aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2021-03-30 11:49:04 +0200
committerNao Pross <np@0hm.ch>2021-03-30 11:49:04 +0200
commita986e271bde9cb1bf124ae3eabd0a7c5e2f4dc2b (patch)
treeebd4690c0ce3220376fb7fcb16119d6bfff6dfc5
parentChange title and authors, remove sample (diff)
parentTippfehler korrigiert (mit Dank für den Hinweis an L. Zogg) (diff)
downloadSeminarMatrizen-a986e271bde9cb1bf124ae3eabd0a7c5e2f4dc2b.tar.gz
SeminarMatrizen-a986e271bde9cb1bf124ae3eabd0a7c5e2f4dc2b.zip
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarMatrizen
Diffstat (limited to '')
-rw-r--r--buch/chapters/30-endlichekoerper/uebungsaufgaben/3003.tex2
-rw-r--r--buch/chapters/30-endlichekoerper/uebungsaufgaben/3004.tex30
-rw-r--r--buch/chapters/40-eigenwerte/Makefile.inc3
-rw-r--r--buch/chapters/40-eigenwerte/chapter.tex4
-rw-r--r--buch/chapters/40-eigenwerte/grundlagen.tex30
-rw-r--r--buch/chapters/40-eigenwerte/images/Makefile7
-rw-r--r--buch/chapters/40-eigenwerte/images/bild1.jpgbin0 -> 76315 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/bild2.jpgbin0 -> 87846 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/drei.jpgbin0 -> 95383 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kern1.jpgbin0 -> 61717 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kern2.jpgbin0 -> 87289 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kernbild.pdfbin0 -> 189482 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kernbild.tex40
-rw-r--r--buch/chapters/40-eigenwerte/images/kernbild1.jpgbin0 -> 84647 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kernbild2.jpgbin0 -> 76111 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kombiniert.jpgbin0 -> 117063 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kombiniert.pdfbin0 -> 131131 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kombiniert.tex48
-rw-r--r--buch/chapters/40-eigenwerte/spektralradius.tex6
-rw-r--r--buch/chapters/40-eigenwerte/spektraltheorie.tex581
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex72
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex151
-rw-r--r--buch/chapters/60-gruppen/chapter.tex24
-rw-r--r--buch/chapters/60-gruppen/images/castle.jpegbin0 -> 148054 bytes
-rw-r--r--buch/chapters/60-gruppen/lie-algebren.tex255
-rw-r--r--buch/chapters/60-gruppen/lie-gruppen.tex318
-rw-r--r--buch/chapters/60-gruppen/symmetrien.tex98
-rw-r--r--buch/common/teilnehmer.tex20
-rw-r--r--cover/buchcover.tex14
-rw-r--r--vorlesungen/05_mseendlichekoerper/Makefile33
-rw-r--r--vorlesungen/05_mseendlichekoerper/MathSemMSE-05-endlichekoerper.tex14
-rw-r--r--vorlesungen/05_mseendlichekoerper/common.tex16
-rw-r--r--vorlesungen/05_mseendlichekoerper/endlichekoerper-handout.tex11
-rw-r--r--vorlesungen/05_mseendlichekoerper/slides.tex30
-rw-r--r--vorlesungen/06_spektral2/slides.tex18
-rw-r--r--vorlesungen/slides/4/Makefile.inc4
-rw-r--r--vorlesungen/slides/4/chapter.tex4
-rw-r--r--vorlesungen/slides/4/char2.tex48
-rw-r--r--vorlesungen/slides/4/charakteristik.tex71
-rw-r--r--vorlesungen/slides/4/euklidmatrix.tex2
-rw-r--r--vorlesungen/slides/4/frobenius.tex54
-rw-r--r--vorlesungen/slides/4/qundr.tex138
-rw-r--r--vorlesungen/slides/5/Makefile.inc7
-rw-r--r--vorlesungen/slides/5/approximation.tex56
-rw-r--r--vorlesungen/slides/5/beispiele/kombiniert.jpgbin109739 -> 117063 bytes
-rw-r--r--vorlesungen/slides/5/beispiele/kombiniert.pov1
-rw-r--r--vorlesungen/slides/5/chapter.tex6
-rw-r--r--vorlesungen/slides/5/normalbeispiel.tex108
-rw-r--r--vorlesungen/slides/5/normalbeispiel34.tex80
-rw-r--r--vorlesungen/slides/5/plan.tex198
-rw-r--r--vorlesungen/slides/5/planbeispiele.tex103
-rw-r--r--vorlesungen/slides/5/stoneweierstrass.tex63
-rw-r--r--vorlesungen/slides/5/swbeweis.tex56
-rw-r--r--vorlesungen/slides/test.tex6
54 files changed, 2778 insertions, 52 deletions
diff --git a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3003.tex b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3003.tex
index 8a83256..5dea881 100644
--- a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3003.tex
+++ b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3003.tex
@@ -46,7 +46,7 @@ Q(2)Q(1)Q(3)Q(4)
\begin{pmatrix} 4&-17\\ -11&47 \end{pmatrix}.
\end{align*}
Daraus kann man ablesen, dass $s=4$ und $t=-17$, tatsächlich ist
-$4\cdot 47-47\cdot 11=188-187=1$.
+$4\cdot 47-17\cdot 11=188-187=1$.
Wir schliessen daraus, dass $-17=30\in\mathbb{F}_{47}$ die multiplikative
Inverse von $b=11$ ist.
Die Rechnung $11\cdot 30 = 330 = 7\cdot 47 + 1$ zeigt, dass dies
diff --git a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3004.tex b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3004.tex
index 046ac94..deb15dc 100644
--- a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3004.tex
+++ b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3004.tex
@@ -65,19 +65,19 @@ Die Gauss-Tableaux sind
\begin{align*}
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
- 1 & 1 & 0 & 0 & 1\\
- 0 & 1 & 1 & 1 & 0\\
- 1 & 1 & 1 & 1 & 0\\
- 0 & 1 & 1 & 0 & 1\\
+ 1 & 1 & 0 & 0 & 0\\
+ 0 & 1 & 1 & 1 & 1\\
+ 1 & 1 & 1 & 1 & 1\\
+ 0 & 1 & 1 & 0 & 0\\
\hline
\end{tabular}
&\to
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
- 1 & 1 & 0 & 0 & 1\\
- 0 & 1 & 1 & 1 & 0\\
+ 1 & 1 & 0 & 0 & 0\\
+ 0 & 1 & 1 & 1 & 1\\
0 & 0 & 1 & 1 & 1\\
- 0 & 1 & 1 & 0 & 1\\
+ 0 & 1 & 1 & 0 & 0\\
\hline
\end{tabular}
%\\
@@ -85,8 +85,8 @@ Die Gauss-Tableaux sind
\to
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
- 1 & 1 & 0 & 0 & 1\\
- 0 & 1 & 1 & 1 & 0\\
+ 1 & 1 & 0 & 0 & 0\\
+ 0 & 1 & 1 & 1 & 1\\
0 & 0 & 1 & 1 & 1\\
0 & 0 & 0 & 1 & 1\\
\hline
@@ -95,8 +95,8 @@ Die Gauss-Tableaux sind
\to
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
- 1 & 1 & 0 & 0 & 1\\
- 0 & 1 & 1 & 0 & 1\\
+ 1 & 1 & 0 & 0 & 0\\
+ 0 & 1 & 1 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 & 1\\
\hline
@@ -106,8 +106,8 @@ Die Gauss-Tableaux sind
\to
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
- 1 & 1 & 0 & 0 & 1\\
- 0 & 1 & 0 & 0 & 1\\
+ 1 & 1 & 0 & 0 & 0\\
+ 0 & 1 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 & 1\\
\hline
@@ -118,7 +118,7 @@ Die Gauss-Tableaux sind
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
1 & 0 & 0 & 0 & 0\\
- 0 & 1 & 0 & 0 & 1\\
+ 0 & 1 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 & 1\\
\hline
@@ -128,7 +128,7 @@ In der ersten Zeile stehen die Schritt der Vorwärtsreduktion, in der
zweiten die Schritte des Rückwärtseinsetzens.
