer@framepages {2}{4}}
+\headcommand {\slideentry {1}{0}{2}{5/6}{}{0}}
+\headcommand {\beamer@framepages {5}{6}}
+\headcommand {\slideentry {1}{0}{3}{7/8}{}{0}}
+\headcommand {\beamer@framepages {7}{8}}
+\headcommand {\slideentry {1}{0}{4}{9/10}{}{0}}
+\headcommand {\beamer@framepages {9}{10}}
+\headcommand {\slideentry {1}{0}{5}{11/12}{}{0}}
+\headcommand {\beamer@framepages {11}{12}}
+\headcommand {\slideentry {1}{0}{6}{13/13}{}{0}}
+\headcommand {\beamer@framepages {13}{13}}
+\headcommand {\slideentry {1}{0}{7}{14/14}{}{0}}
+\headcommand {\beamer@framepages {14}{14}}
+\headcommand {\beamer@sectionpages {2}{14}}
+\headcommand {\beamer@subsectionpages {2}{14}}
+\headcommand {\sectionentry {2}{Strassen's Algorithm}{15}{Strassen's Algorithm}{0}}
+\headcommand {\slideentry {2}{0}{1}{15/15}{}{0}}
+\headcommand {\beamer@framepages {15}{15}}
+\headcommand {\slideentry {2}{0}{2}{16/18}{}{0}}
+\headcommand {\beamer@framepages {16}{18}}
+\headcommand {\slideentry {2}{0}{3}{19/19}{}{0}}
+\headcommand {\beamer@framepages {19}{19}}
+\headcommand {\slideentry {2}{0}{4}{20/20}{}{0}}
+\headcommand {\beamer@framepages {20}{20}}
+\headcommand {\slideentry {2}{0}{5}{21/23}{}{0}}
+\headcommand {\beamer@framepages {21}{23}}
+\headcommand {\slideentry {2}{0}{6}{24/24}{}{0}}
+\headcommand {\beamer@framepages {24}{24}}
+\headcommand {\slideentry {2}{0}{7}{25/25}{}{0}}
+\headcommand {\beamer@framepages {25}{25}}
+\headcommand {\slideentry {2}{0}{8}{26/26}{}{0}}
+\headcommand {\beamer@framepages {26}{26}}
+\headcommand {\slideentry {2}{0}{9}{27/29}{}{0}}
+\headcommand {\beamer@framepages {27}{29}}
+\headcommand {\slideentry {2}{0}{10}{30/32}{}{0}}
+\headcommand {\beamer@framepages {30}{32}}
+\headcommand {\beamer@sectionpages {15}{32}}
+\headcommand {\beamer@subsectionpages {15}{32}}
+\headcommand {\sectionentry {3}{Measurements}{33}{Measurements}{0}}
+\headcommand {\slideentry {3}{0}{1}{33/40}{}{0}}
+\headcommand {\beamer@framepages {33}{40}}
+\headcommand {\slideentry {3}{0}{2}{41/49}{}{0}}
+\headcommand {\beamer@framepages {41}{49}}
+\headcommand {\beamer@sectionpages {33}{49}}
+\headcommand {\beamer@subsectionpages {33}{49}}
+\headcommand {\sectionentry {4}{How To Matrix Multiply}{50}{How To Matrix Multiply}{0}}
+\headcommand {\slideentry {4}{0}{1}{50/50}{}{0}}
+\headcommand {\beamer@framepages {50}{50}}
+\headcommand {\beamer@partpages {1}{50}}
+\headcommand {\beamer@subsectionpages {50}{50}}
+\headcommand {\beamer@sectionpages {50}{50}}
+\headcommand {\beamer@documentpages {50}}
+\headcommand {\gdef \inserttotalframenumber {21}}
diff --git a/buch/papers/multiplikation/presentation/presentation.pdf b/buch/papers/multiplikation/presentation/presentation.pdf
new file mode 100644
index 0000000..842e68c
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/presentation.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/presentation/presentation.snm b/buch/papers/multiplikation/presentation/presentation.snm
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/presentation.snm
diff --git a/buch/papers/multiplikation/presentation/presentation.tex b/buch/papers/multiplikation/presentation/presentation.tex
new file mode 100644
index 0000000..2a4af45
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/presentation.tex
@@ -0,0 +1,12 @@
+%
+% MathSem-yyy-xxx.tex -- Präsentation
+%
+% (c) 2021 Michael Schmid, OST campus Rapperswil
+%
+
+\documentclass[aspectratio=169]{beamer}
+\input{common.tex}
+%\setboolean{presentation}{true}
+\begin{document}
+\input{slides/slides.tex}
+\end{document}
diff --git a/buch/papers/multiplikation/presentation/slides/algo.tex b/buch/papers/multiplikation/presentation/slides/algo.tex
new file mode 100644
index 0000000..0c3d130
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/slides/algo.tex
@@ -0,0 +1,111 @@
+\begin{frame}
+ \frametitle{Algorithm}
+ \begin{columns}
+ \begin{column}{0.6\textwidth}
+ \begin{algorithm}[H]\caption{Square Matrix Multiplication}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}[1]
+ \Function{MM}{$\textbf{A}, \textbf{B}, \textbf{C}$}
+ \State $sum \gets 0$
+ \State $n \gets columns(\textbf{A}) == rows(\textbf{B})$
+ \State $m \gets rows(\textbf{A})$
+ \State $p \gets columns(\textbf{B})$
+
+ \For{$i = 0,1,2 \dots,m-1$}
+ \For{$j = 0,1,2 \dots,p-1$}
+ \State $sum \gets 0$
+ \For{$k = 0,1,2 \dots,n-1$}
+ \State $sum \gets sum + \textbf{A}[i][k] \cdot \textbf{B}[k][j]$
+ \EndFor
+ \State $\textbf{C}[i][j] \gets sum $
+ \EndFor
+ \EndFor
+ \State \textbf{return} $\textbf{C}$
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+\end{column}
+\begin{column}{0.4\textwidth}
+ \scalebox{0.6}{\parbox{\linewidth}{
+
+ \begin{tikzpicture}[ampersand replacement=\&,remember picture,overlay]
+
+ \matrix (A)[matrix of math nodes, label skeleton, left delimiter=[,right delimiter={]}] at (2,-2.8)
+ {
+ A_{1,1} \& \cdots \& A_{1,k} \& \cdots \& A_{1,n} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ A_{i,1} \& \cdots \& A_{i,k} \& \cdots \& A_{i,n} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ A_{m,1} \& \cdots \& A_{m,k} \& \cdots \& A_{m,n} \\
+ };
+
+ \matrix (B)[matrix of math nodes, label skeleton, left delimiter=[,right delimiter={]}] at (7.5,1.2)
+ {
+ B_{1,1} \& \cdots \& B_{1,j} \& \cdots \& B_{1,p} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ B_{k,1} \& \cdots \& B_{k,j} \& \cdots \& B_{k,p} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ B_{n,1} \& \cdots \& B_{n,j} \& \cdots \& B_{n,p} \\
+ };
+
+ \matrix (C)[matrix of math nodes, label skeleton, left delimiter=[,right delimiter={]}] at (7.5,-2.8)
+ {
+ C_{1,1} \& \cdots \& C_{1,j} \& \cdots \& C_{1,p} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ C_{i,1} \& \cdots \& C_{i,j} \& \cdots \& C_{i,p} \\
+ \vdots \& \& \vdots \& \& \vdots \\
+ C_{m,1} \& \cdots \& C_{m,j} \& \cdots \& C_{m,p} \\
+ };
+
+
+ \begin{scope}[on background layer]
+ \node[opacity=0.5, rounded corners=2pt, inner sep=-1pt, fill=green, fit=(A-3-1)(A-3-5)] {};
+ \node[opacity=0.5, rounded corners=2pt, inner sep=-1pt, fill=blue, fit=(B-1-3)(B-5-3)] {};
+ \node[opacity=0.5, rounded corners=2pt, inner sep=-1pt, fill=red, fit=(C-3-3)] {};
+
+ \end{scope}
+
+
+
+
+ \end{tikzpicture}
+ }}
+ \end{column}
+\end{columns}
+\end{frame}
+
+
+\begin{frame}
+ \frametitle{Algorithm}
+
+\begin{columns}
+ \begin{column}{0.6\textwidth}
+\begin{algorithm}[H]\caption{Square Matrix Multiplication}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}[1]
+ \Function{MM}{$\textbf{A}, \textbf{B}, \textbf{C}$}
+ \State $sum \gets 0$
+ \State $n \gets columns(\textbf{A}) == rows(\textbf{B})$
+ \State $m \gets rows(\textbf{A})$
+ \State $p \gets columns(\textbf{B})$
+
+ \For{$i = 0,1,2 \dots,m-1$}
+ \For{$j = 0,1,2 \dots,p-1$}
+ \State $sum \gets 0$
+ \For{$k = 0,1,2 \dots,n-1$}
+ \State $sum \gets sum + \textbf{A}[i][k] \cdot \textbf{B}[k][j]$
+ \EndFor
+ \State $\textbf{C}[i][j] \gets sum $
+ \EndFor
+ \EndFor
+ \State \textbf{return} $\textbf{C}$
+ \EndFunction
+ \end{algorithmic}
+\end{algorithm}
+\end{column}
+\begin{column}{0.4\textwidth}
+\Huge$\mathcal{O}(n^3)$
+\end{column}
+\end{columns}
+
+\end{frame}
diff --git a/buch/papers/multiplikation/presentation/slides/bigO.tex b/buch/papers/multiplikation/presentation/slides/bigO.tex
new file mode 100644
index 0000000..d425da8
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/slides/bigO.tex
@@ -0,0 +1,251 @@
+
+\begin{frame}
+ \frametitle{Big $\mathcal{O}$ notation}
+\begin{itemize}
+ \item <1-> Time complexity of an algorithm
+ \item <2-> How many multiplications in a function
+ \item <3-> Drop Constants
+\end{itemize}
+\end{frame}
+
+
+\begin{frame}
+ \frametitle{Big $\mathcal{O}$ notation}
+ \onslide<1->{
+
+ \begin{algorithm}[H]\caption{Foo 1}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}[1]
+ \Function{foo}{$a, b$}
+ \State \textbf{return} $a+b$
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+}
+\onslide<2->{
+$\mathcal{O}(1)$
+ }
+\end{frame}
+
+\begin{frame}
+ \frametitle{Big $\mathcal{O}$ notation}
+ \onslide<1->{
+
+ \begin{algorithm}[H]\caption{Foo 2}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}[1]
+ \Function{foo}{$a, b$}
+ \State $ x \gets a+b $
+ \State $ y \gets a \cdot b $
+ \State \textbf{return} $x+y$
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+}
+\onslide<2->{
+$\mathcal{O}(1) + \mathcal{O}(1) = 2\mathcal{O}(1) = \mathcal{O}(1) $
+ }
+\end{frame}
+
+\begin{frame}
+ \frametitle{Big $\mathcal{O}$ notation}
+ \onslide<1->{
+
+ \begin{algorithm}[H]\caption{Foo 3}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}[1]
+ \Function{foo}{$\mathbf{A}, \mathbf{B}$,n}
+ \State $ sum \gets 0$
+ \For{$i = 0,1,2 \dots,n$}
+ \State $ sum \gets sum + A[i] \cdot B[i] $
+ \EndFor
+
+ \State \textbf{return} $sum$
+
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+}
+\onslide<2->{
+$\mathcal{O}(n)$
+ }
+\end{frame}
+
+\begin{frame}
+ \frametitle{Big $\mathcal{O}$ notation}
+ \onslide<1->{
+
+ \begin{algorithm}[H]\caption{Foo 4}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}[1]
+ \Function{foo}{$\mathbf{A}, \mathbf{B}$,n}
+ \State $ sum \gets 0$
+ \For{$i = 0,1,2 \dots,n$}
+ \For{$j = 0,1,2 \dots,n$}
+ \State $ sum \gets sum + A[i] \cdot B[j] $
+ \EndFor
+ \EndFor
+ \State \textbf{return} $sum$
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+}
+\onslide<2->{
+$\mathcal{O}(n^2)$
+ }
+\end{frame}
+
+% \begin{frame}
+% \frametitle{Big $\mathcal{O}$ notation}
+% \onslide<1->{
+%
+% \begin{algorithm}[H]\caption{Fibonacci}
+% \setlength{\lineskip}{7pt}
+% \begin{algorithmic}[1]
+% \Function{fib}{$n$}
+% \If{$n <= 1$}
+% \State \textbf{return} $1$
+% \Else
+% \State \textbf{return} fib($n-1$) + fib($n-2$)
+% \EndIf
+%
+% \EndFunction
+% \end{algorithmic}
+% \end{algorithm}
+% }
+% \onslide<2->{
+% \[
+% \langle x,y \rangle =
+% \begin{cases}
+% \displaystyle $\mathcal{O}(1)$ & \text{if $n \leq 2$}\\
+% \displaystyle $ 2 \mathcal{T}(\frac{n}{2})$ & \text{if $n > 2$}
+% \end{cases}
+% \] }
+% \end{frame}
+
+
+\begin{frame}
+ \frametitle{Big $\mathcal{O}$ notation}
+\begin{tikzpicture}
+\begin{axis}[
+ axis lines = left,
+ xlabel = $n$ (Data Input),
+ ylabel = {$t$ (time)},
+ legend pos=north east,
+ very thick,
+ ymax = 20,
+ yticklabels=\empty,
+ xticklabels=\empty,
+ scale only axis=true,
+ width=12cm, height=6cm,
+ ]
+%Below the red parabola is defined
+\addplot [
+ domain= 1:6,
+ samples=100,
+ color=red,
+]
+{1};
+\addlegendentry{$\mathcal{O}(1)$}
+%Here the blue parabloa is defined
+\addplot [
+ domain= 1:6,
+ samples=100,
+ color=green,
+]
+{x};
+\addlegendentry{$\mathcal{O}(n)$}
+\addplot [
+ domain= 1:6,
+ samples=100,
+ color=blue,
+]
+{x^2};
+\addlegendentry{$\mathcal{O}(n^2)$}
+\addplot [
+ domain= 1:6,
+ samples=100,
+ color=purple,
+]
+{x^3};
+\addlegendentry{$\mathcal{O}(n^3)$}
+\addplot [
+ domain= 1:3,
+ samples=100,
+ color=black,
+]
+{exp(x)};
+\addlegendentry{$\mathcal{O}(e^n)$}
+\addplot [
+ domain= 1:6,
+ samples=100,
+ color=orange,
+]
+{log2(x)};
+\addlegendentry{$\mathcal{O}(\log n)$}
+\end{axis}
+\end{tikzpicture}
+
+\end{frame}
+
+\begin{frame}
+ \frametitle{Big $\mathcal{O}$ notation}
+\begin{tikzpicture}
+\begin{axis}[
+ axis lines = left,
+ xlabel = $n$ (Data Input),
+ ylabel = {$t$ (time)},
+ legend pos=north east,
+ very thick,
+ ymax = 500,
+ yticklabels=\empty,
+ xticklabels=\empty,
+ scale only axis=true,
+ width=12cm, height=6cm,
+ ]
+\addplot [
+ domain= 1:20,
+ samples=100,
+ color=red,
+]
+{1};
+\addlegendentry{$\mathcal{O}(1)$}
+\addplot [
+ domain= 1:20,
+ samples=100,
+ color=green,
+]
+{x};
+\addlegendentry{$\mathcal{O}(n)$}
+\addplot [
+ domain= 1:20,
+ samples=100,
+ color=blue,
+]
+{x^2};
+\addlegendentry{$\mathcal{O}(n^2)$}
+\addplot [
+ domain= 1:10,
+ samples=100,
+ color=purple,
+]
+{x^3};
+\addlegendentry{$\mathcal{O}(n^3)$}
+\addplot [
+ domain= 1:10,
+ samples=100,
+ color=black,
+]
+{exp(x)};
+\addlegendentry{$\mathcal{O}(e^n)$}
+\addplot [
+ domain= 1:20,
+ samples=100,
+ color=orange,
+]
+{log2(x)};
+\addlegendentry{$\mathcal{O}(\log n)$}
+\end{axis}
+\end{tikzpicture}
+
+\end{frame}
diff --git a/buch/papers/multiplikation/presentation/slides/blas.tex b/buch/papers/multiplikation/presentation/slides/blas.tex
new file mode 100644
index 0000000..ed498a3
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/slides/blas.tex
@@ -0,0 +1,18 @@
+\begin{frame}
+\frametitle{BLAS, LAPACK}
+\begin{itemize}
+ \item Basic Linear Algebra Subprograms
+ \begin{itemize}
+ \item $\mathbf{y} = \alpha \mathbf{x}+\mathbf{y}$
+ \item $\mathbf{y} = \alpha \mathbf{A}\mathbf{x}+ \beta \mathbf{y}$
+ \item $\mathbf{C} = \alpha \mathbf{A}\mathbf{B}+ \beta \mathbf{C}$
+
+ \end{itemize}
+ \item Linear Algebra Package
+ \begin{itemize}
+ \item QR decomposition
+ \item Singular value decomposition
+ \item Eigenvalues
+ \end{itemize}
+\end{itemize}
+\end{frame}
diff --git a/buch/papers/multiplikation/presentation/slides/conclusuion.tex b/buch/papers/multiplikation/presentation/slides/conclusuion.tex
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/slides/conclusuion.tex
diff --git a/buch/papers/multiplikation/presentation/slides/logo.pdf b/buch/papers/multiplikation/presentation/slides/logo.pdf
new file mode 100644
index 0000000..d78ca88
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/slides/logo.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/presentation/slides/meas.tex b/buch/papers/multiplikation/presentation/slides/meas.tex
new file mode 100644
index 0000000..489c010
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/slides/meas.tex
@@ -0,0 +1,42 @@
+\begin{frame}
+ \frametitle{Measurements Python}
+ \only<1>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/meas_8.pdf}}
+ \only<2>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/meas_16.pdf}}
+ \only<3>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/meas_32.pdf}}
+ \only<4>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/meas_64.pdf}}
+ \only<5>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/meas_128.pdf}}
+ \only<6>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/meas_256.pdf}}
+ \only<7>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/meas_512.pdf}}
+ \only<8>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/meas_1024.pdf}}
+\end{frame}
+
+
+\begin{frame}
+ \frametitle{Measurements C}
+ \only<1>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/c_meas_8.pdf}}
+ \only<2>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/c_meas_16.pdf}}
+ \only<3>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/c_meas_32.pdf}}
+ \only<4>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/c_meas_64.pdf}}
+ \only<5>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/c_meas_128.pdf}}
+ \only<6>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/c_meas_256.pdf}}
+ \only<7>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/c_meas_512.pdf}}
+ \only<8>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/c_meas_1024.pdf}}
+ \only<9>{
+ \includegraphics[width=\textwidth,height=0.9\textheight,keepaspectratio]{../code/c_meas_2048.pdf}}
+\end{frame}
diff --git a/buch/papers/multiplikation/presentation/slides/nn.tex b/buch/papers/multiplikation/presentation/slides/nn.tex
new file mode 100644
index 0000000..e74e970
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/slides/nn.tex
@@ -0,0 +1,97 @@
+
+\begin{frame}
+ \frametitle{Neural Network}
+ \centering
+\newcommand{\inputnum}{4}
+
+% Hidden layer neurons'number
+\newcommand{\hiddennumA}{5}
+\newcommand{\hiddennumB}{6}
+
+% Output layer neurons'number
+\newcommand{\outputnum}{4}
+
+\begin{tikzpicture}
+
+
+% Input Layer
+\foreach \i in {1,...,\inputnum}
+{
+ \node[circle,
+ minimum size = 6mm,
+ fill=blue!30] (Input-\i) at (0,-\i) {};
+}
+
+% Hidden Layer1
+\foreach \i in {1,...,\hiddennumA}
+{
+ \node[circle,
+ minimum size = 6mm,
+ fill=red!50,
+ yshift=(\hiddennumA-\inputnum)*5 mm
+ ] (Hidden1-\i) at (2.5,-\i) {};
+}
+
+% Hidden Layer2
+\foreach \i in {1,...,\hiddennumB}
+{
+ \node[circle,
+ minimum size = 6mm,
+ fill=red!50,
+ yshift=(\hiddennumB-\inputnum)*5 mm
+ ] (Hidden2-\i) at (5,-\i) {};
+}
+
+% Output Layer
+\foreach \i in {1,...,\outputnum}
+{
+ \node[circle,
+ minimum size = 6mm,
+ fill=green!50,
+ yshift=(\outputnum-\inputnum)*5 mm
+ ] (Output-\i) at (7.5,-\i) {};
+}
+
+% Connect neurons In-Hidden
+\foreach \i in {1,...,\inputnum}
+{
+ \foreach \j in {1,...,\hiddennumA}
+ {
+ \draw[->, shorten >=1pt] (Input-\i) -- (Hidden1-\j);
+ }
+}
+
+% Connect neurons In-Hidden
+\foreach \i in {1,...,\hiddennumA}
+{
+ \foreach \j in {1,...,\hiddennumB}
+ {
+ \draw[->, shorten >=1pt] (Hidden1-\i) -- (Hidden2-\j);
+ }
+}
+
+% Connect neurons Hidden-Out
+\foreach \i in {1,...,\hiddennumB}
+{
+ \foreach \j in {1,...,\outputnum}
+ {
+ \draw[->, shorten >=1pt] (Hidden2-\i) -- (Output-\j);
+ }
+}
+
+% Inputs
+\foreach \i in {1,...,\inputnum}
+{
+ \draw[<-, shorten <=1pt] (Input-\i) -- ++(-1,0)
+ node[left]{\LARGE{$x_{\i}$}};
+}
+
+% Outputs
+\foreach \i in {1,...,\outputnum}
+{
+ \draw[->, shorten <=1pt] (Output-\i) -- ++(1,0)
+ node[right]{\LARGE{$y_{\i}$}};
+}
+
+\end{tikzpicture}
+\end{frame}
diff --git a/buch/papers/multiplikation/presentation/slides/parcomp.tex b/buch/papers/multiplikation/presentation/slides/parcomp.tex
new file mode 100644
index 0000000..1ba39ee
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/slides/parcomp.tex
@@ -0,0 +1,66 @@
+% !TEX root = presentation.tex
+
+\begin{frame}
+ \frametitle{Vector-Matrix Multiplication}
+\center{
+ \begin{tikzpicture}[ampersand replacement=\&]
+
+ \matrix (A)[matrix of math nodes, label skeleton, left delimiter=[,right delimiter={]}]
+ {
+ A_{1,1} \& A_{1,2} \& A_{1,3} \& A_{1,4} \\
+ };
+