Als Lösung liest man ab
\[
-x=\begin{pmatrix}0\\1\\0\\1 \end{pmatrix},
+x=\begin{pmatrix}0\\0\\0\\1 \end{pmatrix},
\]
die Korrektheit kann man leicht durch Einsetzen überprüfen.
\item
diff --git a/buch/chapters/40-eigenwerte/Makefile.inc b/buch/chapters/40-eigenwerte/Makefile.inc
index b15f476..5f30ab5 100644
--- a/buch/chapters/40-eigenwerte/Makefile.inc
+++ b/buch/chapters/40-eigenwerte/Makefile.inc
@@ -12,4 +12,7 @@ CHAPTERFILES = $(CHAPTERFILES) \
chapters/40-eigenwerte/spektraltheorie.tex \
chapters/40-eigenwerte/uebungsaufgaben/4001.tex \
chapters/40-eigenwerte/uebungsaufgaben/4002.tex \
+ chapters/40-eigenwerte/uebungsaufgaben/4003.tex \
+ chapters/40-eigenwerte/uebungsaufgaben/4004.tex \
+ chapters/40-eigenwerte/uebungsaufgaben/4005.tex \
chapters/40-eigenwerte/chapter.tex
diff --git a/buch/chapters/40-eigenwerte/chapter.tex b/buch/chapters/40-eigenwerte/chapter.tex
index e769b38..5f8cb83 100644
--- a/buch/chapters/40-eigenwerte/chapter.tex
+++ b/buch/chapters/40-eigenwerte/chapter.tex
@@ -34,8 +34,8 @@ Dies wird in Abschnitt~\ref{buch:section:spektraltheorie} beschrieben.
\input{chapters/40-eigenwerte/grundlagen.tex}
\input{chapters/40-eigenwerte/normalformen.tex}
\input{chapters/40-eigenwerte/spektralradius.tex}
-\input{chapters/40-eigenwerte/numerisch.tex}
\input{chapters/40-eigenwerte/spektraltheorie.tex}
+\input{chapters/40-eigenwerte/numerisch.tex}
\section*{Übungsaufgaben}
\rhead{Übungsaufgaben}
@@ -44,5 +44,7 @@ Dies wird in Abschnitt~\ref{buch:section:spektraltheorie} beschrieben.
\uebungsaufgabe{4001}
\uebungsaufgabe{4002}
\uebungsaufgabe{4003}
+\uebungsaufgabe{4004}
+\uebungsaufgabe{4005}
\end{uebungsaufgaben}
diff --git a/buch/chapters/40-eigenwerte/grundlagen.tex b/buch/chapters/40-eigenwerte/grundlagen.tex
index d984452..ffc452b 100644
--- a/buch/chapters/40-eigenwerte/grundlagen.tex
+++ b/buch/chapters/40-eigenwerte/grundlagen.tex
@@ -16,6 +16,36 @@ gestreckt werden.
Gelingt es, eine Basis aus solchen sogenanten {\em Eigenvektoren} zu finden,
dann kann man die Matrix $A$ durch Basiswechsel in diese Form bringen.
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/40-eigenwerte/images/kernbild.pdf}
+\caption{Iterierte Kerne und Bilder einer $3\times 3$-Matrix mit Rang~2.
+Die abnehmend geschachtelten iterierten Bilder
+$\mathcal{J}^1(A) \subset \mathcal{J}^2(A)$
+sind links dargestellt, die zunehmen geschachtelten iterierten Kerne
+$\mathcal{K}^1(A) \subset \mathcal{K}^2(A)$ rechts.
+\label{buch:eigenwerte:img:kernbild}}
+\end{figure}
+
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/40-eigenwerte/images/kombiniert.pdf}
+\caption{Iterierte Kerne und Bilder einer $3\times 3$-Matrix mit Rang~2.
+Da $\dim\mathcal{J}^2(A)=1$ und $\dim\mathcal{J}^1(A)=2$ ist, muss es
+einen Vektor in $\mathcal{J}^1(A)$ geben, der von $A$ auf $0$ abgebildet
+wird, der also auch im Kern $\mathcal{K}^1(A)$ liegt.
+Daher ist $\mathcal{K}^1(A)$ die Schnittgerade von $\mathcal{J}^1(A)$ und
+$\mathcal{K}^2(A)$.
+Man kann auch gut erkennen, dass
+$\mathbb{R}^3
+=
+\mathcal{K}^1(A)\oplus \mathcal{J}^1(A)
+=
+\mathcal{K}^2(A) \oplus \mathcal{J}^2(A)$
+ist.