+ \matrix (B)[matrix of math nodes, label skeleton, left delimiter=[,right delimiter={]}] at (5,-0.95)
+ {
+ B_{1,1} \& B_{1,2} \& B_{1,3} \& B_{1,4} \& B_{1,5} \\
+ B_{2,1} \& B_{2,2} \& B_{2,3} \& B_{2,4} \& B_{2,5} \\
+ B_{3,1} \& B_{3,2} \& B_{3,3} \& B_{3,4} \& B_{3,5} \\
+ B_{4,1} \& B_{4,2} \& B_{4,3} \& B_{4,4} \& B_{4,5} \\
+ };
+
+ \matrix (C)[matrix of math nodes, label skeleton, left delimiter=[,right delimiter={]}] at (5,-3)
+ {
+ C_{1,1} \& C_{1,2} \& C_{1,3} \& C_{1,4} \& C_{1,5}\\
+ };
+
+ \foreach \i in {1,...,4}
+ {
+ \pgfmathtruncatemacro{\ii}{\i+1}
+ \onslide<\ii>{
+
+ \foreach \j in {1,...,5}
+ {
+ \draw[thick] (A-1-\i.south) to [out=-90,in=135]node[visible on=<\i->, anchor=north]{} (B-\i-\j.center);
+
+ }
+ }
+ }
+
+
+ \end{tikzpicture}
+}
+\end{frame}
+
+
+\begin{frame}
+ \frametitle{DSP Architecture}
+\scalebox{2}{
+ \begin{tikzpicture}
+ \node (mul) at (0,0) [circle,draw=black,inner sep=0pt,minimum size=0.5cm] {X};
+ \node (mac) at (2,0) [circle,draw=black,inner sep=0pt,minimum size=0.5cm] {\textbf{+}};
+
+ \node at (-2,0.3) {$A[n]$};
+ \node at (0.4,2) {$B[n]$};
+ \node at (4,0.3) {$C[n]$};
+
+ \draw[thick, ->] (-2,0) --++ (mul);
+ \draw[thick, ->] (0,2) --++ (mul);
+ \draw[thick, ->] (mul) -- (mac);
+ \draw[thick] (mac) --++ (1,0) node (i) {};
+ \draw[thick, ->] (i.center) --++ (0,1) --++ (-1,0) -- (mac);
+ \draw[thick, ->] (i.center) --++ (1,0);
+
+
+ \end{tikzpicture}
+ }
+\end{frame}
diff --git a/buch/papers/multiplikation/presentation/slides/slides.tex b/buch/papers/multiplikation/presentation/slides/slides.tex
new file mode 100644
index 0000000..64edb86
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/slides/slides.tex
@@ -0,0 +1,15 @@
+% !TEX root = presentation.tex
+\begin{frame}
+\titlepage
+\end{frame}
+%
+\section{Big $\mathcal{O}$}
+\input{slides/BigO.tex}
+\section{Strassen's Algorithm}
+\input{slides/strassen.tex}
+% \input{slides/nn.tex}
+\section{Measurements}
+\input{slides/meas.tex}
+% \input{slides/parcomp.tex}
+\section{How To Matrix Multiply}
+\input{slides/blas.tex}
diff --git a/buch/papers/multiplikation/presentation/slides/strassen.tex b/buch/papers/multiplikation/presentation/slides/strassen.tex
new file mode 100644
index 0000000..c3398d5
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/slides/strassen.tex
@@ -0,0 +1,429 @@
+\begin{frame}
+ \frametitle{Strassen's Algorithm}
+ \includegraphics[page=1,width=\textwidth,height=0.8\textheight,keepaspectratio]{../papers/Strassen_original_1969.pdf}
+ \includegraphics[page=2,width=\textwidth,height=0.8\textheight,keepaspectratio]{../papers/Strassen_original_1969.pdf} \includegraphics[page=3,width=\textwidth,height=0.8\textheight,keepaspectratio]{../papers/Strassen_original_1969.pdf}
+ \end{frame}
+
+\begin{frame}
+ \frametitle{Strassen's Algorithm}
+ \centering
+ \large
+\onslide<1->{
+ $
+ \mathbf{A B = C}
+ $
+}
+
+\onslide<2->{
+
+
+\medskip
+ $
+ \begin{bmatrix}
+ A_{11} & A_{12}\\
+ A_{21} & A_{22}
+ \end{bmatrix}
+ \begin{bmatrix}
+ B_{11} & B_{12}\\
+ B_{21} & B_{22}
+ \end{bmatrix}
+ =
+ \begin{bmatrix}
+ C_{11} & C_{12}\\
+ C_{21} & C_{22}
+ \end{bmatrix}
+ $
+ }
+
+
+ \onslide<3->{
+
+\medskip
+$
+C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}
+$
+
+$
+C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}
+$
+
+$
+C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}
+$
+
+$
+C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}
+$
+}
+\end{frame}
+
+\input{slides/algo.tex}
+
+
+
+\begin{frame}
+ \frametitle{Strassen's Algorithm}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ \onslide<1->{
+ \large
+ \begin{math}
+ \begin{aligned}
+ \text{I} &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\
+ \text{II} &= (A_{21} + A_{22}) \cdot B_{11} \\
+ \text{III} &= A_{11} \cdot (B_{12}-B_{22}) \\
+ \text{IV} &= A_{22} \cdot (-B_{11}+B_{21}) \\
+ \text{V} &= (A_{11} + A_{12}) \cdot B_{22} \\
+ \text{VI} &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12}) \\
+ \text{VII} &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \\
+ \end{aligned}
+ \end{math}
+ }
+ \end{column}
+
+ \begin{column}{0.5\textwidth}
+ \onslide<2->{
+ \large
+ \begin{math}
+ \begin{aligned}
+ C_{11} &= \text{I} + \text{IV} - \text{V} + \text{VII} \\
+ C_{21} &= \text{II} + \text{IV} \\
+ C_{12} &= \text{III} + \text{V}\\
+ C_{22} &= \text{I} + \text{III} - \text{II} + \text{VI} \\
+ \end{aligned}
+ \end{math}
+ }
+ \end{column}
+\end{columns}
+
+\onslide<3->{
+
+\bigskip
+\centering
+\tiny
+\begin{math}
+\begin{aligned}
+ C_{11} &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) + A_{22} \cdot (-B_{11}+B_{21}) - (A_{11} + A_{12}) \cdot B_{22} + (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \\
+ C_{11} &= A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22} -A_{22}B_{11}+A_{22}B_{21} - A_{11}B_{22} - A_{12}B_{22}+ A_{12}B_{21} + A_{12}B_{22} - A_{22}B_{21} - A_{22}B_{22} \\
+ C_{11} &= A_{11}B_{11} + A_{12}B_{21}
+\end{aligned}
+\end{math}
+}
+
+\end{frame}
+
+
+\begin{frame}
+\begin{adjustbox}{width=\textwidth}
+\begin{tikzpicture}[ampersand replacement=\&]
+
+ \foreach \i in {1,...,4}
+ {
+ \small{
+ \matrix (X\i)[matrix of math nodes,nodes in empty cells,
+ nodes = {draw, minimum size=10mm,
+ anchor=center,
+ inner sep=0pt, outer sep=0pt},
+ column sep=-\pgflinewidth,
+ row sep=-\pgflinewidth,
+ ] at (0,-\i*5)
+ {
+ A_{11}B_{11} \& A_{12}B_{11} \& A_{21}B_{11} \& A_{22}B_{11} \\
+ A_{11}B_{21} \& A_{12}B_{21} \& A_{21}B_{21} \& A_{22}B_{21} \\
+ A_{11}B_{11} \& A_{12}B_{12} \& A_{21}B_{12} \& A_{22}B_{12} \\
+ A_{11}B_{22} \& A_{12}B_{22} \& A_{21}B_{22} \& A_{22}B_{22} \\
+ };}
+
+ \foreach \j in {1,...,7}
+ {
+ \matrix(M\i\j)[matrix of math nodes,nodes in empty cells,
+ nodes = {draw, minimum size=10mm,
+ anchor=center,
+ inner sep=0pt, outer sep=0pt},
+ column sep=-\pgflinewidth,
+ row sep=-\pgflinewidth,
+ ] at (\j*5,-\i*5)
+ {
+ \& \& \& \\
+ \& \& \& \\
+ \& \& \& \\
+ \& \& \& \\
+ };
+ }
+ }
+
+\huge{
+ \node at (-3,-20) {$C_{22}=$};
+ \node at (-3,-15) {$C_{21}=$} ;
+ \node at (-3,-10) {$C_{12}=$} ;
+ \node at (-3,-5) {$C_{11}=$} ;
+
+ \node at (5,-2) {I};
+ \node at (10,-2) {II};
+ \node at (15,-2) {III};
+ \node at (20,-2) {IV};
+ \node at (25,-2) {V};
+ \node at (30,-2) {VI};
+ \node at (35,-2) {VII};
+ }
+
+
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X1-1-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X1-2-2)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X2-3-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X2-4-2)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X3-1-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X3-2-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X4-3-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X4-4-4)] {};
+
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-4-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-1-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M14-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M14-2-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M15-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M15-4-2)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M17-2-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M17-4-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M17-2-2)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M17-4-2)] {};
+
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M23-3-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M23-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M25-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M25-4-2)] {};
+
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M32-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M32-1-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M34-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M34-2-4)] {};
+
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-4-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-1-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M42-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M42-1-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M43-3-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M43-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M46-1-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M46-1-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M46-3-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M46-3-1)] {};
+\end{tikzpicture}
+\end{adjustbox}
+\end{frame}
+
+
+\begin{frame}
+ \frametitle{Strassen's Algorithm}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ \large
+ \begin{math}
+ \begin{aligned}
+ \text{I} &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\
+ \text{II} &= (A_{21} + A_{22}) \cdot B_{11} \\
+ \text{III} &= A_{11} \cdot (B_{12}-B_{22}) \\
+ \text{IV} &= A_{22} \cdot (-B_{11}+B_{21}) \\
+ \text{V} &= (A_{11} + A_{12}) \cdot B_{22} \\
+ \text{VI} &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12}) \\
+ \text{VII} &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \\
+ \end{aligned}
+ \end{math}
+
+ \end{column}
+
+ \begin{column}{0.5\textwidth}
+ \large
+ \begin{math}
+ \begin{aligned}
+ C_{11} &= \text{I} + \text{IV} - \text{V} + \text{VII} \\
+ C_{21} &= \text{II} + \text{IV} \\
+ C_{12} &= \text{III} + \text{V}\\
+ C_{22} &= \text{I} + \text{III} - \text{II} + \text{VI} \\
+ \end{aligned}
+ \end{math}
+
+ \end{column}
+\end{columns}
+\end{frame}
+
+
+
+\begin{frame}
+ \frametitle{Strassen's Algorithm}
+
+\begin{columns}
+ \begin{column}{0.5\textwidth}
+\large
+\begin{math}
+\begin{aligned}
+\text{\textbf{I}} &= (\mathbf{A_{11}} + \mathbf{A_{22}}) \cdot (\mathbf{B_{11}} + \mathbf{B_{22}}) \\
+\text{\textbf{II}} &= (\mathbf{A_{21}} + \mathbf{A_{22}}) \cdot \mathbf{B_{11}} \\
+\text{\textbf{III}} &= \mathbf{A_{11}} \cdot (\mathbf{B_{12}}-\mathbf{B_{22}}) \\
+\text{\textbf{IV}} &= \mathbf{A_{22}} \cdot (-\mathbf{B_{11}}+\mathbf{B_{21}}) \\
+\text{\textbf{V}} &= (\mathbf{A_{11}} + \mathbf{A_{12}}) \cdot \mathbf{B_{22}} \\
+\text{\textbf{VI}} &= (-\mathbf{A_{11}} + \mathbf{A_{21}}) \cdot (\mathbf{B_{11}} + \mathbf{B_{12}}) \\
+\text{\textbf{VII}} &= (\mathbf{A_{12}} - \mathbf{A_{22}}) \cdot (\mathbf{B_{21}} + \mathbf{B_{22}}) \\
+\end{aligned}
+\end{math}
+
+\end{column}
+
+\begin{column}{0.5\textwidth}
+ \large
+ \begin{math}
+ \begin{aligned}
+ \mathbf{C_{11}} &= \text{\textbf{I}} + \text{\textbf{IV}} - \text{\textbf{V}} + \text{\textbf{VII}} \\
+ \mathbf{C_{21}} &= \text{\textbf{II}} + \text{\textbf{IV}} \\
+ \mathbf{C_{12}} &= \text{\textbf{III}} + \text{\textbf{V}}\\
+ \mathbf{C_{22}} &= \text{\textbf{I}} + \text{\textbf{III}} - \text{\textbf{II}} + \text{\textbf{VI}} \\
+ \end{aligned}
+ \end{math}
+
+\end{column}
+\end{columns}
+
+\end{frame}
+
+\begin{frame}
+ \frametitle{Algorithm}
+ \onslide<1->{
+
+ \scalebox{0.45}{\parbox{\linewidth}{
+ \begin{algorithm}[H]\caption{Strassen Matrix Multiplication}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}[1]
+ \Function{strassen}{$\textbf{A}, \textbf{B}, n$}
+ \If{$n = 2$}
+ \State $ \mathbf{C} \gets zeros((n, n))$
+ \State $P \gets (A[0][0]+A[1][1])\cdot( B[0][0]+B[1][1])$
+ \State $Q \gets (A[1][0]+A[1][1])\cdot B[0][0]$
+ \State $R \gets A[0][0]\cdot (B[0][1]-B[1][1])$
+ \State $S \gets A[1][1]\cdot (B[1][0]-B[0][0])$
+ \State $T \gets (A[0][0]+A[0][1])\cdot B[1][1]$
+ \State $U \gets (A[1][0]-A[0][0])\cdot (B[0][0]+B[0][1])$
+ \State $V \gets (A[0][1]-A[1][1])\cdot (B[1][0]+B[1][1])$
+ \State $C[0][0] \gets P+S-T+V$
+ \State $C[0][1] \gets R+T$
+ \State $C[1][0] \gets Q+S$
+ \State $C[1][1] \gets P+R-Q+U$
+ \Else
+ \State $ m \gets n/2$
+ \State $\mathbf{A11}, \mathbf{A12}, \mathbf{A21}, \mathbf{A22} \gets \mathbf{A}[:m][:m], \mathbf{A}[:m][m:], \mathbf{A}[m:][:m], \mathbf{A}[m:][m:]$
+ \State $\mathbf{B11}, \mathbf{B12}, \mathbf{B21}, \mathbf{B22} \gets \mathbf{B}[:m][:m], \mathbf{B}[:m][m:], \mathbf{B}[m:][:m], \mathbf{B}[m:][m:]$
+
+ \State $ \mathbf{P} \gets \text{strassen}((\mathbf{A11}+ \mathbf{A22}),(\mathbf{B11}+\mathbf{B22}), m)$
+ \State $ \mathbf{Q} \gets \text{strassen}((\mathbf{A21}+ \mathbf{A22}), \mathbf{B11},m)$
+ \State $ \mathbf{R} \gets \text{strassen}( \mathbf{A11},(\mathbf{B12}- \mathbf{B22}),m)$
+ \State $ \mathbf{S} \gets \text{strassen}( \mathbf{A22},(\mathbf{B21}- \mathbf{B11}),m)$
+ \State $ \mathbf{T} \gets \text{strassen}((\mathbf{A11}+ \mathbf{A12}), \mathbf{B22},m)$
+ \State $ \mathbf{U} \gets \text{strassen}((\mathbf{A21}- \mathbf{A11}),(\mathbf{B11}+\mathbf{B12}),m)$
+ \State $ \mathbf{V} \gets \text{strassen}((\mathbf{A12}- \mathbf{A22}),(\mathbf{B21}+\mathbf{B22}),m)$
+
+
+
+ \State $\mathbf{C11} \gets \mathbf{P+S-T+V}$
+ \State $\mathbf{C12} \gets \mathbf{R+T}$
+ \State $\mathbf{C21} \gets \mathbf{Q+S}$
+ \State $\mathbf{C22} \gets \mathbf{P+R-Q+U}$
+ \State $ C \gets vstack((hstack((C11, C12)), hstack((C21, C22))))$
+
+ \EndIf
+ \State \textbf{return} $\textbf{C}$
+
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+ }}}
+% \[
+% \mathcal{T}(n) = \left\{\begin{array}{lr}
+% 1, & \text{if} n \leq 2\\
+% 7 \mathcal{T}(\frac{n}{2}) + n^2, & \text{if} n > 2\\
+% \end{array}\right\}
+% \]
+\only<2>{
+ $
+ \mathcal{T}(n) =
+ \begin{cases}
+ 1 & \text{if } n \leq 2\\
+ 7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
+ \end{cases} = \mathcal{O}(n^{\log_2 7})$
+
+}
+\only<3>{
+ $
+ \mathcal{T}(n) =
+ \begin{cases}
+ 1 & \text{if } n \leq 2\\
+ 7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
+ \end{cases} = \mathcal{O}(n^{2.81})$
+
+}
+
+\end{frame}
+
+\begin{frame}
+ \frametitle{Algorithm}
+ \onslide<1->{
+
+ \scalebox{0.45}{\parbox{\linewidth}{
+ \begin{algorithm}[H]\caption{Strassen Matrix Multiplication}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}[1]
+ \Function{MM}{$\textbf{A}, \textbf{B}, n$}
+ \If{$n = 2$}
+ \State $ \mathbf{C} \gets zeros((n, n))$
+ \State $C[0, 0] \gets A[0][0]*B[0][0]+A[0][1]*B[1][0]$
+ \State $C[0, 1] \gets A[0][0]*B[0][1]+A[0][1]*B[1][1]$
+ \State $C[1, 0] \gets A[1][0]*B[0][0]+A[1][1]*B[1][0]$
+ \State $C[1, 1] \gets A[1][0]*B[0][1]+A[1][1]*B[1][1]$
+ \Else
+ \State $ m \gets n/2$
+ \State $\mathbf{A11}, \mathbf{A12}, \mathbf{A21}, \mathbf{A22} \gets \mathbf{A}[:m][:m], \mathbf{A}[:m][m:], \mathbf{A}[m:][:m], \mathbf{A}[m:][m:]$
+ \State $\mathbf{B11}, \mathbf{B12}, \mathbf{B21}, \mathbf{B22} \gets \mathbf{B}[:m][:m], \mathbf{B}[:m][m:], \mathbf{B}[m:][:m], \mathbf{B}[m:][m:]$
+
+ \State $\mathbf{C11} \gets \text{MM}(\mathbf{A11}, \mathbf{B11}) + \text{MM}(\mathbf{A12}, \mathbf{B21})$
+ \State $\mathbf{C12} \gets \text{MM}(\mathbf{A11},\mathbf{B12}) + \text{MM}(\mathbf{A12},\mathbf{B22})$
+ \State $\mathbf{C21} \gets \text{MM}(\mathbf{A21}, \mathbf{B11}) + \text{MM}(\mathbf{A22}, \mathbf{B21})$
+ \State $\mathbf{C22} \gets \text{MM}(\mathbf{A21}, \mathbf{B12}) + \text{MM}(\mathbf{A22}, \mathbf{B22})$
+ \State $ C \gets vstack((hstack((C11, C12)), hstack((C21, C22))))$
+
+ \EndIf
+ \State \textbf{return} $\textbf{C}$
+
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+ \bigskip
+ \bigskip
+ \bigskip
+ \bigskip
+ \bigskip
+ }}}
+
+\only<2>{
+
+
+ $
+ \mathcal{T}(n) =
+ \begin{cases}
+ 1 & \text{if } n \leq 2\\
+ 8 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
+ \end{cases} = \mathcal{O}(n^{\log_2 8})$
+
+}
+\only<3>{
+ $
+ \mathcal{T}(n) =
+ \begin{cases}
+ 1 & \text{if } n \leq 2\\
+ 8 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
+ \end{cases} = \mathcal{O}(n^{3})$
+
+}
+
+\end{frame}
diff --git a/buch/papers/multiplikation/presentation/tikz/algo.pdf b/buch/papers/multiplikation/presentation/tikz/algo.pdf
new file mode 100644
index 0000000..752f42e
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/tikz/algo.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/presentation/tikz/algo.tex b/buch/papers/multiplikation/presentation/tikz/algo.tex
new file mode 100644
index 0000000..0b2c567
--- /dev/null
+++ b/buch/papers/multiplikation/presentation/tikz/algo.tex
@@ -0,0 +1,52 @@
+\documentclass[border=10pt]{article}
+\usepackage[left=25mm,right=25mm,top=25mm,bottom=25mm]{geometry}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{times}
+\usepackage{geometry}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{mathrsfs}
+\usepackage{amsfonts}
+\usepackage{amsthm}
+\usepackage{lipsum}
+\usepackage{amscd}
+\usepackage{graphicx}
+\usepackage{fancyhdr}
+\usepackage{textcomp}
+\usepackage{txfonts}
+\usepackage[all]{xy}
+\usepackage{paralist}
+\usepackage[colorlinks=true]{hyperref}
+\usepackage{array}
+\usepackage{tikz}
+\usepackage{slashed}
+\usepackage{pdfpages}
+\usepackage{cite}
+\usepackage{url}
+\usepackage{algorithm}
+\usepackage[noend]{algpseudocode}
+\usepackage{listings}
+\usepackage{multirow}
+\usepackage{color}
+
+\begin{document}
+
+\begin{algorithm}[H]\caption{Square Matrix Multiplication}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}[1]
+ \Function{MM}{$\textbf{A}, \textbf{B}, \textbf{C}, n$}
+ \State $sum \gets 0$
+ \For{$i = 0,1,2 \dots,n-1$}
+ \For{$j = 0,1,2 \dots,n-1$}
+ \State $sum \gets 0$
+ \For{$k = 0,1,2 \dots,n-1$}
+ \State $sum \gets sum + \textbf{A}[i][k] \cdot \textbf{B}[k][j]$
+ \EndFor
+ \State $\textbf{C}[i][j] \gets sum $
+ \EndFor
+ \EndFor
+ \EndFunction
+ \end{algorithmic}
+\end{algorithm}
+\end{document}
diff --git a/buch/papers/multiplikation/problemstellung.tex b/buch/papers/multiplikation/problemstellung.tex
new file mode 100755
index 0000000..b20a791
--- /dev/null
+++ b/buch/papers/multiplikation/problemstellung.tex
@@ -0,0 +1,104 @@
+%
+% teil1.tex -- Beispiel-File für das Paper
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Problemstellung}
+\rhead{Problemstellung}
+Dank der breiten Anwendung der Matrizenmultiplikation ist eine effiziente L\"osung dieser Operation von grosser Bedeutung.
+Das Ziel dieses Papers ist verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen.
+Wobei gezielt auf Algorithmen, welche das Problem schneller als der Standard Algorithmus L\"osen eingegangen wird.
+
+\subsection{Big $\mathcal{O}$ Notation}
+Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus \cite{multiplikation:bigo}.
+$f(x) \in \mathcal{O}(g(x))$ besagt das die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$.
+Vereinfacht werden f\"ur Algorithmen die folgende Notation verwendet:
+\begin{itemize}
+ \item $f \in \mathcal{O}(1) \rightarrow f$ ist beschr\"ankt
+ \item $f \in \mathcal{O}(n) \rightarrow f$ w\"achst linear
+ \item $f \in \mathcal{O}(n^2) \rightarrow f$ w\"achst quadratisch
+ \item $f \in \mathcal{O}(\log n) \rightarrow f$ w\"achst logarithmisch
+ \item $f \in \mathcal{O}(n \log n) \rightarrow f$ hat super-lineares Wachstum
+ \item $f \in \mathcal{O}(e^n) \rightarrow f$ w\"achst exponentiell
+ \item usw.
+\end{itemize}
+
+In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die Verschiedenen Laufzeiten miteinander verglichen werden.
+
+\begin{figure}
+ \center
+ \includegraphics[]{papers/multiplikation/images/bigo}
+ \caption{Verschiedene Laufzeiten}
+ \label{multiplikation:fig:bigo}
+\end{figure}
+
+\subsubsection{Beispiel Algorithmen}
+\paragraph{Beschr\"ankter Algorithmus}
+
+Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden.
+
+\begin{algorithm}\caption{}
+ \label{multiplikation:alg:b1}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{B1}{$a, b$}
+ \State \textbf{return} $a+b$
+ \EndFunction
+ \end{algorithmic}
+\end{algorithm}
+
+Wobei Konstanten nicht beachtet werden, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$.
+
+\begin{algorithm}\caption{}
+ \label{multiplikation:alg:b2}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{B2}{$a, b$}
+ \State $ x \gets a+b $
+ \State $ y \gets a \cdot b $
+ \State \textbf{return} $x+y$
+ \EndFunction
+ \end{algorithmic}
+\end{algorithm}
+
+\paragraph{Linearer Algorithmus}
+
+Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares $\mathcal{O}(n)$ Verhalten.
+
+\begin{algorithm}\caption{}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \label{multiplikation:alg:l1}
+ \Function{L}{$\mathbf{A}, \mathbf{B}$,n}
+ \State $ sum \gets 0$
+ \For{$i = 0,1,2 \dots,n$}
+ \State $ sum \gets sum + A[i] \cdot B[i] $
+ \EndFor
+
+ \State \textbf{return} $sum$
+
+ \EndFunction
+ \end{algorithmic}
+\end{algorithm}
+
+\paragraph{Quadratischer Algorithmus}
+
+Folgender Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches $\mathcal{O}(n^2)$ Verhalten.
+
+\begin{algorithm}[H]\caption{}
+ \label{multiplikation:alg:q1}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{Q}{$\mathbf{A}, \mathbf{B}$,n}
+ \State $ sum \gets 0$
+ \For{$i = 0,1,2 \dots,n$}
+ \For{$j = 0,1,2 \dots,n$}
+ \State $ sum \gets sum + A[i] \cdot B[j] $
+ \EndFor
+ \EndFor
+ \State \textbf{return} $sum$
+ \EndFunction
+ \end{algorithmic}
+\end{algorithm}
+
+
diff --git a/buch/papers/multiplikation/references.bib b/buch/papers/multiplikation/references.bib
index 7149fb1..9d76e8e 100644..100755
--- a/buch/papers/multiplikation/references.bib
+++ b/buch/papers/multiplikation/references.bib
@@ -33,3 +33,33 @@
url = {https://doi.org/10.1016/j.acha.2017.11.004}
}
+@article{multiplikation:winograd_1968,
+ title={A New Algorithm for Inner Product},
+ volume={C-17},
+ DOI={10.1109/tc.1968.227420},
+ number={7},
+ journal={IEEE Transactions on Computers},
+ author={Winograd, S.},
+ year={1968},
+ pages={693–694}
+}
+
+@article{multiplikation:strassen_1969,
+ title={Gaussian elimination is not optimal},
+ volume={13},
+ DOI={10.1007/bf02165411},
+ number={4},
+ journal={Numerische Mathematik},
+ author={Strassen, Volker},
+ year={1969},
+ pages={354–356}
+}
+
+@online{multiplikation:bigo,
+ title = {Big O notation},
+ url = {https://en.wikipedia.org/wiki/Big_O_notation},
+ date = {2021-07-27},
+ year = {2021},
+ month = {7},
+ day = {27}
+}
diff --git a/buch/papers/multiplikation/teil0.tex b/buch/papers/multiplikation/teil0.tex
deleted file mode 100644
index 082b7f5..0000000
--- a/buch/papers/multiplikation/teil0.tex
+++ /dev/null
@@ -1,22 +0,0 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{multiplikation:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{multiplikation:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
-
-
diff --git a/buch/papers/multiplikation/teil1.tex b/buch/papers/multiplikation/teil1.tex
deleted file mode 100644
index 0a6903a..0000000
--- a/buch/papers/multiplikation/teil1.tex
+++ /dev/null
@@ -1,55 +0,0 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{multiplikation:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{multiplikation:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{multiplikation:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{multiplikation:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{multiplikation:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
-
-
diff --git a/buch/papers/multiplikation/teil2.tex b/buch/papers/multiplikation/teil2.tex
deleted file mode 100644
index efbf31a..0000000
--- a/buch/papers/multiplikation/teil2.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{multiplikation:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{multiplikation:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/multiplikation/teil3.tex b/buch/papers/multiplikation/teil3.tex
deleted file mode 100644
index f58508b..0000000
--- a/buch/papers/multiplikation/teil3.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{multiplikation:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{multiplikation:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/multiplikation/tikz_formulas/algo.fdb_latexmk b/buch/papers/multiplikation/tikz_formulas/algo.fdb_latexmk
new file mode 100644
index 0000000..5f14129
--- /dev/null
+++ b/buch/papers/multiplikation/tikz_formulas/algo.fdb_latexmk
@@ -0,0 +1,254 @@
+# Fdb version 3
+["pdflatex"] 1620305767 "algo.tex" "algo.pdf" "algo" 1621586452
+ "/dev/null" 1621583990 0 d41d8cd98f00b204e9800998ecf8427e ""
+ "/etc/texmf/web2c/texmf.cnf" 1619433543 475 c0e671620eb5563b2130f56340a5fde8 ""
+ "/usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc" 1165713224 4850 80dc9bab7f31fb78a000ccfed0e27cab ""
+ "/usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map" 1577235249 3524 cb3e574dea2d1052e39280babc910dc8 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/jknappen/ec/ecrm1000.tfm" 1136768653 3584 adb004a0c8e7c46ee66cad73671f37b4 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm" 1229303445 688 37338d6ab346c2f1466b29e195316aa4 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs5.tfm" 1229303445 684 3a51bd4fd9600428d5264cf25f04bb9a ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs7.tfm" 1229303445 692 1b6510779f0f05e9cbf03e0f6c8361e6 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxb.tfm" 1136768653 1020 c53143d3e3747b5c1149bd9a5ecd7b55 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxmi.tfm" 1136768653 1056 e2202af076e43d03fc17f87e104021b0 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmb.tfm" 1136768653 4572 2c370d27bbb031f7592de9d41dc8cfca ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmr.tfm" 1136768653 4452 0fd0a792eaab7113e4d4f1b941ff0367 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmri.tfm" 1136768653 4640 ce59980bcbe9e6236fab46d0b5212c7e ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxr.tfm" 1136768653 1004 c0e991f864f31f017ea4ff9e451b76d4 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/t1xb.tfm" 1136768653 6892 772bf8e6c154137db8568fa8a47a6ceb ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/t1xr.tfm" 1136768653 6716 6d25a377562601272906e3bfe6b2817a ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm" 1136768653 1080 b674b4ba143004461509a754a0984b67 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm" 1136768653 688 f56006d6e56f46e63d9f63252958b828 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm" 1136768653 2584 cf4a6a7c2a518d47468fe29ef0913ba0 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm" 1232065820 1944 f854e259cb2839e49d4aa2949544a6e1 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm" 1136768653 1180 72784d0ee5a983fba99a0986b31b0493 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm" 1136768653 2408 aec793a3c45e495f7ad15b227c91f508 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm" 1136768653 1268 1d124f224979493f8fd017a7597ea1cd ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm" 1136768653 972 2c9ffac4bbd20f91c01aaef9bf3f8710 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm" 1136768653 988 098ca7e8cc5647b9ac21b82dbdce1f01 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm" 1136768653 1084 75e807e9e71f7a312e4e1187dce5e93b ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xyatip10.tfm" 1381187214 608 50246cc71b0635b0ba0a5c10a0bf4257 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xybsql10.tfm" 1381187214 608 4db60f15ea23b4ec2d796c6d568a63fa ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xybtip10.tfm" 1381187214 608 50246cc71b0635b0ba0a5c10a0bf4257 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycirc10.tfm" 1381187214 844 3393210079fb4ed9347e214b3bfd7c1a ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycmat10.tfm" 1381187214 608 f124f78ed50a1817738d2adb190cf2bd ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycmbt10.tfm" 1381187214 608 f124f78ed50a1817738d2adb190cf2bd ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xydash10.tfm" 1381187214 984 5c01c46b93e3ba8369f3f8edc6e62aef ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xyluat10.tfm" 1381187214 608 a3a3bc08980c5126ff2a7a68fb5a64ff ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xylubt10.tfm" 1381187214 608 a3a3bc08980c5126ff2a7a68fb5a64ff ""
+ "/usr/share/texlive/texmf-dist/fonts/type1/public/txfonts/rtxmi.pfb" 1232065820 13806 49b888f4605a088e66b9eb4fee320a6e ""
+ "/usr/share/texlive/texmf-dist/fonts/type1/public/txfonts/rtxr.pfb" 1136849748 6339 e2b78706efdc360ee6aec9b6e20211a7 ""
+ "/usr/share/texlive/texmf-dist/fonts/type1/public/txfonts/txex.pfb" 1136849748 17531 c91f2d6943f51d7c46d6b7b9cedd50ba ""
+ "/usr/share/texlive/texmf-dist/fonts/type1/public/txfonts/txsy.pfb" 1136849748 20336 69267d8a81bca8b24c9b42694a4a28f9 ""
+ "/usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmb8a.pfb" 1136849748 44729 811d6c62865936705a31c797a1d5dada ""
+ "/usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmr8a.pfb" 1136849748 46026 6dab18b61c907687b520c72847215a68 ""
+ "/usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmri8a.pfb" 1136849748 45458 a3faba884469519614ca56ba5f6b1de1 ""
+ "/usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/t1xb.vf" 1136768653 2144 bab2875eda5b2344ea7b1db74ccc03a4 ""
+ "/usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/t1xr.vf" 1136768653 2140 99e5b3a34695df6221a167ffa8b498d6 ""
+ "/usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txmi.vf" 1232065820 960 cfcc9d587b40b769f64408b3ca115941 ""
+ "/usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txr.vf" 1136768653 904 e582cae2d8ae3f48a0a520440ebcdb51 ""
+ "/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii" 1461363279 71627 94eb9990bed73c364d7f53f960cc8c5b ""
+ "/usr/share/texlive/texmf-dist/tex/generic/atbegshi/atbegshi.sty" 1575674566 24708 5584a51a7101caf7e6bbf1fc27d8f7b1 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty" 1576625341 40635 c40361e206be584d448876bba8a64a3b ""
+ "/usr/share/texlive/texmf-dist/tex/generic/bitset/bitset.sty" 1576016050 33961 6b5c75130e435b2bfdb9f480a09a39f9 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/etexcmds/etexcmds.sty" 1576625273 7734 b98cbb34c81f667027c1e3ebdbfce34b ""
+ "/usr/share/texlive/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty" 1576625223 8371 9d55b8bd010bc717624922fb3477d92e ""
+ "/usr/share/texlive/texmf-dist/tex/generic/iftex/ifluatex.sty" 1572645307 492 1994775aa15b0d1289725a0b1bbc2d4c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/iftex/ifpdf.sty" 1572645307 480 5778104efadad304ced77548ca2184b1 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/iftex/iftex.sty" 1573336935 6902 30fdaf7dc5636b8e3afa306210c45cae ""
+ "/usr/share/texlive/texmf-dist/tex/generic/iftex/ifvtex.sty" 1572645307 1057 525c2192b5febbd8c1f662c9468335bb ""
+ "/usr/share/texlive/texmf-dist/tex/generic/infwarerr/infwarerr.sty" 1575499628 8356 7bbb2c2373aa810be568c29e333da8ed ""
+ "/usr/share/texlive/texmf-dist/tex/generic/intcalc/intcalc.sty" 1576625065 31769 002a487f55041f8e805cfbf6385ffd97 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty" 1576878844 5412 d5a2436094cd7be85769db90f29250a6 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/kvsetkeys/kvsetkeys.sty" 1576624944 13807 952b0226d4efca026f0e19dd266dcc22 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty" 1576624883 18552 1e1cc7b75da0dfaacce7cdcb27d306bf ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pdfescape/pdfescape.sty" 1576015897 19007 15924f7228aca6c6d184b115f4baa231 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex" 1557692582 992 fb3cda354707a54fda62787a411c7c22 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex" 1546728038 43820 bc6cf5aa959817914ace33f5c6232161 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex" 1557692582 19324 c9a64402f22bd8d81821141a357af653 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex" 1546728038 6038 d639d02574be9a72f3c602c2a3510e02 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex" 1546728038 6948 284bbe3c9a7ca0a826c1c03895e69b9f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex" 1546728038 4883 a6f3eb1f71d8c4affaf43a169828b043 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex" 1546728038 2544 3b1b198fd49f01e328adc9162a07b213 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex" 1576793519 44189 1fd6229dad4c898883516c032f2ca5d2 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex" 1546728038 17311 3092579be20ef0f229c42ad3f09da85c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex" 1546728038 21302 d6c4b340248adbe650ebf6ca76bdccca ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex" 1562964315 9690 7585efa5a591822837f837bc5bc35621 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex" 1576793519 33335 942ccafe284041918d36e54696b98aa7 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex" 1546728038 2965 502761b60f43ab2de5ecb2f4625163ae ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex" 1546728038 5196 f8c5c775d4d6e2cb050392127cabda72 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex" 1576793519 20726 ed6ec1d6f0f35e7a93de4e79af83dbce ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex" 1557692582 35249 144a6b9c4df4644618bb3a0a40472608 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex" 1546728038 21989 266e83c51fe41eb8b8d5e6896dc71cc1 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex" 1546728038 8842 5cc856e132fac404805c6da091779283 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryarrows.code.tex" 1546728038 319 8fc6edce901e074ba09de320a8fc686b ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryautomata.code.tex" 1546728038 3986 c962be8d57437fcaf853d2babd8ed403 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarybackgrounds.code.tex" 1546728038 4572 980c82f01c0e3983edadbbc373d304cb ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfit.code.tex" 1546728038 3643 4a4bd51bd85886cc39d4073af8cf77a9 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarymatrix.code.tex" 1546728038 4202 e655aa2657da1088ec7745ece2876c4c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarypositioning.code.tex" 1546728038 3937 20cd45386ca23052ce976464f0ada984 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshapes.multipart.code.tex" 1546728038 919 da625675781832f2b61a7048a51ef656 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex" 1576793519 11544 2a5d66a3270abf4ef673e8a0b7734a90 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex" 1576967981 187592 7922ceab1864698dec4c84978d5b182f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.code.tex" 1546728038 31874 d843d507175f2bdfa3abf01f0349dac8 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex" 1546728038 32995 a4d54c043ae5274ceaaddeb36ad43a6f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/shapes/pgflibraryshapes.multipart.code.tex" 1546728038 62281 fd68e6d2c2dc178611c8f4d2d86e79ae ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfint.code.tex" 1557692582 3063 8c415c68a0f3394e45cfeca0b65f6ee6 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex" 1557692582 521 c70cf6ad609de83a27ee7929eb356332 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex" 1557692582 13391 933cab19c6d27039dbfc487330d1005a ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex" 1557692582 104938 15f2d8bdabd6bf9ca70f62cd8e3d4940 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex" 1557692582 10157 218d58ab074e5bd0d027de45ec64cc00 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex" 1576793519 28176 568b081ec39645f2db1a29fbd0c635e2 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex" 1562964315 9054 388d21239a1b6df2cc8beaae31c976b0 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.tex" 1557692582 3865 cddf7ddc80f018587c55afdcc79fc333 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics.code.tex" 1557692582 3177 27d85c44fbfe09ff3b2cf2879e3ea434 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex" 1557692582 10925 df50b8a6e5660a585e3a2bf55726dcc8 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex" 1562964315 7787 1750fc3f164703caf31fc8ea9218c67e ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex" 1557692582 3379 cbd0948a550bd7a495a160ca6beee9ed ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code.tex" 1557692582 92405 bba89470858d7b0788a9c09331c39653 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex" 1576793519 36526 453db1f8626a56b5ebb0fad496d6a39f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex" 1576793519 8471 b18959397c76e1e582402ab9f592ed9f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex" 1576793519 21201 46a4dded6619f990ac7347f99fbaac9f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex" 1557692582 16121 9e240115374a8d489f2f786115df83a9 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex" 1576793519 43259 3e05ba63539916af2eaca603c2eda780 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/pgf.revision.tex" 1578520427 465 1f401ab1e7fc6cb7ede39e96c66531fd ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg" 1557692582 926 70ff613fabeb70f5d1673dc0c93987bd ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def" 1557692582 5546 3586827e6032c95512b2a6682d2979a3 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def" 1562964315 12603 c02869ea216d842c29d52fae8738264e ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex" 1557692582 60269 e86bc0081af83a4ad47e4500ee09a2e4 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex" 1557692582 1896 82c274ff520f9e450ccea4e3ef4edc12 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex" 1557692582 7778 a25a32a10ca820357491d4c7b3ac02ea ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex" 1562964315 23777 cb6c8f02f87d86d621f5cb92c44f4998 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex" 1576793519 36815 f7f1772c398f07af2cb741992963045c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeysfiltered.code.tex" 1562964315 37439 bd44d50aef702b03193f731207931834 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex" 1557692582 4494 7e5ace0ccf59408f2cf63219a5d36927 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.tex" 1557692582 7250 03b2b9fb5fa38e7ca5cc3c45860fb210 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex" 1576793519 28309 488ccc6c701bbdd1bf671f708757aa5c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def" 1562964315 6286 1bd76fc45da9929ab2a64f51cba3ab6f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty" 1576624663 7008 f92eaa0a3872ed622bbf538217cd2ab7 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xkeyval/keyval.tex" 1403829539 2725 fc34ef3ccb37ba15a640e8fca6190bca ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkeyval.tex" 1417732693 19231 26434a5656c684f5ffb1f26f98006baa ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkvutils.tex" 1403829539 7677 6f5ce7c1124cad7ec57d05b2562bd8fe ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xy.sty" 1312310545 4692 1e1bcf75c622af1eefd9169948208302 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xy.tex" 1381187214 115380 413d5f789929a45aab7d12ce0d0aee7d ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyall.tex" 1312310545 1449 24340b6befc66d28ee1ebb657efb5892 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyarrow.tex" 1312310545 22657 990ce136a3cc15728ba417a2e78b25c8 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xycmtip.tex" 1312310545 1374 43fb8dc80dd748631d78096701166d76 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xycolor.tex" 1312310545 4586 edd672434f45626662368282c0322160 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xycurve.tex" 1312310545 109670 d412ee1ff259daefee5e927172e2f9a8 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyframe.tex" 1337903317 24249 186931a828664624939ab0b347e3952c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xygraph.tex" 1312310545 9619 b7e4d9a6936ba2ad6119a280abde9641 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyidioms.tex" 1312310545 2907 1ee562fde0b53c9cd16f7a604f33fdf0 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyline.tex" 1312310545 10928 c3a572983ccc9fc596b4e9ce454d5652 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xymatrix.tex" 1312310545 22583 25b1e7edeee41f181ee9733429da4a9c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-co.tex" 1312310545 8442 90cb8a3b00c2081384c1ce988d2ba0a3 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-cu.tex" 1312310545 39762 25a964ebb390bcfcd35c040f477eef1d ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-fr.tex" 1312310545 16485 5686b19cc46d046c885428794ed9c114 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-li.tex" 1312310545 2619 1a12b316e2132654e44ba2cd21def637 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-ro.tex" 1312310545 5290 e16fc85c85f64d0a5c04708bf3312d00 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf.tex" 1312310545 18763 e61049d36bdfccb226f22e582d70d368 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyrecat.tex" 1312310545 1391 c8763fc8e281cb6ecf697988b6608e4a ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyrotate.tex" 1312310545 7008 cb768d8d63a12d35607cbb3c4e7ba163 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xytips.tex" 1381187214 3689 0d51788a4141bc66ab896f7ac63495fd ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty" 1513722769 12604 3dec726c041422879dc3268237f09026 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty" 1359763108 5949 3f3fd50a8cc94c3d4cbf4fc66cd3df1c ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty" 1359763108 13829 94730e64147574077f8ecfea9bb69af4 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty" 1523134290 2211 ca7ce284ab93c8eecdc6029dc5ccbd73 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amscd.sty" 1523134290 5309 0c9ef5db85b924cdbb316f080dfd826e ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty" 1523134290 4161 7f6eb9092061a11f87d08ed13515b48d ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty" 1580683321 85660 baee036978c7a91f4e2bba43f05e5945 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty" 1523134290 4116 32e6abd27229755a83a8b7f18e583890 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty" 1523134290 2432 8ff93b1137020e8f21930562a874ae66 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/aobs-tikz/tikzlibraryoverlay-beamer-styles.code.tex" 1389658833 4047 82a015585c1ef210fb6750d6322afa7f ""