+\label{buch:eigenwerte:img:kombiniert}}
+\end{figure}
+
%
% Kern und Bild von Matrixpotenzen
%
diff --git a/buch/chapters/40-eigenwerte/images/Makefile b/buch/chapters/40-eigenwerte/images/Makefile
index db00dac..753153d 100644
--- a/buch/chapters/40-eigenwerte/images/Makefile
+++ b/buch/chapters/40-eigenwerte/images/Makefile
@@ -3,7 +3,7 @@
#
# (c) 2020 Prof Dr Andreas Müller, Hochschule Rappersil
#
-all: sp.pdf nilpotent.pdf
+all: sp.pdf nilpotent.pdf kernbild.pdf kombiniert.pdf
sp.pdf: sp.tex sppaths.tex
pdflatex sp.tex
@@ -14,3 +14,8 @@ sppaths.tex: spbeispiel.m
nilpotent.pdf: nilpotent.tex
pdflatex nilpotent.tex
+kernbild.pdf: kernbild.tex bild2.jpg kern2.jpg
+ pdflatex kernbild.tex
+
+kombiniert.pdf: kombiniert.tex kombiniert.jpg
+ pdflatex kombiniert.tex
diff --git a/buch/chapters/40-eigenwerte/images/bild1.jpg b/buch/chapters/40-eigenwerte/images/bild1.jpg
new file mode 100644
index 0000000..879fae8
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/bild1.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/bild2.jpg b/buch/chapters/40-eigenwerte/images/bild2.jpg
new file mode 100644
index 0000000..2597c95
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/bild2.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/drei.jpg b/buch/chapters/40-eigenwerte/images/drei.jpg
new file mode 100644
index 0000000..35f9034
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/drei.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kern1.jpg b/buch/chapters/40-eigenwerte/images/kern1.jpg
new file mode 100644
index 0000000..5c99664
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kern1.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kern2.jpg b/buch/chapters/40-eigenwerte/images/kern2.jpg
new file mode 100644
index 0000000..87d18ac
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kern2.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kernbild.pdf b/buch/chapters/40-eigenwerte/images/kernbild.pdf
new file mode 100644
index 0000000..2a321b2
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kernbild.pdf
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kernbild.tex b/buch/chapters/40-eigenwerte/images/kernbild.tex
new file mode 100644
index 0000000..4eced84
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kernbild.tex
@@ -0,0 +1,40 @@
+%
+% kernbild.tex -- Kern und Bild einer Matrix
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\definecolor{darkgreen}{rgb}{0,0.4,0}
+\definecolor{turqoise}{rgb}{0,0.3,0.6}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\begin{scope}[xshift=-3.5cm]
+\node at (0,0) {\includegraphics[width=6.8cm]{bild2.jpg}};
+
+\fill[color=white,opacity=0.8] (-3,-2.75) rectangle (-2,-2.3);
+\node[color=orange] at (-2.5,-2.5) {$\mathcal{J}^1(A)$};
+\node at (3.3,0) {$x_1$};
+\node at (0.3,3.2) {$x_3$};
+\node[color=purple] at (2.3,0.6) [rotate=8] {$\mathcal{J}^2(A)$};
+\end{scope}
+
+\begin{scope}[xshift=3.5cm]
+\node at (0,0) {\includegraphics[width=6.8cm]{kern2.jpg}};
+\node[color=darkgreen] at (1.8,2.2) [rotate=58] {$\mathcal{K}^1(A)$};
+\fill[color=white,opacity=0.8] (-1.5,0.8) rectangle (-0.5,1.2);
+\node[color=turqoise] at (-1,1) {$\mathcal{K}^2(A)$};
+\node at (3.3,0) {$x_1$};
+\node at (0.3,3.2) {$x_3$};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/40-eigenwerte/images/kernbild1.jpg b/buch/chapters/40-eigenwerte/images/kernbild1.jpg
new file mode 100644
index 0000000..87e874e
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kernbild1.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kernbild2.jpg b/buch/chapters/40-eigenwerte/images/kernbild2.jpg
new file mode 100644
index 0000000..1160b31
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kernbild2.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kombiniert.jpg b/buch/chapters/40-eigenwerte/images/kombiniert.jpg
new file mode 100644
index 0000000..bebc36f
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kombiniert.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kombiniert.pdf b/buch/chapters/40-eigenwerte/images/kombiniert.pdf
new file mode 100644
index 0000000..91cee0b
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kombiniert.pdf
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kombiniert.tex b/buch/chapters/40-eigenwerte/images/kombiniert.tex
new file mode 100644
index 0000000..d850c64
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kombiniert.tex
@@ -0,0 +1,48 @@
+%
+% kombiniert.tex -- Iterierte Kerne und Bilder
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\definecolor{darkgreen}{rgb}{0,0.4,0}
+\definecolor{turqoise}{rgb}{0,0.3,0.6}
+\def\skala{1}
+\newboolean{showgrid}
+\setboolean{showgrid}{false}
+\def\breite{7}
+\def\hoehe{7}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\node at (0,0) {\includegraphics[width=13.8cm]{kombiniert.jpg}};
+
+\node at (6.6,-0.1) {$x_1$};
+\node at (0.3,6.7) {$x_3$};
+
+\node[color=purple] at (4.8,1) [rotate=8] {$\mathcal{J}^2(A)$};
+\node[color=darkgreen] at (3.5,4.6) [rotate=58] {$\mathcal{K}^1(A)$};
+
+\fill[color=white,opacity=0.8] (-2.3,3.8) rectangle (-1.3,4.2);
+\node[color=turqoise] at (-1.8,4) {$\mathcal{K}^2(A)$};
+
+\fill[color=white,opacity=0.8] (2.5,-5.75) rectangle (3.5,-5.3);
+\node[color=orange] at (3,-5.5) {$\mathcal{J}^1(A)$};
+
+%\node at G
+% Gitter
+\ifthenelse{\boolean{showgrid}}{
+\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe);
+\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe);
+\draw (-\breite,-\hoehe) grid (\breite, \hoehe);
+\fill (0,0) circle[radius=0.05];
+}{}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/40-eigenwerte/spektralradius.tex b/buch/chapters/40-eigenwerte/spektralradius.tex
index bdc725f..a36dc33 100644
--- a/buch/chapters/40-eigenwerte/spektralradius.tex
+++ b/buch/chapters/40-eigenwerte/spektralradius.tex
@@ -3,9 +3,9 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswi
%
-\section{Funktionen einer Matrix
-\label{buch:section:funktionen-einer-matrix}}
-\rhead{Funktionen einer Matrix}
+\section{Analytische Funktionen einer Matrix
+\label{buch:section:analytische-funktionen-einer-matrix}}
+\rhead{Analytische Funktionen einer Matrix}
Eine zentrale Motivation in der Entwicklung der Eigenwerttheorie
war das Bestreben, Potenzen $A^k$ auch für grosse $k$ effizient
zu berechnen.
diff --git a/buch/chapters/40-eigenwerte/spektraltheorie.tex b/buch/chapters/40-eigenwerte/spektraltheorie.tex
index 4146505..a3f86ba 100644
--- a/buch/chapters/40-eigenwerte/spektraltheorie.tex
+++ b/buch/chapters/40-eigenwerte/spektraltheorie.tex
@@ -5,7 +5,582 @@
%
\section{Spektraltheorie
\label{buch:section:spektraltheorie}}
-% Matrix-Exponentialfunktion
-% Wurzel einer Matrix
-% Beliebige Funktion f(A) für normale Matrizen
+Aufgabe der Spektraltheorie ist, Bedingungen an eine Matrix $A$ und eine
+Funktion $f(z)$ zu finden, unter denen es möglich ist, $f(A)$ auf
+konsistente Art und Weise zu definieren.
+Weiter müssen Methoden entwickelt werden, mit denen $f(A)$ berechnet
+werden kann.
+Für ein Polynom $p(z)$ ist $p(A)$ durch einsetzen definiert.