+ "/usr/share/texlive/texmf-dist/tex/latex/atveryend/atveryend.sty" 1576191570 19336 ce7ae9438967282886b3b036cfad1e4d ""
+ "/usr/share/texlive/texmf-dist/tex/latex/auxhook/auxhook.sty" 1576625391 3935 57aa3c3e203a5c2effb4d2bd2efbc323 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/article.cls" 1580683321 20023 e427dd9e17e239bf926ef3aab67fe35e ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty" 1581632200 4947 0c2888dd88121ae675fc6e82213623ba ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty" 1580683321 5159 892429808d9e0e2b3548aaefd9a06ed0 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty" 1580683321 5050 8933a39ad74377accd18991c5eb90c58 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/size10.clo" 1580683321 8446 9874cccac5fee462272c582807dbbf56 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/textcomp.sty" 1581112666 2821 2c0928feafd5527387e29a1af774d030 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/carlisle/slashed.sty" 1137109962 5327 8b3c95b5f71136add36a4a0bb1507594 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/cite/cite.sty" 1425427964 26218 19edeff8cdc2bcb704e8051dc55eb5a7 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty" 1579991033 13886 d1306dcf79a944f6988e688c1785f9ce ""
+ "/usr/share/texlive/texmf-dist/tex/latex/eso-pic/eso-pic.sty" 1526160256 11991 c1669f88e13f8bb6243df144e456b477 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty" 1548974385 11128 a53805799bebfed6358fc1658a18e41f ""
+ "/usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty" 1578002852 41601 9cf6c5257b1bc7af01a58859749dd37a ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg" 1459978653 1213 620bba36b25224fa9b7e1ccb4ecb76fd ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg" 1465944070 1224 978390e9c2234eab29404bc21b268d1e ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def" 1515537368 17334 520b9b85ad8a2a48eda3f643e27a5179 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty" 1580683321 16932 04729abe63b66ec59ea56edcd722b058 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty" 1580683321 9067 1b996612394a52e1efe89c8bfe8a5892 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics/lscape.sty" 1580683321 1753 f80abc75c0e3a4915097779c2649cc98 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty" 1580683321 3976 d7fa7d81d2870d509d25b17d0245e735 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/hycolor/hycolor.sty" 1580250785 17914 4c28a13fc3d975e6e81c9bea1d697276 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def" 1579642962 50630 3d9728faf8630190cf601ce2cbe470d9 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty" 1579642962 238752 60dd338d71b6a4ab2192131f73dc908b ""
+ "/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty" 1579642962 13244 0070bcab7b5a88187847128d22faf4d8 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def" 1579642962 14134 32b36577d311ddb6522413c7581ee968 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/jknapltx/mathrsfs.sty" 1137110241 300 12fa6f636b617656f2810ee82cb05015 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/jknapltx/ursfs.fd" 1137110241 548 cc4e3557704bfed27c7002773fad6c90 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/kvoptions/kvoptions.sty" 1575152344 22520 c4c2dab203104295e1e618be7e5c0f5b ""
+ "/usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdfmode.def" 1580854751 25404 9d60f463a00d154207ec0048dee27cf0 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty" 1581719662 4381 04628f3002bdd1d9c43ef984fd60ae18 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty" 1581719662 81717 e93576ac4b24ce6e121ebd6ec6cf2893 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg" 1279039959 678 4792914a8f45be57bb98413425e4c7af ""
+ "/usr/share/texlive/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty" 1575499565 5766 13a9e8766c47f30327caf893ece86ac8 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.ltd.tex" 1546728170 98047 c6fa29828cc60471827afe275c8bd77f ""
+ "/usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.sty" 1546638616 18060 8cf65af2c4529eed91b5d364b50d3ada ""
+ "/usr/share/texlive/texmf-dist/tex/latex/listings/listings.cfg" 1568236792 1830 bbaba8afaf42cc048ec4d4ff73467521 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/listings/listings.sty" 1568236792 80511 830f3f1d3ab7448dd84233e9c2f6462c ""
+ "/usr/share/texlive/texmf-dist/tex/latex/listings/lstmisc.sty" 1568236792 77022 32914f01b528131c47be2a1040d3856d ""
+ "/usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/pgflibrarymatrix.skeleton.code.tex" 1565039202 19612 007f8469df07e9ef0f680e346cc01945 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/tikzlibrarymatrix.skeleton.code.tex" 1565039202 7267 4d597b08b2429acaa1e526052d9509ed ""
+ "/usr/share/texlive/texmf-dist/tex/latex/ms/everyshi.sty" 1177890616 3878 6aa7c08ff2621006e0603349e40a30a8 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/multirow/multirow.sty" 1559339157 5486 a1d954b09782ba0acd8a8abfd98e1028 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/paralist/paralist.sty" 1485124581 14857 82c76ebe8f06becf69ab309565b2a0cb ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pdflscape/pdflscape.sty" 1575674318 6575 25396d208d8f2b9395d06ef315d5886c ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pdfpages/pdfpages.sty" 1580249532 54071 88f1e37dc9e1f95352061a066ed07263 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pdfpages/pppdftex.def" 1580249532 6418 197ed301e61ce5b7f446e70345a43a62 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pdftexcmds/pdftexcmds.sty" 1574631863 19963 36fd8e818f9f0f32e2db8413d4970122 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty" 1546728038 1090 d20f587ea9464d1841bd0d13d3ff9856 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty" 1288312291 410 5bf12ea7330e5f12c445332a4fe9a263 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty" 1546728038 21013 e98e1aaaf40d31632787c2bd25d24b57 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty" 1546728038 989 2cf3da8e8ec55131c49389428d565e37 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty" 1203877327 339 592cf35cba3d400082b8a9a5d0199d70 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/math/pgfmath.sty" 1393459310 306 0796eafca5e159e6ec2167a6d22d81b1 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty" 1393459310 443 0b2e781830192df35c0fd357cf13e26e ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgffor.sty" 1393459310 348 8927fde343487e003b01a4c2ca34073b ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty" 1203727794 274 4cad6e665cc93ac2ac979039a94fa1e1 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty" 1203877327 325 2bcd023400636339210573e2b3ee298b ""
+ "/usr/share/texlive/texmf-dist/tex/latex/psnfss/times.sty" 1156702453 857 6c716f26c5eadfb81029fcd6ce2d45e6 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/refcount/refcount.sty" 1576624809 9878 9e94e8fa600d95f9c7731bb21dfb67a4 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty" 1575674187 9715 b051d5b493d9fe5f4bc251462d039e5f ""
+ "/usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cfg" 1522098998 1015 662b4d7ad816b857a598284525f5c75e ""
+ "/usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cls" 1522098998 28890 df75e6d37f47b7e27bff3f37375336b3 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/tools/array.sty" 1580683321 12560 ce3f59ceae9d9a27bfe037d6bf1d903c ""
+ "/usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty" 1580683321 10216 5efd55f2010055e7b7875afd6a75be82 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/tools/shellesc.sty" 1580683321 4120 d1680a5ff60d0aea9c327e07c030f4e9 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/omltxmi.fd" 1137111002 492 e7f8afe4428797548d4301de03a1b15f ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/omstxsy.fd" 1137111002 329 6ac7e19535b9f1d64e4d8e3f77dc30a3 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/omxtxex.fd" 1137111002 312 11fe1916b0a13a81a05234a6fc7f8738 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/ot1txr.fd" 1137111002 1271 4e3afbd8e832f2f9c7f064894e6e68e4 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/t1txr.fd" 1137111002 1242 cbf8a0d4f750f9833a0bfb05fb39f1cb ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/txfonts.sty" 1206746551 50381 d367461010070c7a491b1f6979ab2062 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxexa.fd" 1137111002 310 1b00b0b05685b816e4c6caccce437e0d ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxmia.fd" 1137111002 334 87436a82076ca2e35cd305f852507afc ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsya.fd" 1137111002 310 cee07e4964749ccbc77d84fc49726a79 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyb.fd" 1137111002 310 8c5467c8932c259af51b0f116c9734bd ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyc.fd" 1137111002 310 4b5d6fe830337242ef847b3bff48ba21 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/url/url.sty" 1388531844 12796 8edb7d69a20b857904dd0ea757c14ec9 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/varwidth/varwidth.sty" 1238697683 10894 d359a13923460b2a73d4312d613554c8 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty" 1463002160 55589 34128738f682d033422ca125f82e5d62 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/xkeyval/xkeyval.sty" 1417732693 4962 9c1069474ff71dbc47d5006555e352d3 ""
+ "/usr/share/texlive/texmf-dist/web2c/texmf.cnf" 1581979058 38841 ce3692aa899bb693b90b87eaa5d4d84e ""
+ "/usr/share/texmf/web2c/texmf.cnf" 1581979058 38841 ce3692aa899bb693b90b87eaa5d4d84e ""
+ "/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map" 1619433582 4770781 1ed1abab22da9c3e2cc82e4db562318b ""
+ "/var/lib/texmf/web2c/pdftex/pdflatex.fmt" 1619433611 8255863 afe1ed795207f6401d11bafd6327aa55 ""
+ "algo.aux" 1620305767 767 9191aef204e325cc808d7c85cedac35f "pdflatex"
+ "algo.out" 1620305767 43 8eacde2f35419fc00651f55d16e47ae8 "pdflatex"
+ "algo.tex" 1621585209 3156 4070ef1cd3442b3ab588aedcc8a306bd ""
+ (generated)
+ "algo.aux"
+ "algo.log"
+ "algo.pdf"
+ "algo.out"
diff --git a/buch/papers/multiplikation/tikz_formulas/algo.fls b/buch/papers/multiplikation/tikz_formulas/algo.fls
new file mode 100644
index 0000000..16d387b
--- /dev/null
+++ b/buch/papers/multiplikation/tikz_formulas/algo.fls
@@ -0,0 +1,438 @@
+PWD /home/nunigan/Documents/MSE/FS21/SeminarMatrizen/buch/papers/multiplikation/tikz_formulas
+INPUT /etc/texmf/web2c/texmf.cnf
+INPUT /usr/share/texmf/web2c/texmf.cnf
+INPUT /usr/share/texlive/texmf-dist/web2c/texmf.cnf
+INPUT /var/lib/texmf/web2c/pdftex/pdflatex.fmt
+INPUT algo.tex
+OUTPUT algo.log
+INPUT /usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cls
+INPUT /usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cls
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/shellesc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/shellesc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/shellesc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifluatex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifluatex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifluatex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/iftex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/iftex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/xkeyval/xkeyval.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/xkeyval/xkeyval.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkeyval.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkvutils.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xkeyval/keyval.tex
+INPUT /dev/null
+INPUT /usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/article.cls
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/article.cls
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/size10.clo
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/size10.clo
+INPUT /usr/share/texlive/texmf-dist/tex/latex/varwidth/varwidth.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/varwidth/varwidth.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifvtex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifvtex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
+INPUT /usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/jknappen/ec/ecrm1000.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/psnfss/times.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/psnfss/times.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/jknapltx/mathrsfs.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/jknapltx/mathrsfs.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdfmode.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdfmode.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.ltd.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.ltd.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amscd.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amscd.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/textcomp.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/textcomp.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/txfonts.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/txfonts.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xy.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xy.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xy.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyrecat.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyidioms.tex
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xydash10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xyatip10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xybtip10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xybsql10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycirc10.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifpdf.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifpdf.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyall.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyall.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycurve.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycurve.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyframe.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyframe.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycmtip.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycmtip.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xytips.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xytips.tex
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycmat10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycmbt10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xyluat10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xylubt10.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyline.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyline.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyrotate.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyrotate.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycolor.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycolor.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xymatrix.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xymatrix.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyarrow.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyarrow.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xygraph.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xygraph.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-co.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-cu.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-fr.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-li.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-ro.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/paralist/paralist.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/paralist/paralist.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdftexcmds/pdftexcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdftexcmds/pdftexcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/infwarerr/infwarerr.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/infwarerr/infwarerr.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/kvsetkeys/kvsetkeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/kvsetkeys/kvsetkeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pdfescape/pdfescape.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pdfescape/pdfescape.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hycolor/hycolor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hycolor/hycolor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/auxhook/auxhook.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/auxhook/auxhook.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/kvoptions/kvoptions.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/kvoptions/kvoptions.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def
+INPUT /usr/share/texlive/texmf-dist/tex/generic/intcalc/intcalc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/intcalc/intcalc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/etexcmds/etexcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/etexcmds/etexcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/url/url.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/url/url.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/bitset/bitset.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/bitset/bitset.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/atbegshi/atbegshi.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/atbegshi/atbegshi.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/atveryend/atveryend.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/atveryend/atveryend.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/array.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/array.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/ms/everyshi.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/ms/everyshi.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/pgf.revision.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/pgf.revision.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeysfiltered.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfint.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgffor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgffor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/math/pgfmath.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/math/pgfmath.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/carlisle/slashed.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/carlisle/slashed.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdfpages/pdfpages.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdfpages/pdfpages.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/eso-pic/eso-pic.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/eso-pic/eso-pic.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdfpages/pppdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdfpages/pppdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/cite/cite.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/cite/cite.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryarrows.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryarrows.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarymatrix.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarymatrix.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarypositioning.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarypositioning.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/aobs-tikz/tikzlibraryoverlay-beamer-styles.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/aobs-tikz/tikzlibraryoverlay-beamer-styles.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/tikzlibrarymatrix.skeleton.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/tikzlibrarymatrix.skeleton.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/pgflibrarymatrix.skeleton.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/pgflibrarymatrix.skeleton.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfit.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfit.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarybackgrounds.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarybackgrounds.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryautomata.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryautomata.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshapes.multipart.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshapes.multipart.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/shapes/pgflibraryshapes.multipart.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/shapes/pgflibraryshapes.multipart.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/listings.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/listings.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/lstmisc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/lstmisc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/listings.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/listings.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/multirow/multirow.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/multirow/multirow.sty
+INPUT algo.aux
+INPUT algo.aux
+OUTPUT algo.aux
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omltxmi.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omltxmi.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omstxsy.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omstxsy.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omxtxex.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omxtxex.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxexa.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxexa.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/t1txr.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/t1txr.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/t1xr.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
+INPUT /usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
+INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/ot1txr.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/ot1txr.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsya.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsya.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyb.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyb.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/jknapltx/ursfs.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/jknapltx/ursfs.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs7.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs5.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxmia.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxmia.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyc.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyc.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/refcount/refcount.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/refcount/refcount.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty
+INPUT algo.out
+INPUT algo.out
+INPUT algo.out
+INPUT algo.out
+OUTPUT algo.pdf
+INPUT ./algo.out
+INPUT ./algo.out
+OUTPUT algo.out
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdflscape/pdflscape.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdflscape/pdflscape.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/lscape.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/lscape.sty
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/t1xr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/t1xr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/t1xr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/t1xb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txmi.vf
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmri.tfm
+INPUT /var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txr.vf
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txr.vf
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/t1xr.vf
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/t1xb.vf
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txmi.vf
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmri.tfm
+INPUT algo.aux
+INPUT ./algo.out
+INPUT ./algo.out
+INPUT /usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc
+INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/txfonts/rtxmi.pfb
+INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/txfonts/rtxr.pfb
+INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/txfonts/txex.pfb
+INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/txfonts/txsy.pfb
+INPUT /usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmb8a.pfb
+INPUT /usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmr8a.pfb
+INPUT /usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmri8a.pfb
diff --git a/buch/papers/multiplikation/tikz_formulas/algo.pdf b/buch/papers/multiplikation/tikz_formulas/algo.pdf
new file mode 100644
index 0000000..f711224
--- /dev/null
+++ b/buch/papers/multiplikation/tikz_formulas/algo.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/tikz_formulas/algo.tex b/buch/papers/multiplikation/tikz_formulas/algo.tex
new file mode 100755
index 0000000..1e437c2
--- /dev/null
+++ b/buch/papers/multiplikation/tikz_formulas/algo.tex
@@ -0,0 +1,131 @@
+\documentclass[border=10pt,varwidth]{standalone}
+\usepackage[left=25mm,right=25mm,top=25mm,bottom=25mm]{geometry}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{times}
+\usepackage{geometry}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{mathrsfs}
+\usepackage{amsfonts}
+\usepackage{amsthm}
+\usepackage{lipsum}
+\usepackage{amscd}
+\usepackage{graphicx}
+\usepackage{fancyhdr}
+\usepackage{textcomp}
+\usepackage{txfonts}
+\usepackage[all]{xy}
+\usepackage{paralist}
+\usepackage[colorlinks=true]{hyperref}
+\usepackage{array}
+\usepackage{tikz}
+\usepackage{slashed}
+\usepackage{pdfpages}
+\usepackage{cite}
+\usepackage{url}
+\usepackage{amsmath,amsfonts,amssymb}
+\usepackage{tikz}
+\usetikzlibrary{arrows,matrix,positioning}
+\usetikzlibrary{overlay-beamer-styles}
+\usetikzlibrary{matrix.skeleton}
+\usetikzlibrary{automata,positioning}
+\usepackage{listings}
+\usepackage{multirow}
+\usepackage{color}
+
+\begin{document}
+
+$
+A=
+\begin{bmatrix}
+A_{11} & A_{12}\\
+A_{21} & A_{22}
+\end{bmatrix},
+B=
+\begin{bmatrix}
+B_{11} & B_{12}\\
+B_{21} & B_{22}
+\end{bmatrix},
+C=
+\begin{bmatrix}
+C_{11} & C_{12}\\
+C_{21} & C_{22}
+\end{bmatrix}
+$
+
+\medskip
+$
+A \cdot B = C
+$
+
+\medskip
+$
+C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}\\
+C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}\\
+C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}\\
+C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}
+$
+
+\medskip
+\begin{math}
+\begin{aligned}
+\text{I} &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\
+\text{II} &= (A_{21} + A_{22}) \cdot B_{11} \\
+\text{III} &= A_{11} \cdot (B_{12}-B_{22}) \\
+\text{IV} &= A_{22} \cdot (-B_{11}+B_{21}) \\
+\text{V} &= (A_{11} + A_{12}) \cdot B_{22} \\
+\text{VI} &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})) \\
+\text{VII} &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \\
+\end{aligned}
+\end{math}
+
+
+\medskip
+\begin{math}
+\begin{aligned}
+C_{11} &= \text{I} + \text{IV} - \text{V} + \text{VII} \\
+C_{21} &= \text{II} + \text{IV} \\
+C_{12} &= \text{III} + \text{V}\\
+C_{22} &= \text{I} + \text{III} - \text{II} + \text{VI} \\
+\end{aligned}
+\end{math}
+
+
+\medskip
+\begin{math}
+\begin{aligned}
+C_{11} &= \text{II} + \text{IV} \\
+C_{11} &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) + A_{22} \cdot (-B_{11}+B_{21}) - (A_{11} + A_{12}) \cdot B_{22} + (A_{12} - A_{22}) \cdot (B_{21} + B_{22})C_{21} \\
+C_{11} &= A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22} -A_{22}B_{11}+A_{22}B_{21} - A_{11}B_{22} - A_{12}B_{22}+ A_{12}B_{21} + A_{12}B_{22} - A_{22}B_{21} - A_{22}B_{22} \\
+C_{11} &= A_{11}B_{11} + A_{12}B_{21}
+\end{aligned}
+\end{math}
+
+\section{Winograd}
+
+$
+x_1 y_1 + x_2 y_2 = (x_1 +y_2)(y_1 + x_2)-x_1 x_2 - y_1 y_2
+$
+
+$
+x = (x_1, \cdots, x_n), y=(y_1, \cdots, y_n)
+$
+
+\[
+\xi = \sum_{j=1}^{ \lfloor n/2 \rfloor} x_{2j-1} \cdot x_{2j}
+\]
+
+\[
+\eta = \sum_{j=1}^{ \lfloor n/2 \rfloor} y_{2j-1} \cdot y_{2j}
+\]
+
+\[
+\langle x,y \rangle =
+\begin{cases}
+ \displaystyle \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta & \text{if $n$ is even}\\
+\displaystyle \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta + x_n y_n & \text{if $n$ is odd}
+\end{cases}
+\]
+
+\end{document}
diff --git a/buch/papers/multiplikation/tikz_formulas/algo_graph.fdb_latexmk b/buch/papers/multiplikation/tikz_formulas/algo_graph.fdb_latexmk
new file mode 100644
index 0000000..ddfa880
--- /dev/null
+++ b/buch/papers/multiplikation/tikz_formulas/algo_graph.fdb_latexmk
@@ -0,0 +1,245 @@
+# Fdb version 3
+["pdflatex"] 1621585121 "algo_graph.tex" "algo_graph.pdf" "algo_graph" 1621585184
+ "/dev/null" 1621583990 0 d41d8cd98f00b204e9800998ecf8427e ""
+ "/etc/texmf/web2c/texmf.cnf" 1619433543 475 c0e671620eb5563b2130f56340a5fde8 ""
+ "/usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc" 1165713224 4850 80dc9bab7f31fb78a000ccfed0e27cab ""
+ "/usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map" 1577235249 3524 cb3e574dea2d1052e39280babc910dc8 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/jknappen/ec/ecrm1000.tfm" 1136768653 3584 adb004a0c8e7c46ee66cad73671f37b4 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm" 1229303445 688 37338d6ab346c2f1466b29e195316aa4 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs5.tfm" 1229303445 684 3a51bd4fd9600428d5264cf25f04bb9a ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs7.tfm" 1229303445 692 1b6510779f0f05e9cbf03e0f6c8361e6 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxmi.tfm" 1136768653 1056 e2202af076e43d03fc17f87e104021b0 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmr.tfm" 1136768653 4452 0fd0a792eaab7113e4d4f1b941ff0367 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmri.tfm" 1136768653 4640 ce59980bcbe9e6236fab46d0b5212c7e ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxr.tfm" 1136768653 1004 c0e991f864f31f017ea4ff9e451b76d4 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/t1xr.tfm" 1136768653 6716 6d25a377562601272906e3bfe6b2817a ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm" 1136768653 1080 b674b4ba143004461509a754a0984b67 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm" 1136768653 688 f56006d6e56f46e63d9f63252958b828 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm" 1136768653 2584 cf4a6a7c2a518d47468fe29ef0913ba0 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm" 1232065820 1944 f854e259cb2839e49d4aa2949544a6e1 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm" 1136768653 1180 72784d0ee5a983fba99a0986b31b0493 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm" 1136768653 2408 aec793a3c45e495f7ad15b227c91f508 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm" 1136768653 1268 1d124f224979493f8fd017a7597ea1cd ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm" 1136768653 972 2c9ffac4bbd20f91c01aaef9bf3f8710 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm" 1136768653 988 098ca7e8cc5647b9ac21b82dbdce1f01 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm" 1136768653 1084 75e807e9e71f7a312e4e1187dce5e93b ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xyatip10.tfm" 1381187214 608 50246cc71b0635b0ba0a5c10a0bf4257 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xybsql10.tfm" 1381187214 608 4db60f15ea23b4ec2d796c6d568a63fa ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xybtip10.tfm" 1381187214 608 50246cc71b0635b0ba0a5c10a0bf4257 ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycirc10.tfm" 1381187214 844 3393210079fb4ed9347e214b3bfd7c1a ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycmat10.tfm" 1381187214 608 f124f78ed50a1817738d2adb190cf2bd ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycmbt10.tfm" 1381187214 608 f124f78ed50a1817738d2adb190cf2bd ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xydash10.tfm" 1381187214 984 5c01c46b93e3ba8369f3f8edc6e62aef ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xyluat10.tfm" 1381187214 608 a3a3bc08980c5126ff2a7a68fb5a64ff ""
+ "/usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xylubt10.tfm" 1381187214 608 a3a3bc08980c5126ff2a7a68fb5a64ff ""
+ "/usr/share/texlive/texmf-dist/fonts/type1/public/txfonts/rtxr.pfb" 1136849748 6339 e2b78706efdc360ee6aec9b6e20211a7 ""
+ "/usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmr8a.pfb" 1136849748 46026 6dab18b61c907687b520c72847215a68 ""
+ "/usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmri8a.pfb" 1136849748 45458 a3faba884469519614ca56ba5f6b1de1 ""
+ "/usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/t1xr.vf" 1136768653 2140 99e5b3a34695df6221a167ffa8b498d6 ""
+ "/usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txmi.vf" 1232065820 960 cfcc9d587b40b769f64408b3ca115941 ""
+ "/usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txr.vf" 1136768653 904 e582cae2d8ae3f48a0a520440ebcdb51 ""
+ "/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii" 1461363279 71627 94eb9990bed73c364d7f53f960cc8c5b ""
+ "/usr/share/texlive/texmf-dist/tex/generic/atbegshi/atbegshi.sty" 1575674566 24708 5584a51a7101caf7e6bbf1fc27d8f7b1 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty" 1576625341 40635 c40361e206be584d448876bba8a64a3b ""
+ "/usr/share/texlive/texmf-dist/tex/generic/bitset/bitset.sty" 1576016050 33961 6b5c75130e435b2bfdb9f480a09a39f9 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/etexcmds/etexcmds.sty" 1576625273 7734 b98cbb34c81f667027c1e3ebdbfce34b ""
+ "/usr/share/texlive/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty" 1576625223 8371 9d55b8bd010bc717624922fb3477d92e ""
+ "/usr/share/texlive/texmf-dist/tex/generic/iftex/ifluatex.sty" 1572645307 492 1994775aa15b0d1289725a0b1bbc2d4c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/iftex/ifpdf.sty" 1572645307 480 5778104efadad304ced77548ca2184b1 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/iftex/iftex.sty" 1573336935 6902 30fdaf7dc5636b8e3afa306210c45cae ""
+ "/usr/share/texlive/texmf-dist/tex/generic/iftex/ifvtex.sty" 1572645307 1057 525c2192b5febbd8c1f662c9468335bb ""
+ "/usr/share/texlive/texmf-dist/tex/generic/infwarerr/infwarerr.sty" 1575499628 8356 7bbb2c2373aa810be568c29e333da8ed ""
+ "/usr/share/texlive/texmf-dist/tex/generic/intcalc/intcalc.sty" 1576625065 31769 002a487f55041f8e805cfbf6385ffd97 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty" 1576878844 5412 d5a2436094cd7be85769db90f29250a6 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/kvsetkeys/kvsetkeys.sty" 1576624944 13807 952b0226d4efca026f0e19dd266dcc22 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty" 1576624883 18552 1e1cc7b75da0dfaacce7cdcb27d306bf ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pdfescape/pdfescape.sty" 1576015897 19007 15924f7228aca6c6d184b115f4baa231 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex" 1557692582 992 fb3cda354707a54fda62787a411c7c22 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex" 1546728038 43820 bc6cf5aa959817914ace33f5c6232161 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex" 1557692582 19324 c9a64402f22bd8d81821141a357af653 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex" 1546728038 6038 d639d02574be9a72f3c602c2a3510e02 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex" 1546728038 6948 284bbe3c9a7ca0a826c1c03895e69b9f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex" 1546728038 4883 a6f3eb1f71d8c4affaf43a169828b043 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex" 1546728038 2544 3b1b198fd49f01e328adc9162a07b213 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex" 1576793519 44189 1fd6229dad4c898883516c032f2ca5d2 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex" 1546728038 17311 3092579be20ef0f229c42ad3f09da85c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex" 1546728038 21302 d6c4b340248adbe650ebf6ca76bdccca ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex" 1562964315 9690 7585efa5a591822837f837bc5bc35621 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex" 1576793519 33335 942ccafe284041918d36e54696b98aa7 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex" 1546728038 2965 502761b60f43ab2de5ecb2f4625163ae ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex" 1546728038 5196 f8c5c775d4d6e2cb050392127cabda72 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex" 1576793519 20726 ed6ec1d6f0f35e7a93de4e79af83dbce ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex" 1557692582 35249 144a6b9c4df4644618bb3a0a40472608 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex" 1546728038 21989 266e83c51fe41eb8b8d5e6896dc71cc1 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex" 1546728038 8842 5cc856e132fac404805c6da091779283 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryarrows.code.tex" 1546728038 319 8fc6edce901e074ba09de320a8fc686b ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryautomata.code.tex" 1546728038 3986 c962be8d57437fcaf853d2babd8ed403 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarybackgrounds.code.tex" 1546728038 4572 980c82f01c0e3983edadbbc373d304cb ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfit.code.tex" 1546728038 3643 4a4bd51bd85886cc39d4073af8cf77a9 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarymatrix.code.tex" 1546728038 4202 e655aa2657da1088ec7745ece2876c4c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarypositioning.code.tex" 1546728038 3937 20cd45386ca23052ce976464f0ada984 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshapes.multipart.code.tex" 1546728038 919 da625675781832f2b61a7048a51ef656 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex" 1576793519 11544 2a5d66a3270abf4ef673e8a0b7734a90 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex" 1576967981 187592 7922ceab1864698dec4c84978d5b182f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.code.tex" 1546728038 31874 d843d507175f2bdfa3abf01f0349dac8 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex" 1546728038 32995 a4d54c043ae5274ceaaddeb36ad43a6f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/shapes/pgflibraryshapes.multipart.code.tex" 1546728038 62281 fd68e6d2c2dc178611c8f4d2d86e79ae ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfint.code.tex" 1557692582 3063 8c415c68a0f3394e45cfeca0b65f6ee6 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex" 1557692582 521 c70cf6ad609de83a27ee7929eb356332 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex" 1557692582 13391 933cab19c6d27039dbfc487330d1005a ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex" 1557692582 104938 15f2d8bdabd6bf9ca70f62cd8e3d4940 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex" 1557692582 10157 218d58ab074e5bd0d027de45ec64cc00 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex" 1576793519 28176 568b081ec39645f2db1a29fbd0c635e2 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex" 1562964315 9054 388d21239a1b6df2cc8beaae31c976b0 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.tex" 1557692582 3865 cddf7ddc80f018587c55afdcc79fc333 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics.code.tex" 1557692582 3177 27d85c44fbfe09ff3b2cf2879e3ea434 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex" 1557692582 10925 df50b8a6e5660a585e3a2bf55726dcc8 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex" 1562964315 7787 1750fc3f164703caf31fc8ea9218c67e ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex" 1557692582 3379 cbd0948a550bd7a495a160ca6beee9ed ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code.tex" 1557692582 92405 bba89470858d7b0788a9c09331c39653 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex" 1576793519 36526 453db1f8626a56b5ebb0fad496d6a39f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex" 1576793519 8471 b18959397c76e1e582402ab9f592ed9f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex" 1576793519 21201 46a4dded6619f990ac7347f99fbaac9f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex" 1557692582 16121 9e240115374a8d489f2f786115df83a9 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex" 1576793519 43259 3e05ba63539916af2eaca603c2eda780 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/pgf.revision.tex" 1578520427 465 1f401ab1e7fc6cb7ede39e96c66531fd ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg" 1557692582 926 70ff613fabeb70f5d1673dc0c93987bd ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def" 1557692582 5546 3586827e6032c95512b2a6682d2979a3 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def" 1562964315 12603 c02869ea216d842c29d52fae8738264e ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex" 1557692582 60269 e86bc0081af83a4ad47e4500ee09a2e4 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex" 1557692582 1896 82c274ff520f9e450ccea4e3ef4edc12 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex" 1557692582 7778 a25a32a10ca820357491d4c7b3ac02ea ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex" 1562964315 23777 cb6c8f02f87d86d621f5cb92c44f4998 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex" 1576793519 36815 f7f1772c398f07af2cb741992963045c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeysfiltered.code.tex" 1562964315 37439 bd44d50aef702b03193f731207931834 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex" 1557692582 4494 7e5ace0ccf59408f2cf63219a5d36927 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.tex" 1557692582 7250 03b2b9fb5fa38e7ca5cc3c45860fb210 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex" 1576793519 28309 488ccc6c701bbdd1bf671f708757aa5c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def" 1562964315 6286 1bd76fc45da9929ab2a64f51cba3ab6f ""