+Für Funktionen, die sich nicht durch ein Polynom darstellen lassen,
+muss eine Approximation der Funktion durch Polynome verwendet werden.
+Sei also $p_n(z)$ eine Folge von Polynomen, die als Approximation der
+Funktion $f(z)$ verwendet werden soll.
+Das Ziel ist, $f(A)$ als den Grenzwert der Matrixfolge $p_n(A)$
+zu definieren.
+
+Zunächst ist nicht klar, wie eine solche Folge gewählt werden muss.
+Es muss eine Teilmenge von $K\subset\mathbb{C}$ spezifiziert werden,
+auf der die Funktionenfolge $p_n(z)$ konvergieren muss,
+damit auch die Konvergenz der Matrizenfolge $p_n(A)$ garantiert ist.
+Auch die Art der Konvergenz von $p_n(z)$ auf der Menge $K$ ist noch
+unklar.
+Da der Abstand zweier Matrizen $A$ und $B$ in der Operatornorm
+mit der grössten Abweichung $\|(A-B)v\|$ für Einheitsvektoren $v$
+gemessen wird, ist es einigermassen plausibel, dass
+die grösse Abweichung zwischen zwei Polynomen $|p(z) - q(z)|$ auf
+der Menge $K$ kleine sein muss, wenn $\|p(A)-q(A)\|$ klein
+sein soll.
+Da die Differenz $p(z)-q(z)$ für beliebige Polynome, die sich nicht
+nur um eine Konstante unterscheiden, mit $z$ über alle Grenzen wächst,
+muss $K$ beschränkt sein.
+Gesucht ist also eine kompakte Menge $K\subset\mathbb{C}$ und eine
+Folge $p_n(z)$ von Polynomen, die auf $K$ gleichmässig gegen $f(z)$
+konvergieren.
+Die Wahl von $K$ muss sicherstellen, dass für jede gleichmässig
+konvergente Folge von Polynomen $p_n(z)$ auch die Matrizenfolge
+$p_n(A)$ konvergiert.
+
+Es wird sich zeigen, dass die Menge $K$ das Spektrum von $A$ ist,
+also eine endliche Teilmenge von $\mathbb{C}$.
+Jede Funktion kann auf so einer Menge durch Polynome exakt wiedergegeben
+werden.
+Es gibt insbesondere Folgen von Polynomen, die eingeschränkt
+auf das Spektrum gleich sind, also $p_n(z)=p_m(z)$ für alle $z\in K$,
+die aber ausserhalb des Spektrums alle verschieden sind.
+Als Beispiel kann die Matrix
+\[
+N=\begin{pmatrix}0&1\\0&0\end{pmatrix}
+\]
+herangezogen werden.
+Ihr Spektrum ist $\operatorname{Sp}(N)=\{0\}\subset\mathbb{C}$.
+Zwei Polynome stimmen genau dann auf $\operatorname{Sp}(N)$ überein,
+wenn der konstante Koeffizient gleich ist.
+Die Polynome $p(z)=z$ und $q(z)=z^2$ stimmen daher auf dem Spektrum
+überein.
+Für die Matrizen gilt aber $p(N)=N$ und $q(N)=N^2=0$, die Matrizen
+stimmen also nicht überein.
+Es braucht also zusätzliche Bedingungen an die Matrix $A$, die
+sicherstellen, dass $p(A)=0$ ist, wann immer $p(z)=0$ für
+$z\in\operatorname{Sp}(A)$ gilt.
+
+In diesem Abschnitt sollen diese Fragen untersucht werden.
+In Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
+wird gezeigt, wie sich Funktionen durch Polynome approximieren
+lassen, woraus sich dann Approximationen von $f(A)$ für diagonalisierbare
+Matrizen mit reellen Eigenwerten ergeben.
+
+Der Satz von Stone-Weierstrass, der in
+Abschnitt~\ref{buch:subsetion:stone-weierstrass} dargestellt wird,
+ist ein sehr allgemeines Approximationsresultat, welches nicht nur
+zeigt, dass die Approximation unter sehr natürlichen Voraussetzungen
+beliebig genau möglich ist, sondern uns im komplexen Fall auch
+weitere Einsicht dafür geben kann, welche Voraussetzungen an eine
+komplexe Matrix gestellt werden müssen, damit man damit rechnen kann,
+dass die Approximation zu einer konsistenten Definition von $f(A)$ führt.
+
+%
+% Approximation
+%
+\subsection{Approximation durch Polynome
+\label{buch:subsection:approximation-durch-polynome}}
+Die der Berechnung von $f(A)$ für eine beleibige stetige Funktion,
+die sich nicht als Potenzreihe schreiben lässt, verwendet Approximationen
+von Polynomen.
+Die numerische Mathematik hat eine grosse Menge von solchen
+Approximationsverfahren entwickelt, wovon zwei kurz (ohne Beweise)
+vorgestellt werden sollen.
+
+\subsubsection{Das Legendre-Interpolationspolynom}
+Zu vorgegebenen, verschiedenen Zahlen $z_i\in\mathbb{C}$, $0\le i\le n$,
+die auch die {\em Stützstellen} genannt werden,
+gibt es immer ein Polynom vom Grade $n$, welches in den $z_i$ vorgegebene
+Werte $f(z_i)$ annimmt.
+Ein solches Polynom lässt sich im Prinzip mit Hilfe eines linearen
+Gleichungssystems finden, man kann aber auch direkt eine Lösung
+konstruieren.
+Dazu bildet man erst die Polynome
+\begin{align*}
+l(z) &= (z-z_0)(z-z_1)\dots (z-z_n) \qquad\text{und}
+\\
+l_i(z) &= (z-z_0)\dots \widehat{(z-z_i)}\dots (z-z_n).
+\end{align*}
+Darin bedeutet der Hut, dass dieser Term weggelassen werden soll.
+Für $z\ne z_i$ ist $l_i(z)=l(z)/(z-z_i)$.
+Die Polynome
+\[
+k_i(z)
+=
+\frac{l_i(z)}{l_i(z_i)}
+=
+\frac{(z-z_0)\dots \widehat{(z-z_i)}\dots (z-z_n)}{(z_i-z_0)\dots \widehat{(z_i-z_i)}\dots (z_i-z_n)}
+\]
+haben die Eigenschaft
+$k_i(z_j)=\delta_{ij}$.
+Damit lässt sich jetzt ein Polynom
+\[
+p(z) = \sum_{j=0}^n f(z_j) \frac{l_j(z)}{l_j(z_j)}
+\]
+vom Grad $n$ konstruieren, welches die Werte
+\[
+p(z_i)
+=
+\sum_{j=0}^n f(z_j) \frac{l_j(z_i)}{l_j(z_j)}
+=
+\sum_{j=0}^n f(z_j) \delta_{ij}
+=
+f_(z_i)
+\]
+annimmt.