+ "/usr/share/texlive/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty" 1576624663 7008 f92eaa0a3872ed622bbf538217cd2ab7 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xkeyval/keyval.tex" 1403829539 2725 fc34ef3ccb37ba15a640e8fca6190bca ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkeyval.tex" 1417732693 19231 26434a5656c684f5ffb1f26f98006baa ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkvutils.tex" 1403829539 7677 6f5ce7c1124cad7ec57d05b2562bd8fe ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xy.sty" 1312310545 4692 1e1bcf75c622af1eefd9169948208302 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xy.tex" 1381187214 115380 413d5f789929a45aab7d12ce0d0aee7d ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyall.tex" 1312310545 1449 24340b6befc66d28ee1ebb657efb5892 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyarrow.tex" 1312310545 22657 990ce136a3cc15728ba417a2e78b25c8 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xycmtip.tex" 1312310545 1374 43fb8dc80dd748631d78096701166d76 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xycolor.tex" 1312310545 4586 edd672434f45626662368282c0322160 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xycurve.tex" 1312310545 109670 d412ee1ff259daefee5e927172e2f9a8 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyframe.tex" 1337903317 24249 186931a828664624939ab0b347e3952c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xygraph.tex" 1312310545 9619 b7e4d9a6936ba2ad6119a280abde9641 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyidioms.tex" 1312310545 2907 1ee562fde0b53c9cd16f7a604f33fdf0 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyline.tex" 1312310545 10928 c3a572983ccc9fc596b4e9ce454d5652 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xymatrix.tex" 1312310545 22583 25b1e7edeee41f181ee9733429da4a9c ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-co.tex" 1312310545 8442 90cb8a3b00c2081384c1ce988d2ba0a3 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-cu.tex" 1312310545 39762 25a964ebb390bcfcd35c040f477eef1d ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-fr.tex" 1312310545 16485 5686b19cc46d046c885428794ed9c114 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-li.tex" 1312310545 2619 1a12b316e2132654e44ba2cd21def637 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-ro.tex" 1312310545 5290 e16fc85c85f64d0a5c04708bf3312d00 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf.tex" 1312310545 18763 e61049d36bdfccb226f22e582d70d368 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyrecat.tex" 1312310545 1391 c8763fc8e281cb6ecf697988b6608e4a ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xyrotate.tex" 1312310545 7008 cb768d8d63a12d35607cbb3c4e7ba163 ""
+ "/usr/share/texlive/texmf-dist/tex/generic/xypic/xytips.tex" 1381187214 3689 0d51788a4141bc66ab896f7ac63495fd ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty" 1513722769 12604 3dec726c041422879dc3268237f09026 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty" 1359763108 5949 3f3fd50a8cc94c3d4cbf4fc66cd3df1c ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty" 1359763108 13829 94730e64147574077f8ecfea9bb69af4 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty" 1523134290 2211 ca7ce284ab93c8eecdc6029dc5ccbd73 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amscd.sty" 1523134290 5309 0c9ef5db85b924cdbb316f080dfd826e ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty" 1523134290 4161 7f6eb9092061a11f87d08ed13515b48d ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty" 1580683321 85660 baee036978c7a91f4e2bba43f05e5945 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty" 1523134290 4116 32e6abd27229755a83a8b7f18e583890 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty" 1523134290 2432 8ff93b1137020e8f21930562a874ae66 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/aobs-tikz/tikzlibraryoverlay-beamer-styles.code.tex" 1389658833 4047 82a015585c1ef210fb6750d6322afa7f ""
+ "/usr/share/texlive/texmf-dist/tex/latex/atveryend/atveryend.sty" 1576191570 19336 ce7ae9438967282886b3b036cfad1e4d ""
+ "/usr/share/texlive/texmf-dist/tex/latex/auxhook/auxhook.sty" 1576625391 3935 57aa3c3e203a5c2effb4d2bd2efbc323 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/article.cls" 1580683321 20023 e427dd9e17e239bf926ef3aab67fe35e ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty" 1581632200 4947 0c2888dd88121ae675fc6e82213623ba ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty" 1580683321 5159 892429808d9e0e2b3548aaefd9a06ed0 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty" 1580683321 5050 8933a39ad74377accd18991c5eb90c58 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/size10.clo" 1580683321 8446 9874cccac5fee462272c582807dbbf56 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/base/textcomp.sty" 1581112666 2821 2c0928feafd5527387e29a1af774d030 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/carlisle/slashed.sty" 1137109962 5327 8b3c95b5f71136add36a4a0bb1507594 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/cite/cite.sty" 1425427964 26218 19edeff8cdc2bcb704e8051dc55eb5a7 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty" 1579991033 13886 d1306dcf79a944f6988e688c1785f9ce ""
+ "/usr/share/texlive/texmf-dist/tex/latex/eso-pic/eso-pic.sty" 1526160256 11991 c1669f88e13f8bb6243df144e456b477 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty" 1548974385 11128 a53805799bebfed6358fc1658a18e41f ""
+ "/usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty" 1578002852 41601 9cf6c5257b1bc7af01a58859749dd37a ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg" 1459978653 1213 620bba36b25224fa9b7e1ccb4ecb76fd ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg" 1465944070 1224 978390e9c2234eab29404bc21b268d1e ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def" 1515537368 17334 520b9b85ad8a2a48eda3f643e27a5179 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty" 1580683321 16932 04729abe63b66ec59ea56edcd722b058 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty" 1580683321 9067 1b996612394a52e1efe89c8bfe8a5892 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics/lscape.sty" 1580683321 1753 f80abc75c0e3a4915097779c2649cc98 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty" 1580683321 3976 d7fa7d81d2870d509d25b17d0245e735 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/hycolor/hycolor.sty" 1580250785 17914 4c28a13fc3d975e6e81c9bea1d697276 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def" 1579642962 50630 3d9728faf8630190cf601ce2cbe470d9 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty" 1579642962 238752 60dd338d71b6a4ab2192131f73dc908b ""
+ "/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty" 1579642962 13244 0070bcab7b5a88187847128d22faf4d8 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def" 1579642962 14134 32b36577d311ddb6522413c7581ee968 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/jknapltx/mathrsfs.sty" 1137110241 300 12fa6f636b617656f2810ee82cb05015 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/jknapltx/ursfs.fd" 1137110241 548 cc4e3557704bfed27c7002773fad6c90 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/kvoptions/kvoptions.sty" 1575152344 22520 c4c2dab203104295e1e618be7e5c0f5b ""
+ "/usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdfmode.def" 1580854751 25404 9d60f463a00d154207ec0048dee27cf0 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty" 1581719662 4381 04628f3002bdd1d9c43ef984fd60ae18 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty" 1581719662 81717 e93576ac4b24ce6e121ebd6ec6cf2893 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg" 1279039959 678 4792914a8f45be57bb98413425e4c7af ""
+ "/usr/share/texlive/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty" 1575499565 5766 13a9e8766c47f30327caf893ece86ac8 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.ltd.tex" 1546728170 98047 c6fa29828cc60471827afe275c8bd77f ""
+ "/usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.sty" 1546638616 18060 8cf65af2c4529eed91b5d364b50d3ada ""
+ "/usr/share/texlive/texmf-dist/tex/latex/listings/listings.cfg" 1568236792 1830 bbaba8afaf42cc048ec4d4ff73467521 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/listings/listings.sty" 1568236792 80511 830f3f1d3ab7448dd84233e9c2f6462c ""
+ "/usr/share/texlive/texmf-dist/tex/latex/listings/lstmisc.sty" 1568236792 77022 32914f01b528131c47be2a1040d3856d ""
+ "/usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/pgflibrarymatrix.skeleton.code.tex" 1565039202 19612 007f8469df07e9ef0f680e346cc01945 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/tikzlibrarymatrix.skeleton.code.tex" 1565039202 7267 4d597b08b2429acaa1e526052d9509ed ""
+ "/usr/share/texlive/texmf-dist/tex/latex/ms/everyshi.sty" 1177890616 3878 6aa7c08ff2621006e0603349e40a30a8 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/multirow/multirow.sty" 1559339157 5486 a1d954b09782ba0acd8a8abfd98e1028 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/paralist/paralist.sty" 1485124581 14857 82c76ebe8f06becf69ab309565b2a0cb ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pdflscape/pdflscape.sty" 1575674318 6575 25396d208d8f2b9395d06ef315d5886c ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pdfpages/pdfpages.sty" 1580249532 54071 88f1e37dc9e1f95352061a066ed07263 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pdfpages/pppdftex.def" 1580249532 6418 197ed301e61ce5b7f446e70345a43a62 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pdftexcmds/pdftexcmds.sty" 1574631863 19963 36fd8e818f9f0f32e2db8413d4970122 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty" 1546728038 1090 d20f587ea9464d1841bd0d13d3ff9856 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty" 1288312291 410 5bf12ea7330e5f12c445332a4fe9a263 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty" 1546728038 21013 e98e1aaaf40d31632787c2bd25d24b57 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty" 1546728038 989 2cf3da8e8ec55131c49389428d565e37 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty" 1203877327 339 592cf35cba3d400082b8a9a5d0199d70 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/math/pgfmath.sty" 1393459310 306 0796eafca5e159e6ec2167a6d22d81b1 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty" 1393459310 443 0b2e781830192df35c0fd357cf13e26e ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgffor.sty" 1393459310 348 8927fde343487e003b01a4c2ca34073b ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty" 1203727794 274 4cad6e665cc93ac2ac979039a94fa1e1 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty" 1203877327 325 2bcd023400636339210573e2b3ee298b ""
+ "/usr/share/texlive/texmf-dist/tex/latex/psnfss/times.sty" 1156702453 857 6c716f26c5eadfb81029fcd6ce2d45e6 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/refcount/refcount.sty" 1576624809 9878 9e94e8fa600d95f9c7731bb21dfb67a4 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty" 1575674187 9715 b051d5b493d9fe5f4bc251462d039e5f ""
+ "/usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cfg" 1522098998 1015 662b4d7ad816b857a598284525f5c75e ""
+ "/usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cls" 1522098998 28890 df75e6d37f47b7e27bff3f37375336b3 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/tools/array.sty" 1580683321 12560 ce3f59ceae9d9a27bfe037d6bf1d903c ""
+ "/usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty" 1580683321 10216 5efd55f2010055e7b7875afd6a75be82 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/tools/shellesc.sty" 1580683321 4120 d1680a5ff60d0aea9c327e07c030f4e9 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/omltxmi.fd" 1137111002 492 e7f8afe4428797548d4301de03a1b15f ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/omstxsy.fd" 1137111002 329 6ac7e19535b9f1d64e4d8e3f77dc30a3 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/omxtxex.fd" 1137111002 312 11fe1916b0a13a81a05234a6fc7f8738 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/ot1txr.fd" 1137111002 1271 4e3afbd8e832f2f9c7f064894e6e68e4 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/t1txr.fd" 1137111002 1242 cbf8a0d4f750f9833a0bfb05fb39f1cb ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/txfonts.sty" 1206746551 50381 d367461010070c7a491b1f6979ab2062 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxexa.fd" 1137111002 310 1b00b0b05685b816e4c6caccce437e0d ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxmia.fd" 1137111002 334 87436a82076ca2e35cd305f852507afc ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsya.fd" 1137111002 310 cee07e4964749ccbc77d84fc49726a79 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyb.fd" 1137111002 310 8c5467c8932c259af51b0f116c9734bd ""
+ "/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyc.fd" 1137111002 310 4b5d6fe830337242ef847b3bff48ba21 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/url/url.sty" 1388531844 12796 8edb7d69a20b857904dd0ea757c14ec9 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty" 1463002160 55589 34128738f682d033422ca125f82e5d62 ""
+ "/usr/share/texlive/texmf-dist/tex/latex/xkeyval/xkeyval.sty" 1417732693 4962 9c1069474ff71dbc47d5006555e352d3 ""
+ "/usr/share/texlive/texmf-dist/web2c/texmf.cnf" 1581979058 38841 ce3692aa899bb693b90b87eaa5d4d84e ""
+ "/usr/share/texmf/web2c/texmf.cnf" 1581979058 38841 ce3692aa899bb693b90b87eaa5d4d84e ""
+ "/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map" 1619433582 4770781 1ed1abab22da9c3e2cc82e4db562318b ""
+ "/var/lib/texmf/web2c/pdftex/pdflatex.fmt" 1619433611 8255863 afe1ed795207f6401d11bafd6327aa55 ""
+ "algo_graph.aux" 1621585123 662 b2b94621371df8d9296b8bf5bec1b851 "pdflatex"
+ "algo_graph.out" 1621585122 0 d41d8cd98f00b204e9800998ecf8427e "pdflatex"
+ "algo_graph.tex" 1621585144 5895 0e03594e6e25b7f3671b72694de0d3f4 ""
+ (generated)
+ "algo_graph.out"
+ "algo_graph.pdf"
+ "algo_graph.aux"
+ "algo_graph.log"
diff --git a/buch/papers/multiplikation/tikz_formulas/algo_graph.fls b/buch/papers/multiplikation/tikz_formulas/algo_graph.fls
new file mode 100644
index 0000000..bd1c14e
--- /dev/null
+++ b/buch/papers/multiplikation/tikz_formulas/algo_graph.fls
@@ -0,0 +1,485 @@
+PWD /home/nunigan/Documents/MSE/FS21/SeminarMatrizen/buch/papers/multiplikation/tikz_formulas
+INPUT /etc/texmf/web2c/texmf.cnf
+INPUT /usr/share/texmf/web2c/texmf.cnf
+INPUT /usr/share/texlive/texmf-dist/web2c/texmf.cnf
+INPUT /var/lib/texmf/web2c/pdftex/pdflatex.fmt
+INPUT algo_graph.tex
+OUTPUT algo_graph.log
+INPUT /usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cls
+INPUT /usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cls
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/shellesc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/shellesc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/shellesc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifluatex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifluatex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifluatex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/iftex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/iftex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/xkeyval/xkeyval.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/xkeyval/xkeyval.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkeyval.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkvutils.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xkeyval/keyval.tex
+INPUT /dev/null
+INPUT /usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/standalone/standalone.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/article.cls
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/article.cls
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/size10.clo
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/size10.clo
+INPUT /usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifvtex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifvtex.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
+INPUT /usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/jknappen/ec/ecrm1000.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/psnfss/times.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/psnfss/times.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/jknapltx/mathrsfs.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/jknapltx/mathrsfs.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdfmode.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdfmode.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.ltd.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/lipsum/lipsum.ltd.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amscd.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amscd.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/textcomp.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/textcomp.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/txfonts.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/txfonts.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xy.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xy.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xy.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyrecat.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyidioms.tex
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xydash10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xyatip10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xybtip10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xybsql10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycirc10.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifpdf.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/iftex/ifpdf.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyall.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyall.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycurve.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycurve.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyframe.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyframe.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycmtip.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycmtip.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xytips.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xytips.tex
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycmat10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xycmbt10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xyluat10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/xypic/xylubt10.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyline.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyline.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyrotate.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyrotate.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycolor.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xycolor.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xymatrix.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xymatrix.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyarrow.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xyarrow.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xygraph.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xygraph.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-co.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-cu.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-fr.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-li.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/xypic/xypdf-ro.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/paralist/paralist.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/paralist/paralist.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdftexcmds/pdftexcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdftexcmds/pdftexcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/infwarerr/infwarerr.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/infwarerr/infwarerr.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/kvsetkeys/kvsetkeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/kvsetkeys/kvsetkeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pdfescape/pdfescape.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pdfescape/pdfescape.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hycolor/hycolor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hycolor/hycolor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/auxhook/auxhook.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/auxhook/auxhook.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/kvoptions/kvoptions.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/kvoptions/kvoptions.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def
+INPUT /usr/share/texlive/texmf-dist/tex/generic/intcalc/intcalc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/intcalc/intcalc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/etexcmds/etexcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/etexcmds/etexcmds.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/url/url.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/url/url.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/bitset/bitset.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/bitset/bitset.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/atbegshi/atbegshi.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/atbegshi/atbegshi.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/atveryend/atveryend.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/atveryend/atveryend.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/array.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/array.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/ms/everyshi.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/ms/everyshi.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/pgf.revision.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/pgf.revision.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeysfiltered.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfint.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgffor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgffor.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/math/pgfmath.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pgf/math/pgfmath.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/carlisle/slashed.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/carlisle/slashed.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdfpages/pdfpages.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdfpages/pdfpages.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/eso-pic/eso-pic.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/eso-pic/eso-pic.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdfpages/pppdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdfpages/pppdftex.def