+Das Polynom $p(z)$ heisst das {\em Legendre-Interpolationspolynom}.
+
+Zwar lässt sich also für eine endliche Menge von komplexen Zahlen immer
+ein Polynom finden, welches vorgeschriebene Wert in allen diesen Zahlen
+annimmt, doch ist die Stabilität für grosse $n$ eher beschränkt.
+
+
+\subsubsection{Gleichmassige Approximation mit Bernstein-Polynomen}
+Das Legendre-Interpolationspolynom nimmt in den Stützstellen die
+verlangten Werte an, aber ausserhalb der Stützstellen ist nicht
+garantiert, dass man eine gute Approximation einer Funktion $f(z)$
+erhält.
+
+Für die Approximation auf einem reellen Interval $[a,b]$ hat
+Sergei Natanowitsch Bernstein ein
+Dazu werden zuerst die reellen Bernsteinpolynome vom Grad $n$
+durch
+\begin{align*}
+B_{i,n}(t) = \binom{n}{i} t^i(1-t)^{n-i}.
+\end{align*}
+definiert.
+Als Approximationspolynom für die auf dem Interval
+$[0,1]$ definierte, stetige Funktion $f(t)$ kann man dann
+\[
+B_n(f)(t)
+=
+\sum_{i=0}^n B_{i,n}(t) f\biggl(\frac{i}{n}\biggr)
+\]
+verwenden.
+Die Polynome $B_n(f)(t)$ konvergieren gleichmässig auf $[0,1]$
+gegen die Funktion $f(t)$.
+Über die Konvergenz ausserhalb des reellen Intervalls wird nichts
+ausgesagt.
+Die Approximation mit Bernstein-Polynomen ist daher nur sinnvoll,
+wenn man weiss, dass die Eigenwerte der Matrix reell sind, was im
+wesentlichen auf diagonalisierbare Matrizen führt.
+
+Für ein anderes Interval $[a,b]$ kann man ein Approximationspolynom
+erhalten, indem man die affine Transformation
+$s\mapsto (s-a)/(b-a)$
+von $[a,b]$ auf $[0,1]$
+verwendet.
+
+%
+% Der Satz von Stone-Weierstrass
+%
+\subsection{Der Satz von Stone-Weierstrasss
+\label{buch:subsetion:stone-weierstrass}}
+Der Satz von Stone-Weierstrass behandelt im Gegensatz zu den in
+Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
+besprochenen Approximationsmethoden nicht nur Funktionen von
+reellen Variablen durch Polynome.
+Vielmehr kann das Definitionsgebiet irgend eine abgeschlossene
+und beschränkte Teilmenge eines reellen oder komplexen Vektorraumes
+sein und die Funktionen können Polynome aber auch viel allgemeinere
+Funktionen verwendet werden, wie zum Beispiel die Funktionen
+$x\mapsto \cos nx$ und $x\mapsto \sin nx$ definiert auf dem
+Intervall $[0,2\pi]$.
+In diesem Fall liefert der Satz von Stone-Weierstrass die Aussage,
+dass sich jede stetige periodische Funktion gleichmässig durch
+trigonometrische Polynome approximieren lässt.
+
+Die Aussage des Satz von Stone-Weierstrass über reelle Funktionen
+lässt sich nicht auf komplexe Funktionen erweitern.
+Von besonderem Interesse ist jedoch, dass der Beweis des Satz
+zeigt, warum solche Aussagen für komplexe Funktionen nicht mehr
+zutreffen.
+Im Falle der Approximation von komplexen Funktionen $f(z)$ durch Polynome
+zwecks Definition von $f(A)$ werden sich daraus Bedingungen an die
+Matrix ableiten lassen, die eine konsistente Definition überhaupt
+erst ermöglichen werden.
+
+\subsubsection{Punkte trennen}
+Aus den konstanten Funktionen lassen sich durch algebraische
+Operationen nur weitere konstante Funktionen erzeugen.
+Die konstanten Funktionen sind also nur dann eine genügend
+reichhaltige Menge, wenn die Menge $K$ nur einen einzigen Punkt
+enthält.
+Damit sich Funktionen approximieren lassen, die in zwei Punkten
+verschiedene Werte haben, muss es auch unter den zur Approximation
+zur Verfügung stehenden Funktionen solche haben, deren Werte sich
+in diesen Punkten unterscheiden.
+Diese Bedingung wird in der folgenden Definition formalisiert.
+
+\begin{definition}
+Sei $K$ eine beliebige Menge und $A$ eine Menge von Funktionen
+$K\to \mathbb{C}$.
+Man sagt, $A$ {\em trennt die Punkte von $K$}, wenn es für jedes Paar
+\index{Punkte trennen}%
+von Punkten $x,y\in K$ eine Funktion $f\in A$ gibt derart, dass
+$f(x)\ne f(y)$.
+\end{definition}
+
+Man kann sich die Funktionen $f$, die gemäss dieser Definition die Punkte
+von $K$ trennen, als eine Art Koordinaten der Punkte in $K$ vorstellen.
+Die Punkte der Teilmenge $K\subset \mathbb{R}^n$ werden zum Beispiel
+von den Koordinatenfunktionen $x\mapsto x_i$ getrennt.
+Wir schreiben für die $i$-Koordinate daher auch als Funktion $x_i(x)=x_i$.
+Zwei verschiedene Punkte $x,y\in K$ unterscheiden sich in mindestens
+einer Koordinate.
+Für diese Koordinate sind dann die Werte der zugehörigen
+Koordinatenfunktion $x_i=x_i(x)\ne x_i(y)=y_i$ verschieden, die
+Funktionen $x_1(x)$ bis $x_n(x)$ trennen also die Punkte.
+
+\begin{beispiel}
+Wir betrachten einen Kreis in der Ebene, also die Menge
+\[
+S^1
+=
+\{(x_1,x_2)\;|\; x_1^2 + x_2^2=1\}
+\]
+$S^1$ ist eine abgeschlossene und beschränkte Menge in $\mathbb{R}^2$.
+Die Funktion $x\mapsto x_1$ trennt die Punkte nicht, denn zu jedem
+Punkt $(x_1,x_2)\in S^2$ gibt es den an der ersten Achse
+gespiegelten Punkt $\sigma(x)=(x_1,-x_2)$, dessen erste Koordinate
+den gleichen Wert hat.
+Ebenso trennt die Koordinatenfunktion $x\mapsto x_2$ die Punkte nicht.
+Die Menge $A=\{ x_1(x), x_2(x)\}$ bestehend aus den beiden
+Koordinatenfunktionen trennt dagegen die Punkte von $S^1$, da die Punkte
+sich immer in mindestens einem Punkt unterscheiden.
+
+Man könnte auch versuchen, den Kreis in Polarkoordinaten zu beschreiben.
+Die Funktion $\varphi(x)$, die jedem Punkt $x\in S^1$ den Polarwinkel
+zuordnet, trennt sicher die Punkte des Kreises.