+INPUT /usr/share/texlive/texmf-dist/tex/latex/cite/cite.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/cite/cite.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryarrows.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryarrows.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarymatrix.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarymatrix.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarypositioning.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarypositioning.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/aobs-tikz/tikzlibraryoverlay-beamer-styles.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/aobs-tikz/tikzlibraryoverlay-beamer-styles.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/tikzlibrarymatrix.skeleton.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/tikzlibrarymatrix.skeleton.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/pgflibrarymatrix.skeleton.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/matrix-skeleton/pgflibrarymatrix.skeleton.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfit.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfit.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarybackgrounds.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarybackgrounds.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryautomata.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryautomata.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshapes.multipart.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshapes.multipart.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/shapes/pgflibraryshapes.multipart.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/shapes/pgflibraryshapes.multipart.code.tex
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/listings.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/listings.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/lstmisc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/lstmisc.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/listings.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/listings/listings.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/multirow/multirow.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/multirow/multirow.sty
+INPUT algo_graph.aux
+INPUT algo_graph.aux
+OUTPUT algo_graph.aux
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omltxmi.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omltxmi.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omstxsy.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omstxsy.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omxtxex.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/omxtxex.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxexa.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxexa.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/t1txr.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/t1txr.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/t1xr.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
+INPUT /usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
+INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/ot1txr.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/ot1txr.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsya.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsya.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyb.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyb.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/jknapltx/ursfs.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/jknapltx/ursfs.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs7.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs5.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxmia.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxmia.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyc.fd
+INPUT /usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyc.fd
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/refcount/refcount.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/refcount/refcount.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty
+INPUT /usr/share/texlive/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty
+INPUT algo_graph.out
+INPUT algo_graph.out
+INPUT algo_graph.out
+INPUT algo_graph.out
+INPUT ./algo_graph.out
+INPUT ./algo_graph.out
+OUTPUT algo_graph.out
+OUTPUT algo_graph.pdf
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdflscape/pdflscape.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/pdflscape/pdflscape.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/lscape.sty
+INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/lscape.sty
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/t1xr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs5.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/t1xr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsy.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txex.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txmia.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyc.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txexa.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txmi.vf
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmri.tfm
+INPUT /var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txr.vf
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txmi.vf
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxmi.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmri.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txr.vf
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/txr.vf
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxptmr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/rtxr.tfm
+INPUT /usr/share/texlive/texmf-dist/fonts/vf/public/txfonts/t1xr.vf
+INPUT algo_graph.aux
+INPUT ./algo_graph.out
+INPUT ./algo_graph.out
+INPUT /usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc
+INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/txfonts/rtxr.pfb
+INPUT /usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmr8a.pfb
+INPUT /usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmri8a.pfb
diff --git a/buch/papers/multiplikation/tikz_formulas/algo_graph.pdf b/buch/papers/multiplikation/tikz_formulas/algo_graph.pdf
new file mode 100755
index 0000000..7f5a984
--- /dev/null
+++ b/buch/papers/multiplikation/tikz_formulas/algo_graph.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/tikz_formulas/algo_graph.tex b/buch/papers/multiplikation/tikz_formulas/algo_graph.tex
new file mode 100755
index 0000000..ad4228b
--- /dev/null
+++ b/buch/papers/multiplikation/tikz_formulas/algo_graph.tex
@@ -0,0 +1,140 @@
+\documentclass[border=10pt]{standalone}
+\usepackage[left=25mm,right=25mm,top=25mm,bottom=25mm]{geometry}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{times}
+\usepackage{geometry}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{mathrsfs}
+\usepackage{amsfonts}
+\usepackage{amsthm}
+\usepackage{lipsum}
+\usepackage{amscd}
+\usepackage{graphicx}
+\usepackage{fancyhdr}
+\usepackage{textcomp}
+\usepackage{txfonts}
+\usepackage[all]{xy}
+\usepackage{paralist}
+\usepackage[colorlinks=true]{hyperref}
+\usepackage{array}
+\usepackage{tikz}
+\usepackage{slashed}
+\usepackage{pdfpages}
+\usepackage{cite}
+\usepackage{url}
+\usepackage{amsmath,amsfonts,amssymb}
+\usepackage{tikz}
+\usetikzlibrary{arrows,matrix,positioning}
+\usetikzlibrary{overlay-beamer-styles}
+\usetikzlibrary{matrix.skeleton}
+\usetikzlibrary{automata,positioning}
+\usepackage{listings}
+\usepackage{multirow}
+\usepackage{color}
+
+\begin{document}
+
+\begin{tikzpicture}[ampersand replacement=\&]
+
+ \foreach \i in {1,...,4}
+ {
+ \small{
+ \matrix (X\i)[matrix of math nodes,nodes in empty cells,
+ nodes = {draw, minimum size=10mm,
+ anchor=center,
+ inner sep=0pt, outer sep=0pt},
+ column sep=-\pgflinewidth,
+ row sep=-\pgflinewidth,
+ ] at (0,-\i*5)
+ {
+ A_{11}B_{11} \& A_{12}B_{11} \& A_{21}B_{11} \& A_{22}B_{11} \\
+ A_{11}B_{21} \& A_{12}B_{21} \& A_{21}B_{21} \& A_{22}B_{21} \\
+ A_{11}B_{11} \& A_{12}B_{12} \& A_{21}B_{12} \& A_{22}B_{12} \\
+ A_{11}B_{22} \& A_{12}B_{22} \& A_{21}B_{22} \& A_{22}B_{22} \\
+ };}
+
+ \foreach \j in {1,...,7}
+ {
+ \matrix(M\i\j)[matrix of math nodes,nodes in empty cells,
+ nodes = {draw, minimum size=10mm,
+ anchor=center,
+ inner sep=0pt, outer sep=0pt},
+ column sep=-\pgflinewidth,
+ row sep=-\pgflinewidth,
+ ] at (\j*5,-\i*5)
+ {
+ \& \& \& \\
+ \& \& \& \\
+ \& \& \& \\
+ \& \& \& \\
+ };
+ }
+ }
+
+\huge{
+ \node at (-3,-20) {$C_{22}=$};
+ \node at (-3,-15) {$C_{21}=$} ;
+ \node at (-3,-10) {$C_{12}=$} ;
+ \node at (-3,-5) {$C_{11}=$} ;
+
+ \node at (5,-2) {I};
+ \node at (10,-2) {II};
+ \node at (15,-2) {III};
+ \node at (20,-2) {IV};
+ \node at (25,-2) {V};
+ \node at (30,-2) {VI};
+ \node at (35,-2) {VII};
+ }
+
+
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X1-1-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X1-2-2)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X2-3-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X2-4-2)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X3-1-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X3-2-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X4-3-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X4-4-4)] {};
+
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-4-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-1-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M14-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M14-2-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M15-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M15-4-2)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M17-2-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M17-4-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M17-2-2)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M17-4-2)] {};
+
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M23-3-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M23-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M25-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M25-4-2)] {};
+
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M32-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M32-1-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M34-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M34-2-4)] {};
+
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-4-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-1-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M42-1-4)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M42-1-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M43-3-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M43-4-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M46-1-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M46-1-1)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M46-3-3)] {};
+ \node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M46-3-1)] {};
+\end{tikzpicture}
+
+
+
+\end{document}
diff --git a/buch/papers/verkehr/main.tex b/buch/papers/verkehr/main.tex
index 6348993..98d0581 100644
--- a/buch/papers/verkehr/main.tex
+++ b/buch/papers/verkehr/main.tex
@@ -3,8 +3,7 @@
%
% (c) 2020 Hochschule Rapperswil
%
-\chapter{Thema\label{chapter:verkehr}}
-\lhead{Verkehrsfluss und Verkehrsnetze}
+\chapter{Verkehrsfluss und Verkehrsnetze\label{chapter:verkehr}}
\begin{refsection}
\chapterauthor{Pascal Andreas Schmid und Robine Luchsinger}
diff --git a/buch/papers/verkehr/section1.tex b/buch/papers/verkehr/section1.tex
index d96d450..416e311 100644
--- a/buch/papers/verkehr/section1.tex
+++ b/buch/papers/verkehr/section1.tex
@@ -1,99 +1,75 @@
-\section{Einführung}
\label{section:verkehr/einfuehrung}
-\subsection{Verkehrsnetze}
Das Verkehrsnetz besteht aus allen Anlagen, auf oder unter der Erdoberfläche, auf denen eine räumliche Fortbewegung von Personen oder auch Gütern stattfindet. Verkehrsnetze sind ein Bestandteil der Verkehrsinfrastruktur, die auf topografischen Karten festgehalten werden. Sie umfassen den Schienenverkehr, alle Strassen und Wege, wie auch Flugplätze und alle dazugehörigen Bauwerke.
Aus verkehrsgeografischer Sicht besteht das Verkehrsnetz aus Kanten, Knotenpunkten und dem Hinterland. Die Knotenpunkte werden auch hier durch die Kanten verbunden, die den Verkehrsstrom aufnehmen, wobei das Hinterland durch einzelne Knoten versorgt wird. Die Aufteilung in Kanten und Knotenpunkte ermöglicht eine Vereinfachung komplexer Verkehrsnetze, damit sie mittels der Graphentheorie untersucht werden können.
Grundsätzlich können kurze Wege zwischen den Knotenpunkten das Ziel beim Aufbau eines Verkehrsnetzes sein. Es kann aber auch versucht werden, die Bau- und Unterhaltskosten des Verkehrsnetzes in einem gewissen Rahmen zu halten. Aus diesen Vorgaben ergibt sich dann, je nach dem was gewünscht wird, eine grob- oder feinmaschige Struktur des Netzes.
Ziel ist aber ein möglichst wirtschaftliches und optimales Verkehrsnetz.
-\subsection{Suchalgorithmen}
+\section{Suchalgorithmen}
+Inbesondere bei Graphen in Form von Verkehrsnetzen ist das Finden eines kürzesten Weges von Interesse. Mathematisch betrachtet handelt es sich hierbei um ein Optimierungsproblem, bei dem die Summe der Kantengewichte zwischen zwei Knoten minimiert werden soll. Zu diesem Zweck existieren verschiedene Suchalgorithmen. In den folgenden Abschnitten wird auf eine Auswahl davon eingegangen. Zuvor ist es jedoch notwendig, einige Begriffe und Eigenschaften von Suchalgorithmen zu definieren.
-\subsubsection{Dijkstra-Algorithmus}
-Der Algorithmus von Dijkstra ist benannt nach seinem Erfinder dem Mathematik- und Infomratikprofessor Edsger Dijkstra. Den Algorithmus hat er im Jahr 1959 erfunden.
-Der Algorithmus von Dijkstra ist ein Greedy-Algorithmus (gieriger Algorithmus), der schrittweise einen Folgezustand auswählt, damit beim Zeitpunkt der Wahl der grösste Gewinn bzw. das beste Ergebnis erzielt werden kann.
-Trotz der Schnelligkeit der Greedy-Algorithmen, können viele Probleme nicht optimal gelöst werden.
-Vereinfacht wird beim Dijkstra-Algorithmus, ausgehend von einem Startknoten so lange dem kürzesten Pfad gefolgt, bis der Zielknoten erreicht wird. Dabei muss für jeden besuchten Knoten die Kostenfunktion als auch der Pfad dahin (vorheriger Knoten) gespeichert werden.
-Dadurch wird hingegen garantiert, dass, wenn der Zielknoten erreicht wird, auch der kürzeste Pfad gefunden wurde.
-Grundlegende Voraussetzung für den Dijkstra-Algorithmus ist die strikte Positivität der Kantengewichte. Andernfalls würde ein wiederholtes Ablaufen einer Kante mit negativem Gewicht zu einer stetigen Reduktion der Kostenfunktion führen, was zu einer unendlichen Schlaufe führen würde.
+Einerseits wird zwischen optimalen und nicht-optimalen Algorithmen unterschieden. Ein Suchalgorithmus gilt als optimal, falls er einen günstigsten Pfad zwischen zwei Knoten findet. Es gilt zu beachten, dass im Falle des Vorhandenseins von mehrerern Pfaden mit identischer, minimaler Summe der Kantengewichte zwischen zwei Knoten, mindestens einer dieser Pfade gefunden wird.
-Gegeben sei ein Netzwerk mit $n$ Knoten und dem Startknoten $a$.
-Alle Kanten sind mit $k(i, j)$ bewertet.
-Gesucht wird der kürzeste Pfad zwischen dem Startknoten und allen übrigen Knoten im Netz.
-$D(i)$ ist die kürzeste Distanz vom Startknoten $a$ zum Knoten $i, V(i)$ ist der unmittelbare Vorgängerknoten vom Knoten $i$ auf dem kürzesten Weg vom Startknoten $a$ zum Konten $i$ und die Menge $M$ ist die Menge einer bestimmten Auswahl an Knoten.
+Weiter wird zwischen informierten und uninformierten Algorithmen differenziert. Während uninformierte Suchalgorithmen den Suchraum schematisch auf Basis der Eigenschaften des Graphen absuchen, bis eine günstigste Lösung gefunden wurde, verwenden informierte Suchalgorithmen eine Heuristik zur Abschätzung der Suchrichtung. Oftmals wird bei informierten Algorithmen ein Verlust der Optimalität zugunsten einer verbesserten Rechenzeit in Kauf genommen. Es exisitieren jedoch auch Heurstiken, die eine optimale Lösung gewährleisten.
-Dabei gilt
-\begin{equation}M={a}\end{equation}
-\begin{equation}D(a)=0\end{equation} wobei
-\begin{equation}D(i)=\infty\end{equation} und
-\begin{equation}i \neq a \end{equation}
-Ausserdem gilt \begin{equation}V(i)=(-) \text{für alle Knoten $i$}\end{equation}\\
+Eine besondere Art von Suchalgorithmen stellen die sogenannten Greedy-Algorithmen, zu deutsch gierige Algorithmen, dar. Sie zeichnen sich dadurch aus, dass sie stets den zurzeit günstigsten Folgezustand auswählen. Dadurch sind sie in der Regel äusserst effizient, garantieren bei vielen Problemstellungen jedoch keine optimale Lösung.
-%THEORIE...
-Iteration
+\subsection{Dijkstra-Algorithmus}
+Der Algorithmus von Dijkstra ist benannt nach seinem Erfinder dem Mathematik- und Informatikprofessor Edsger Dijkstra. Er gehört zur Klasse der uninformierten Greedy-Algorithmen. Zudem ist die Optimalität bei strikt positiven Kantengewichten gewährleistet.
+Vorteilhaft ist die einfache Implementierung. Abhängig von der Programmiersprache sind zwischen 30 und 40 Zeilen an Code ausreichend, damit er den kürzesten Pfad zwischen einem Startknoten $a$ und Zielknoten $b$ finden kann.
-1. Auswahl eines Knotens \begin{equation} K\in M \text{mit} D(K)=D(i);i\in M\end{equation}
+Die für dieses Paper verwendete programmierte Funktion (MATLAB) verwendet eine abgewandelte Form der gewichteten Adjazenz-Matrix $A$, für welche gilt:
+Der Matrix-Eintrag $A_{i,j}$ enthält das Kantengewicht der Kante von Knoten $j$ nach $i$ auf. Falls keine Kante zwischen $j$ und $i$ vorhanden ist, beträgt der Eintrag $\infty$. Dies vereinfacht die Implementierung zur Bestimmung des nächst-günstigsten Pfades.
+Zudem werden zwei Hilfs-Vektoren $\vec{d}$ und $\vec{b}$ der Länge $n$ eingeführt, wobei $n$ die Anzahl Knoten des Graphen ist. Im Vektoreintrag $\vec{d}(i)$ wird das kummulierte Kantengewicht zur Erreichung von Knoten $i$ vom Startknoten $a$ gespeichert. Der Eintrag $\vec{d}(a)$ beträgt somit $0$. Im Vektor $\vec{b}$ wird zudem vermerkt, falls ein Knoten bereits als Ziel eines kürzesten Pfads gefunden wurde und somit für die weitere Suche nicht mehr berücksichtigt werden muss ($\vec{b}(i)=1$, sonst $\vec{b}(i)=0$).
-2. Für alle Nachfolger $N(j)$ vom Knoten $K$ gilt:
-\begin{equation}D(K) + k_Kj < D(j)\end{equation} dann wird \begin{equation}D(j) = D(K) + k_Kj, V(j) = K\end{equation} gesetzt und somit wird der Knoten $j$ in die Menge $M$ aufgenommen.
+Ausgehend vom Startknoten $a$ wird nun anhand der Matrix $A$ in der Spalte $a$ nach dem kleinsten Eintrag gesucht. Somit wird der Folgeknoten $c$ gefunden. Dieser Vorgang wird nun wiederholt, wobei jedoch sämtliche von Knoten $a$ und $c$ erreichbaren Knoten berücksichtigt werden, die noch nicht besucht wurden. In anderen Worten alle nicht verschwindenden Einträge $i$ der Spalten $a$ und $c$ der Matrix $A$, für welche gilt $\vec{b}(i)=0$. Ausschlaggebend für die folgende Auswahl ist die Summe der kummulierten Kantengewichte und des Kantengewichts des nächsten Knotens. Als Beispiel zur Erreichung von Knoten $k$ über Knoten $j$:
+\begin{equation}
+\vec{d}(k)=\vec{d}(j)+A(k,j)
+\end{equation}
+Diese Iteration wird solange durchgeführt, bis der Folgeknoten dem Zielknoten entspricht.
-3. Der ausgewählte Knoten \begin{equation}K\in M\text{wird aus der Menge herausgelöscht}\end{equation}\\
-Diese drei Schritte werden so lange wiederholt bis gilt
-\begin{equation}M=\{\}\end{equation}
+\subsection{A*-Algorithmus}
+Der A*-Algorithmus basiert auf dem Dijkstra-Algorithmus, verwendet jedoch eine Heuristik zur Abschätzung der günstigsten Suchrichtung. Somit handelt es sich um einen informierten Greedy-Algorithmus, der abhängig von der verwendeten Heuristik auch optimal sein kann. Er wurde von Peter Hart, Nils Nilsson und Bertram Raphael entwickelt.
-\subsubsection{A*-Algorithmus}
-Suchalgorithmen werden nach einfachen (uninformierte) und heuristischen (informierten) Algorithmen unterschieden. Während einfache Algorithmen den Suchraum intuitiv durchsuchen, beziehen heuristische Algorithmen Wissen über den Suchraum mit ein.
-Der A*-Algorithmus geht auf seine Erfinder Peter Hart, Nils Nilsson und Bertram Raphael zurück, die den Algorithmus erstmals im Jahr 1968 beschrieben.
-Der A*-Algorithmus ist ein heuristischer Suchalgorithmus, der den kürzesten Pfad zwischen zwei Knoten in einem Graphen mit positiven Kantengewichten berechnet.
-Im Gegensatz zu einfachen Suchalgorithmen, wird beim A*-Algorithmus eine Schätzfunktion, die sogenannte Heuristik, verwendet. Dies ermöglicht ein zielgerichtetes Suchen und gleichzeitig wird die Laufzeit verringert.
-Ausserdem findet der A*-Algorithmus immer eine optimale Lösung, sofern eine vorhanden ist.
-Der A*-Algorithmus wird als Verallgemeinerung gehandhabt und gilt als Erweiterung des Dijkstra-Algorithmus.
+\subsection{Anwendung A*-Algorithmus}
+Wie oben erwähnt basiert der A*-Algorithmus auf dem Shortest-Path-Algorithmus von Dijkstra. Gemäss dem Algorihtmus von Dijkstra werden von einem Startknoten aus die jeweiligen Nachbarknoten, die Nachbarknoten der Nachbarknoten usw. verarbeitet. Die Kantengewichte werden dabei aufsummiert und die Priorität wird auf die Kante gelegt, die das geringste Gewicht aufweist. Mit diesem Verfahren wird sichergestellt, dass die erste gefundene Lösung auch eine optimale Lösung darstellt.\\
-\subsubsection{Anwendung A*-Algorithmus}
-Wie oben erwähnt basiert der A*-Algorithmus auf dem Shortest-Path-Algorithmus von Dijkstra. Gemäss dem Algorihtmus von Dijkstra werden von einem Startknoten aus die jeweiligen Nachbarknoten, die Nachbarknoten der Nachbarknoten usw. verarbeitet. Die Kantengewichte werden dabei aufsummiert und die Priorität wird auf die Kante gelegt, die das geringste Gewicht aufweist. Mit diesem Verfahren wird sichergestellt, dass die erste gefundene Lösung auch die optimalste Lösung darstellt.\\
+Der A*-Algorithmus unterscheidet sich vom Dijkstra-Algorithmus dahingehend, dass bei der Auswahl des Folgeknotens, nicht nur die Summe der Kantengewichte $\vec{d}(j)+A(k,j)$, sondern zusätzlich die für jeden Knoten definierte Abschätzfunktion $f(k)$ hinzuaddiert wird. Dies passiert jedoch nur bei der \emph{Auswahl} des Folgeknotens. Der Wert von $f(k)$ wird nicht im Eintrag $\vec{d}(k)$ gespeichert. Somit wird gewährleistet, dass der gefundene Pfad, der Summe der Kantengewichte entspricht. Ein Beispiel dafür, wie eine Abschätzfunktion gebildet werden kann findet sich in Abschnitt \ref{sec:verkehr/euklidische}
-Die Kantengewichte werden für jeden Knoten in Form einer Funktion dargestellt
-\begin{equation}f(n)=g(n)\end{equation} mit
-\begin{equation}g(n)=\text{Summe aller Kantengewichte vom Startknoten bis n}\end{equation}\\
-Der A*-Algorithmus erweitert die Vorgehensweise des Algorithmus von Dijkstra um die Heuristik $h(n)$, die für jeden Knoten $n$ die geschätzte Entfernung zum Zielknoten beschreibt.
-Somit gilt:
-\begin{equation}f(n)=g(n)+h(n)\end{equation}\\
-Wie auch der Algorithmus von Dijkstra findet der A*-Algorithmus die optimalste Lösung.