+Zwei verschiedene Punkte auf dem Kreis haben verschieden Polarwinkel.
+Die Menge $\{\varphi\}$ trennt also die Punkte von $S^1$.
+Allerdings ist die Funktion nicht stetig, was zwar der Definition
+nicht widerspricht aber ein Hindernis für spätere Anwendungen ist.
+\end{beispiel}
+
+
+\subsubsection{Der Satz von Stone-Weierstrass für reelle Funktionen}
+Die Beispiele von Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
+haben bezeigt, dass sich reellwertige Funktionen einer reellen
+Variable durch Polynome beliebig genau approximieren lassen.
+Es wurde sogar eine Methode vorgestellt, die eine auf einem Intervall
+gleichmässig konvergente Polynomefolge produziert.
+Die Variable $x\in[a,b]$ trennt natürlich die Punkte, die Algebra der
+Polynome in der Variablen $x$ enthält also sicher Funktionen, die in
+verschiedenen Punkten des Intervalls auch verschiedene Werte annehmen.
+Nicht ganz so selbstverständlich ist aber, dass sich daraus bereits
+ergibt, dass jede beliebige Funktion sich als Polynome in $x$
+approximieren lässt.
+Dies ist der Inhalt des folgenden Satzes von Stone-Weierstrass.
+
+\begin{satz}[Stone-Weierstrass]
+\label{buch:satz:stone-weierstrass}
+Enthält eine $\mathbb{R}$-Algebra $A$ von stetigen, rellen Funktionen
+auf einer kompakten Menge $K$ die konstanten Funktionen und trennt sie
+Punkte, d.~h.~für zwei verschiedene Punkte $x,y\in K$ gibt es
+immer eine Funktion $f\in A$ mit $f(x)\ne f(y)$, dann ist jede stetige,
+reelle Funktion auf $K$ gleichmässig approximierbar durch Funktionen
+in $A$.
+\end{satz}
+
+\begin{proof}[Beweis]
+XXX TODO
+\end{proof}
+
+Der entscheidende Schritt des Beweises ist, dass man die Betragsfunktion
+konstruieren kann.
+Daraus leiten sich dann alle folgenden Konstruktionen ab.
+
+\subsubsection{Anwendung auf symmetrische und hermitesche Matrizen}
+Für symmetrische und hermitesche Matrizen $A$ ist bekannt, dass die
+Eigenwerte reell sind, also das Spektrum $\operatorname{A}\subset\mathbb{R}$
+ist.
+Für eine Funktion $\mathbb{R}\to \mathbb{R}$ lässt sich nach dem
+Satz~\ref{buch:satz:stone-weierstrass} immer eine Folge $p_n$ von
+approximierenden Polynomen in $x$ finden, die auf $\operatorname{Sp}(A)$
+gleichmässig konvergiert.
+Die Matrix $f(A)$ kann dann definiert werden also der Grenzwert
+\[
+f(A) = \lim_{n\to\infty} p_n(A).
+\]
+Da diese Matrizen auch diagonalisierbar sind, kann man eine Basis
+aus Eigenvektoren verwenden.
+Die Wirkung von $p_n(A)$ auf einem Eigenvektor $v$ zum Eigenwert $\lambda$
+ist
+\[
+p_n(A)v
+=
+(a_kA^k + a_{k-1}A^{k-1}+\dots +a_2A^2+a_1A+a_0I)v
+=
+(a_k\lambda^k + a_{k-1}\lambda^{k-1}+\dots + a_2\lambda^2 + a_1\lambda + a_0)v
+=
+p_n(\lambda)v.
+\]
+Im Grenzwert wirkt $f(A)$ daher durch Multiplikation eines Eigenvektors
+mit $f(\lambda)$, die Matrix $f(A)$ hat in der genannten Basis die
+Diagonalform
+\[
+A=\begin{pmatrix}
+\lambda_1& & & \\
+ &\lambda_2& & \\
+ & &\ddots& \\
+ & & &\lambda_n
+\end{pmatrix}
+\qquad\Rightarrow\qquad
+f(A)=\begin{pmatrix}
+f(\lambda_1)& & & \\
+ &f(\lambda_2)& & \\
+ & &\ddots& \\
+ & & &f(\lambda_n)
+\end{pmatrix}.
+\]
+
+\begin{satz}
+\label{buch:eigenwerte:satz:spektralsatz}
+Ist $A$ symmetrische oder selbstadjungiert Matrix und $f$ eine Funktion
+auf dem Spektrum $\operatorname{Sp}(A)$ von $A$.
+Dann gibt es genau eine Matrix $f(A)$, die Grenzwert jeder beliebigen
+Folge $p_n(A)$ für Polynomfolgen, die $\operatorname{Sp}(A)$ gleichmässig
+gegen $f$ konvergieren.
+\end{satz}
+
+\subsubsection{Der Satz von Stone-Weierstrass für komplexe Funktionen}
+Der Satz~\ref{buch:satz:stone-weierstrass} von Stone-Weierstrass für
+reelle Funktionen gilt nicht für komplexe Funktionen.
+Der Grund ist, dass im Beweis benötigt wird, dass man den Betrag
+einer Funktion approximieren können muss.
+Dies geschah, indem zunächst eine Polynom-Approximation für die
+Quadratwurzel konstruiert wurde, die dann auf das Quadrat einer
+Funktion angewendet wurde.
+Der Betrag einer komplexen Zahl $z$ ist aber nicht allein aus $z$
+berechenbar, man braucht in irgend einer Form Zugang zu Real-
+und Imaginärteil.
+Zum Beispiel kann man Real- und Imaginärteil als
+$\Re z= \frac12(z+\overline{z})$ und $\Im z = \frac12(z-\overline{z})$
+bestimmen.
+Kenntnis von Real- und Imaginärteil ist als gleichbedeutend mit
+der Kenntnis der komplex Konjugierten $\overline{z}$.
+Der Betrag lässt sich daraus als $|z|^2 = z\overline{z}$ finden.
+Beide Beispiele zeigen, dass man den im Beweis benötigten Betrag
+nur dann bestimmen kann, wenn mit jeder Funktion aus $A$ auch die
+komplex konjugierte Funktion zur Verfügung steht.
+
+\begin{satz}[Stone-Weierstrass]
+Enthält eine $\mathbb{C}$-Algebra $A$ von stetigen, komplexwertigen
+Funktionen auf einer kompakten Menge $K$ die konstanten Funktionen,
+trennt sie Punkte und ist ausserdem mit jeder Funktion $f\in A$ auch
+die komplex konjugiert Funktion $\overline{f}\in A$,
+dann lässt sich jede stetige, komplexwertige Funktion
+auf $K$ gleichmässig durch Funktionen aus $A$ approximieren.
+\end{satz}
+
+Mit Hilfe der konjugiert komplexen Funktion lässt sich immer eine
+Approximation für die Betragsfunktion finden, so dass sich der
+Beweis des reellen Satzes von Stone-Weierstrass übertragen lässt.
+
+%
+% Normale Matrizen
+%
+\subsection{Normale Matrizen
+\label{buch:subsection:normale-matrizen}}
+Aus dem Satz von Stone-Weierstrass für komplexe Matrizen kann man
+jetzt einen Spektralsätze für eine etwas grössere Klasse von Matrizen
+ableiten, als im Satz~\ref{buch:eigenwerte:satz:spektralsatz}
+möglich war.
+Der Satz besagt, dass für eine beliebige Funktion $f$ auf dem Spektrum
+$\operatorname{Sp}(A)$ eine Folge von auf $\operatorname{Sp}(A)$
+gleichmässig konvergenten, approximierenden Polynomen
+$p_n(z,\overline{z})$ gefunden werden kann.
+Doch wie soll jetzt aus dieser Polynomfolge ein Kandidat von $f(A)$
+gefunden werden?
+
+Zunächst stellt sich die Frage, was für die Variable $\overline{z}$
+eingesetzt werden soll.
+$1\times 1$-Matrizen sind notwendigerweise diagonal, also muss
+man in diesem Fall die Matrix $\overline{A}$ für die Variable
+$\overline{z}$ eingesetzt werden.
+Dies erklärt aber noch nicht, wie für $n\times n$-Matrizen
+vorzugehen ist, wenn $n>1$ ist.
+
+Die Notwendigkeit, die Variable $\overline{z}$ hinzuzunehmen
+ergab sich aus der Anforderung, dass der Betrag aus $|z|^2=z\overline{z}$
+konstruiert werden können muss.
+Insbesondere muss beim Einsetzen eine Matrix entstehen, die nur
+positive Eigenwerte hat.
+Für eine beliebige komplexe $n\times n$-Matrix $A$ ist aber
+$A\overline{A}$ nicht notwendigerweise positiv, wie das Beispiel
+\[
+A
+=
+\begin{pmatrix}0&i\\i&0\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+A\overline{A}
+=
+\begin{pmatrix}0&i\\-i&0\end{pmatrix}
+\begin{pmatrix}0&-i\\i&0\end{pmatrix}
+=
+\begin{pmatrix}
+-1&0\\
+ 0&-1
+\end{pmatrix}
+=
+-I
+\]
+zeigt.
+Eine positive Matrix entsteht dagegen immer, wenn man statt
+$A$ die Adjungierte $A^*=\overline{A}^t$ verwendet.
+
+Die Substitution von $A$ für $z$ und $A^*$ für $\overline{z}$
+in einem Polynom $p(z,\overline{z})$ ist nicht unbedingt eindeutig.
+Schon das Polynom $p(z,\overline{z})=z\overline{z}$ kann man auch
+als $\overline{z}z$ schreiben.
+Damit die Substition eindeutig wird, muss man also fordern, dass
+$AA^* = A^*A$ ist.
+
+\begin{definition}
+Eine Matrix $A\in M_n(\mathbb{C})$ heisst {\em normal}, wenn $AA^*=A^*A$ gilt.
+\end{definition}
+
+\subsubsection{Beispiele normaler Matrizen}
+
+\begin{enumerate}
+\item
+Hermitesche und Antihermitesche Matrizen sind normal, denn solche
+Matrizen erfüllen $A^*=\pm A$ und damit
+\(
+AA^* = \pm A^2 = A^*A.
+\)
+\item
+Symmetrische und antisymmetrische Matrizen sind normal,
+denn aus $A=A^t$ folgt $A^*=\overline{A}^t$ und damit
+\begin{align*}
+AA^* &= A\overline{A}^t =
+\\
+A^*A &=
+\end{align*}
+\item
+Unitäre Matrizen $U$ sind normal, das $UU^*=I=U^*U$ gilt.
+\item
+Orthogonale Matrizen sind normal wegen $O(n) = U(n) \cap M_n(\mathbb{R})$.
+\end{enumerate}
+
+Jede Matrix lässt sich durch Wahl einer geeigneten Basis in Jordansche
+Normalform bringen.
+Allerdings sind Jordan-Blöcke keine normalen Matrizen, wie der folgende
+Satz zeigt.
+
+\begin{satz}
+Eine Dreiecksmatrix ist genau dann normal, wenn sie diagonal ist.
+\end{satz}
+
+\begin{proof}[Beweis]
+Sei $A$ eine obere Dreiecksmatrix, das Argument für eine untere Dreiecksmatrix
+funktioniert gleich.
+Wir berechnen ein Diagonalelement für beide Produkte $AA^*$ und $A^*A$.
+Dazu brauchen wir die Matrixelemente von $A$ und $A^*$.
+Bezeichnen wir die Matrixelemente von $A$ mit $a_{ij}$, dann hat $A^*$
+die Matrixelemente $(A^*)_{ij}=\overline{a}_{ji}$.
+Damit kann man die Diagonalelemente der Produkte als
+\begin{align*}
+(AA^*)_{ii}
+&=
+\sum_{j=1}^n a_{ij}\overline{a}_{ij}
+=
+\sum_{j=i}^n |a_{ij}|^2
+\\
+(A^*A)_{ii}
+&=
+\sum_{j=1}^n \overline{a}_{ji}a_{ji}
+=
+\sum_{j=1}^i |a_{ji}|^2
+\end{align*}
+ausrechnen.
+Der obere Ausdruck ist die quadrierte Länge der Zeile $i$ der Matrix $A$,
+der untere ist die quadrierte Länge der Spalte $i$.
+Da die Matrix eine obere Dreiecksmatrix ist, hat die erste Spalte höchstens
+ein einziges von $0$ verschiedenes Element.
+Daher kann auch die erste Zeile höchstens dieses eine Elemente haben.
+Die Matrix hat daher Blockstruktur mit einem $1\times 1$-Block in der
+linken obere Ecke und einem $n-1$-dimensionalen Block für den Rest.
+Durch Wiederholen des Arguments für den $(n-1)\times (n-1)$-Block
+kann man so schrittweise schliessen, dass die Matrix $A$ diagonal sein muss.
+\end{proof}
+
+
+\begin{satz}
+Sind $A$ und $B$ normale Matrizen und $AB^*=B^*A$, dann sind auch $A+B$
+und $AB$ normal.
+\end{satz}
+
+\begin{proof}[Beweis]
+Zunächst folgt aus $AB^*=B^*A$ auch
+$A^*B = (B^*A)^* = (AB^*)^* = BA^*$.
+Der Beweis erfolgt durch Nachrechnen:
+\begin{align*}
+(A+B)(A+B)^*
+&=
+AA^* + AB^* + BA^*+BB^*
+\\
+(A+B)^*(A+B)
+&=
+A^*A + A^*B + B^*A + B^*B
+\end{align*}
+Die ersten und letzten Terme auf der rechten Seite stimmen überein, weil
+$A$ und $B$ normal sind.