+\subsection{Euklidische Heuristik}
+\label{sec:verkehr/euklidische}
+Bei Verkehrsnetzen ist die euklidische Distanz eine gängige und zuverlässige Heurstik. Dabei wird zu den effektiven Reisekosten zum aktuellen Knoten die euklidische Distanz bis zum Zielknoten hinzuaddiert. Dadurch wird die Kostenfunktion konsequent nie überschätzt. Dies stellt eine Voraussetzung an eine zulässige Heuristik dar. Unter Verwendung dieser Heuristik gilt der A*-Algorithmus als optimal.
-\subsubsection{Floyd-Warshall-Algorithmus}
-Der Floyd-Warshall-Algorithmus, auch Tripel-Algorithmus genannt, wurde erstmals im Jahr 1962 von seinen Namensgebern Robert Floyd und Stephen Warshall vorgestellt.
-Der Floyd-Warshall-Algorithmus sucht kürzeste Wege innerhalb eines Graphen. Er ermittelt aber nicht nur die Distanz zwischen zwei Knoten, sondern berechnet die kürzesten Wege zwischen allen Knotenpaaren eines gewichteten Graphen. Somit werden die kürzesten , beziehungsweise die optimalsten Wege zwischen allen Paaren von Knoten berechnet. Der Floyd-Warhshall-Algrithmus kann ausserdem mit negativen Kantengewichten umgehen, sofern der Graph aber keinen negativen Kreis (Zyklus) aufweist. Ist dies der Fall, führt der Algorithmus zu einem falschen Ergebnis.
-Ein Kreis (Zyklus) in einem Graphen ist ein Weg, bei dem Start- und Endpunkt den gleichen Knoten aufweisen. Dieser wird negativ, wenn die Summe der gewichteten Kanten kleiner als Null wird.\\
-Der Floyd-Warshall-Algorithmus besteht grundsätzlich aus Floyd's Berechnung der kürzesten Distanzen zwischen zwei Knoten und Warshall's Konstruktion der kürzesten Wege. Werden diese beiden Teilgebiete zusammengefügt, ergibt sich der Floyd-Warshall-Algorithmus.
+Bei der euklidischen Heuristik wird die Abschätzfunktion $f(k)$ für jeden Knoten $k$ durch euklidische Distanz zum Zielknoten $b$ gebildet.
+\begin{equation}
+f(k)=\sqrt{(x_k-x_b)^2+(y_k-y_b)^2}
+\end{equation}
+
+Was bei einem physischen Verkehrsnetz einfach zu bewältigen ist, da Koordinaten von Verkehrsnetzen zur Berechnung der Distanz verwendet werden können, ist bei virtuellen Netzwerken (z.B. Servernetzen) entweder nicht möglich, oder nicht relevant. Hier können hingegen andere Eigenschaften des Netzwerks verwendet werden, auf welche in diesem Paper nicht weiter eingegangen wird.
-\subsubsection{Anwendung Floyd-Warshall-Algorithmus}
+\subsection{Floyd-Warshall-Algorithmus}
+Der Floyd-Warshall-Algorithmus, auch Tripel-Algorithmus genannt, wurde erstmals im Jahr 1962 von seinen Namensgebern Robert Floyd und Stephen Warshall vorgestellt.
+Der Floyd-Warshall-Algorithmus sucht kürzeste Wege innerhalb eines Graphen. Er ermittelt aber nicht nur die Distanz zwischen zwei Knoten, sondern berechnet die kürzesten Wege zwischen allen Knotenpaaren eines gewichteten Graphen. Somit werden die günstigsten Wege zwischen allen Paaren von Knoten berechnet. Der Floyd-Warhshall-Algrithmus kann ausserdem mit negativen Kantengewichten umgehen, sofern der Graph keinen negativen Kreis (Zyklus) aufweist. Ein Kreis, sprich ein Weg mit identischem Start- und Zielknoten, ist negativ, falls die Summe der Kantengewichte des Weges kleiner als null ist. Ist dies der Fall, führt der Algorithmus zu einem falschen Ergebnis.
-Wie oben erwähnt, besteht der Floyd-Warshall-Algorithmus aus dem Teil von Floyd zur Berechnung der kürzesten Pfade und dem Teil von Warshall zur Konstruktion der kürzesten Pfade.
+\subsection{Anwendung Floyd-Warshall-Algorithmus}
%THEORIE...
-Als erstes wird eine Gewichtsmatrix $W$ mit den Matrixeinträgen $W[i, j]$ erstellt.
+In einem ersten Schritt wird eine Gewichtsmatrix $W$ mit den Matrixeinträgen $W[i, j]$ erstellt.
Der Algorithmus berechnet danach in einer Hauptschleife alle Knoten $k$ von 1 bis $n$.
Dabei versucht er in jeder Iteration alle Wege von $i$ nach $j$ durch die Wege $(i, k)$ und $(k, j)$ zu verbessern.
-Falls dieser mögliche Umweg zu einer Verbesserung führt, wird der Algorithmus aktualisiert.
+Falls dieser mögliche Umweg zu einer Verbesserung führt, wird der entsprechende Eintrag aktualisiert.
Die aktuelle Gewichtung der Pfade wird mit
-\begin{equation}d[i, j]=min[d[i,j], d[i,k] + d[k,i]]\end{equation}
+\begin{equation}d[i, j]=\min[d[i,j], d[i,k] + d[k,i]]\end{equation}
ermittelt.
-\subsubsection{Euklidische Heuristik}
-Bei Verkehrsnetzen ist die euklidische Distanz eine gängige und zuverlässige Heurstik. Dabei wird zu den effektiven Reisekosten zum aktuellen Knoten die euklidische Distanz bis zum Zielknoten hinzuaddiert. Dadurch wird die Kostenfunktion konsequent nie überschätzt. Dies stellt eine Voraussetzung an eine zulässige Heuristik dar.
-Was bei einem physischen Verkehrsnetz einfach zu bewältigen ist, da Koordinaten von Verkehrsnetzen zur Berechnung der Distanz verwendet werden können, ist bei virtuellen Netzwerken (z.B. Servernetzen) entweder nicht möglich, oder nicht relevant.
-\subsection{PageRank-Algorithmus}
-Der PageRank-Algorithmus wurde von den Gründern von Google, Larry Page und Sergey Brin im Jahr 1996 entwickelt und zum Patent angemeldet. Zwei Jahre später gründeten sie ihr Unternehmen Google Inc..
-Beim PageRank-Algorithmus handelt es sich um den Algorithmus von Google, aus dem die Google-Matrix abgeleitet wird.
-Die Google-Matrix ist eine immens grosse Matrix mit Millionen Zeilen und Spalten, die für die schnelle und vor allem exakte Bestimmung der PageRanks (Gewichtung) eine grosse Bedeutung hat.
-Der PageRank-Algorithmus analysiert und gewichtet beispielsweise die Verlinkungsstruktur verschiedener Websites des World Wide Web anhand ihrer Struktur.
-Der PageRank wird umso höher, je mehr hochwertige Links auf eine Webseite verweisen und je höher die Gewichtung einer Webseite ist, desto grösser ist der Effekt.\\
-Dabei handelt es sich um einen iterativen Prozess. Ausgegangen wird von der Adjazenz-Matrix $A$, für welche gilt.
-%THEORIE...
-Grundsätzlich setzt sich der PageRank Algorithmus mit der Fragestellung auseinander, wie eine Suchmaschine wie Google Suchresultate bewertet und somit sortieren soll. Öfters aufgerufene Resultate sollen schliesslich höher gewichtet werden. Dabei wird angenommen, dass eine Website populärer ist, je mehr andere Websites darauf verweisen.
+\section{PageRank-Algorithmus}
+Der PageRank-Algorithmus wurde von den Gründern von Google, Larry Page und Sergey Brin im Jahr 1996 entwickelt und zum Patent angemeldet. Zwei Jahre später gründeten sie ihr Unternehmen Google Inc.
+Beim PageRank-Algorithmus handelt es sich nicht um einen Suchalgorithmus, stattdessen werden Knoten aufgrund der Vernetzung des vorliegenden Graphen bewertet.
+Verwendet wird er beispielsweise um die Verlinkungsstruktur verschiedener Websites des World Wide Web anhand ihrer Struktur zu bewerten und relevante Suchergebnisse zu ermittteln. Der PageRank wird umso höher, je mehr hochwertige Links auf eine Webseite verweisen und je höher die Gewichtung einer Webseite ist, desto grösser ist der Effekt.\\
+Dabei handelt es sich um einen iterativen Prozess. Ausgegangen wird von der Adjazenz-Matrix $A$, für welche folgendes gilt:
\begin{equation}
A_{i,j}=\left\{ \begin{matrix}
@@ -103,16 +79,20 @@ A_{i,j}=\left\{ \begin{matrix}
\label{verkehr:Adja}
\end{equation}
+%THEORIE...
+Grundsätzlich setzt sich der PageRank Algorithmus mit der Fragestellung auseinander, wie eine Suchmaschine wie Google Suchresultate bewertet und somit sortieren soll. Öfters aufgerufene Resultate sollen schliesslich höher gewichtet werden. Dabei wird angenommen, dass eine Website populärer ist, je mehr andere Websites darauf verweisen.
+
+
-Für ungerichtete Graphen mit $n$ Knoten gilt \begin{equation}A_{i,j}=A_{j,i}\end{equation} und weiter \begin{equation}A_{i,i}=0\quad\forall i\in \left\{1...n\right\}\end{equation}
+Für ungerichtete Graphen mit $n$ Knoten gilt \begin{equation}A_{i,j}=A_{j,i}\end{equation} und weiter \begin{equation}A_{i,i}=0\quad\forall i\in \left\{1\dot n\right\}\end{equation}
Beim PageRank-Algorithmus wird eine abgewandelte Form der Adjazenz-Matrix verwendet.
Dabei werden die Matrix-Einträge spaltenweise durch die jeweilige Spaltensumme geteilt.
-\begin{equation} P_{i,j}=\frac{A_{i,j}}{\sum_{i=1}^{n}A_{i,j}} \end{equation}
+\[ P_{i,j}=\frac{A_{i,j}}{\sum_{i=1}^{n}A_{i,j}} \]
Anschliessend multipliziert man diese Matrix $P$ mit einem Spaltenvektor $\Vec{r_0}$ mit $n$ Einträgen, für welchen gilt:
-\begin{equation} \Vec{r_0}(i) = \frac{1}{n} \quad\forall i\in \left\{1...n\right\} \end{equation}
+\[ \Vec{r_0}(i) = \frac{1}{n} \quad\forall i\in \left\{1\dot n\right\} \]
Dieser Vektor stellt ein neutrales Ranking dar. Alle Knoten werden gleich gewichtet.
-Dadurch erhält man wiederum einen $n$-zeiligen Spaltenvektor $\Vec{r_1}$, der das "erste" Ranking darstellt. Durch Multiplikation der ursprünglichen Matrix $P$ mit dem 1. Ranking-Vektor $\Vec{r_1}$ wird auf Basis des ersten Rankings ein zweites erstellt.
-\begin{equation} \Vec{r_2} = P\cdot\Vec{r_1} = P\cdot(P\cdot\Vec{r_0}) = P^2\cdot\Vec{r_0}\end{equation}
+Dadurch erhält man wiederum einen $n$-zeiligen Spaltenvektor $\Vec{r_1}$, der das ``erste" Ranking darstellt. Durch Multiplikation der ursprünglichen Matrix $P$ mit dem 1. Ranking-Vektor $\Vec{r_1}$ wird auf Basis des ersten Rankings ein zweites erstellt.
+\[ \Vec{r_2} = P\cdot\Vec{r_1} = P\cdot(P\cdot\Vec{r_0}) = P^2\cdot\Vec{r_0}\]
somit
\begin{equation} \Vec{r_i} = P^i\cdot\Vec{r_0}\end{equation}
-Der Vektor $\Vec{r_i}$ konvergiert zu einem Eigenvektor von $P$ und stellt das abschliessende Ranking dar.
+Der Vektor $\Vec{r_i}$ konvergiert zu einem Eigenvektor von $P$ der das abschliessende Ranking darstellt.
diff --git a/buch/papers/verkehr/section2.tex b/buch/papers/verkehr/section2.tex
index 638d9dd..527885e 100644
--- a/buch/papers/verkehr/section2.tex
+++ b/buch/papers/verkehr/section2.tex
@@ -1,12 +1,12 @@
\section{Versuchsreihe}
\label{section:verkehr/versuchsreihe}
-Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der \emph{Dijkstra}-, sowie der \emph{$A^*$}-Algorithmus auf das Netzwerk angewandt.
-Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal repetiert.
-Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Anzahl Kanten (engl. \emph{edges}) und $V$ die Anzahl Knoten (engl. \emph{vertices}) darstellt.
-Für den \emph{A*}-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zu $\mathcal{O}$ machen.
+Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der Dijkstra- und der A*-Algorithmus auf das Netzwerk angewandt.
+Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal wiederholt.
+Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(|E|\log{}|V|)$ auf, wobei $E$ die Menge der Kanten (engl. \emph{edges}) und $V$ die Menge der Knoten (engl. \emph{vertices}) des Graphen $G$ darstellt.
+Für den A*-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine definitive Angabe zur Zeitkomplexität machen.
-Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind.
+Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind.
\subsection{Einfluss der Knotenzahl auf die Rechenzeit}
\label{verkehr:Knotenzahl}
@@ -19,9 +19,9 @@ Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start-
\label{verkehr:Vr1}
\end{figure}
-In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen \emph{Dijkstra} und \emph{A*} erst aber einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt.
+In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen Dijkstra und A* erst ab einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt.
Die Effektivität von \emph{A*} mit euklidischer Heuristik ist wiederum grösser, wenn die Abweichung des kürzesten Pfads von der Luftlinie minimal ist.
-Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt.
+Abbildung \ref{verkehr:pathDifference} illustriert dies, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt.
\begin{figure}
\centering
@@ -36,13 +36,13 @@ Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei di
\begin{figure}
\centering
-\includegraphics[width=12cm]{papers/verkehr/figures/chart_Vr2.png}\\
+\includegraphics[width=12cm]{papers/verkehr/figures/chart_Vr2.png}
\caption{Gemessene Rechenzeiten der zweiten Versuchsreihe in Abhängigkeit der Knotenzahl.}
\label{verkehr:Vr2}
\end{figure}
-Zum Vergleich der Resultate in \ref{verkehr:Knotenzahl} zeigt \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was schlicht daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.\\
-Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen \emph{Dijkstra} und \emph{A*} deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des \emph{A*}-Algorithmus erklären.
+Zum Vergleich der Resultate in Abschnitt \ref{verkehr:Knotenzahl} zeigt Abbildung \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.
+Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen Dijkstra und A* deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des A*-Algorithmus erklären.
\begin{figure}
\centering
@@ -52,4 +52,4 @@ Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwis
\label{verkehr:Comparison}
\end{figure}
-In \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde.
+In Abbildung \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde.
diff --git a/buch/papers/verkehr/section3.tex b/buch/papers/verkehr/section3.tex
index 99a0d92..9aa8ae4 100644
--- a/buch/papers/verkehr/section3.tex
+++ b/buch/papers/verkehr/section3.tex
@@ -1,8 +1,9 @@
\section{Ausblick}
\subsection{Optimierungsprobleme bei Graphen}
-Das Finden eines kürzesten Pfades, sprich die Minimierung der Summe der Kantengewichte, ist nur eines der Optimierungsprobleme, die sich im Bereich von Grafen aufstellen lassen. Verschiedene, ähnliche Problemstellungen lassen sich teilweise mit denselben Algorithmen lösen.\\
-Im Bereich vom Computernetzwerken könnte zum Beispiel die Minimierung der Knotenzahl zur Datenübbertragung von Interesse sein. Dabei lässt sich dieses Problem einfach dadurch lösen, dass dem \emph{Dijkstra}, oder dem \emph{A*}-Algorithmus anstelle der Graph-Matrix (mit Kantengewichten als Einträgen) die Adjazenz-Matrix als Argument übergeben wird. Der gefundene kürzeste Pfad enstpricht der Anzahl benutzter Kanten, bzw. der Anzahl besuchter Knoten.
+Das Finden eines kürzesten Pfades, sprich die Minimierung der Summe der Kantengewichte, ist nur eines der Optimierungsprobleme, die sich im Bereich von Graphen aufstellen lassen. Verschiedene, ähnliche Problemstellungen lassen sich teilweise mit denselben Algorithmen lösen.
+
+Im Bereich vom Computernetzwerken könnte zum Beispiel die Minimierung der Knotenzahl zur Datenübbertragung von Interesse sein. Dabei lässt sich dieses Problem einfach dadurch lösen, dass dem Dijkstra- oder dem A*-Algorithmus anstelle der gewichteten Adjazenz-Matrix (mit Kantengewichten als Einträgen) die ungewichtet Adjazenz-Matrix als Argument übergeben wird. Der gefundene kürzeste Pfad enstpricht der Anzahl benutzter Kanten, bzw. der Anzahl besuchter Knoten.
\subsection{Wahl der Heuristik}
-Ein grundlegendes Problem bei der Anwendung des \emph{A*} oder ähnlicher informierter Suchalgorithmen ist die Wahl der Heurstik. Bei einem physischen Verkehrsnetz kann bspw. die euklidische Distanz problems ermittelt werde. Bei einem regionalen Netzwerk ist die Annahme eines orthogonalen X-Y-Koordinatenetzes absolut ausreichend. Dies gilt z.B. auch für das Vernessungsnetz der Schweiz\footnote{Die aktuelle Schweizer Referenzsystem LV95 benutzt ein E/N-Koordinatennetz, wobei aufgrund zunehmender Abweichung vom Referenzellipsoid bei grosser Entfernung vom Nullpunkt ein Korrekturfaktor für die Höhe angebracht werden muss.} Bei überregionalen Netzwerken (Beispiel: Flugverbindungen) ist hingegen eine Berechnung im dreidimensionalen Raum, oder vereinfacht als Projektion auf das Geoid notwendig. Anonsten ist der Ablauf bei der Ausführung des Algorithmus allerdings identisch.\\
+Ein grundlegendes Problem bei der Anwendung des A* oder ähnlicher informierter Suchalgorithmen ist die Wahl der Heurstik. Bei einem physischen Verkehrsnetz kann bspw. die euklidische Distanz problems ermittelt werde. Bei einem regionalen Netzwerk ist die Annahme eines orthogonalen X-Y-Koordinatenetzes absolut ausreichend. Dies gilt z.B. auch für das Vernessungsnetz der Schweiz\footnote{Die aktuelle Schweizer Referenzsystem LV95 benutzt ein E/N-Koordinatennetz, wobei aufgrund zunehmender Abweichung vom Referenzellipsoid bei grosser Entfernung vom Nullpunkt ein Korrekturfaktor für die Höhe angebracht werden muss.} Bei überregionalen Netzwerken (Beispiel: Flugverbindungen) ist hingegen eine Berechnung im dreidimensionalen Raum, oder vereinfacht als Projektion auf das Geoid notwendig. Anonsten ist der Ablauf bei der Ausführung des Algorithmus allerdings identisch.
In nicht-physischen Netzwerken stellt sich jedoch eine zweite Problematik. Da eine physische Distanz entweder nicht ermittelt werden kann, oder aber nicht ausschlaggebend ist, sind andere Netzwerk-Eigenschaften zur Beurteilung beizuziehen. Die Zuverlässigkeit ist dabei aber in den meisten Fällen nicht vergleichbar hoch, wie bei der euklidischen Heuristik. Oftmals werden deshalb bei derartigen Problem auch Algorithmen angewendet, die eine deutlich optimierte Zeitkomplexität aufweisen, dafür aber nicht mit Sicherheit den effizienstesten Pfad finden.