+Die gemischten Terme stimmen überein wegen der Vertauschbarkeit von
+$A$ und $B^*$.
+
+Für das Produkt rechnet man
+\begin{align*}
+(AB)(AB)^*
+&= ABB^*A^* = AB^*BA^*
+= B^*AA^*B
+=
+B^*A^*AB
+=
+(AB)^*(AB),
+\end{align*}
+was zeigt, dass auch $AB$ normal ist.
+\end{proof}
+
+\subsubsection{Äquivalente Bedingungen}
+Es gibt eine grosse Zahl äquivalenter Eigenschaften für normale Matrizen.
+Die folgenden Eigenschaften sind äquivalent:
+\begin{enumerate}
+\item
+Die Matrix $A$ ist mit einer unitären Matrix diagonalisierbar
+\item
+Es gibt eine orthonormale Basis von Eigenvektoren von $A$ für $\mathbb{C}^n$
+\item
+Für jeden Vektor $x\in\mathbb{C}^n$ gilt $\|Ax\|=\|A^*x\|$
+\item
+Die Forbenius-Norm der Matrix $A$ kann mit den Eigenwerten $\lambda_i$
+von $A$ berechnet werden:
+$\operatorname{Spur}(A^*A) = \sum_{i=1}^n |\lambda_i|^2$
+\item
+Der hermitesche Teil $\frac12(A+A^*)$ und der antihermitesche Teil
+$\frac12(A-A^*)$ von $A$ vertauschen.
+\item
+$A^*$ ist ein Polynom vom Grad $n-1$ in $A$.
+\item
+Es gibt eine unitäre Matrix $U$ derart, dass $A^*=AU$
+\item
+Es gibt eine Polarzerlegugn $A=UP$ mit einer unitären Matrix $U$ und
+einer postiv semidefiniten Matrix $P$, die untereinander vertauschen.
+\item
+Es gibt eine Matrix $N$ mit verschiedenen Eigenwerten, mit denen $A$
+vertauscht.
+\item
+Wenn $A$ die (absteigend geordneten) singulärwerte $\sigma_i$ und
+die absteigend geordneten Eigenwerte $\lambda_i$ hat,
+dann it $\sigma_i=|\lambda_i|$.
+\end{enumerate}
+
+
+
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex
new file mode 100644
index 0000000..5940b46
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex
@@ -0,0 +1,72 @@
+Berechnen Sie $\sin At$ für die Matrix
+\[
+A=\begin{pmatrix}
+\omega& 1 \\
+ 0 &\omega
+\end{pmatrix}.
+\]
+Kontrollieren Sie Ihr Resultat, indem Sie den Fall $\omega = 0$ gesondert
+ausrechnen.
+\begin{hinweis}
+Schreiben Sie $A=\omega I + N$ mit einer nilpotenten Matrix.
+\end{hinweis}
+
+\begin{loesung}
+Man muss $At$ in die Potenzreihe
+\[
+\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots
+\]
+für die Sinus-Funktion einsetzen.
+Mit der Schreibweise $A=\omega I + N$, wobei $N^2=0$ können die Potenzen etwas
+leichter berechnet werden:
+\begin{align*}
+A^0 &= I
+\\
+A^1 &= \omega I + N
+\\
+A^2 &= \omega^2 I + 2\omega N
+\\
+A^3 &= \omega^3 I + 3\omega^2 N
+\\
+A^4 &= \omega^4 I + 4\omega^3 N
+\\
+&\phantom{a}\vdots
+\\
+A^k &= \omega^k I + k\omega^{k-1} N
+\end{align*}
+Damit kann man jetzt $\sin At$ berechnen:
+\begin{align}
+\sin At
+&=
+At - \frac{A^3t^3}{3!} + \frac{A^5t^5}{5!} - \frac{A^7t^7}{7!}
+\dots
+\notag
+\\
+&=
+\biggl(
+\omega t - \frac{\omega^3t^3}{3!} + \frac{\omega^5t^5}{5!} - \frac{\omega^7t^7}{7!}
++\dots
+\biggr)I
++
+\biggl(
+t -\frac{3\omega^2t^3}{3!} + \frac{5\omega^4t^5}{5!} - \frac{7\omega^6t^7}{7!}+\dots
+\biggr)N
+\notag
+\\
+&=
+I\sin\omega t
++tN\biggl(1-\frac{\omega^2t^2}{2!} +\frac{\omega^4t^4}{4!}
+- \frac{\omega^6t^6}{6!}
++\dots\biggr)
+\notag
+\\
+&=I\sin\omega t + tN\cos\omega t.
+\label{4004:resultat}
+\end{align}
+Im Fall $\omega=0$ ist $A=N$ und $A^2=0$, so dass
+\[
+\sin At = tN,
+\]
+dies stimmt mit \eqref{4004:resultat} für $\omega=0$ überein, da
+$\cos\omega t = \cos 0=1$ in diesem Fall.
+\end{loesung}
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex
new file mode 100644
index 0000000..ec76c34
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex
@@ -0,0 +1,151 @@
+Rechnen Sie nach, dass die Matrix
+\[
+A
+=
+\begin{pmatrix}
+2&1&0\\
+0&2&1\\
+1&0&2
+\end{pmatrix}
+\]
+normal ist.
+\begin{teilaufgaben}
+\item
+Berechnen Sie die Eigenwerte, indem Sie das charakteristische Polynom
+von $A$ und seine Nullstellen bestimmen.
+\item
+Das Polynom
+\[
+p(z,\overline{z})
+=
+\frac{(3-\sqrt{3})z\overline{z}-9(1-\sqrt{3})}{6}
+\]
+hat die Eigenschaft, dass
+\begin{align*}
+p(\lambda,\lambda) &= |\lambda|
+\end{align*}
+für alle drei Eigenwerte von $A$.
+Verwenden Sie dieses Polynom, um $B=|A|$ zu berechen.
+\item
+Überprüfen Sie Ihr Resultat, indem Sie mit einem Computeralgebra-Programm
+die Eigenwerte von $B$ bestimmen.
+\end{teilaufgaben}
+
+\begin{loesung}
+Die Matrix $A$ ist von der Form $2I+O$ mit $O\in\operatorname{SO}(3)$,
+für solche Matrizen wurde gezeigt, dass sie normal sind.
+Man kann aber auch direkt nachrechnen:
+\begin{align*}
+AA^t
+&=
+\begin{pmatrix}
+2&1&0\\
+0&2&1\\
+1&0&2
+\end{pmatrix}
+\begin{pmatrix}
+2&0&1\\
+1&2&0\\
+0&1&2
+\end{pmatrix}
+=
+\begin{pmatrix}
+5&2&2\\
+2&5&2\\
+2&2&5
+\end{pmatrix}
+\\
+A^tA
+&=
+\begin{pmatrix}
+2&0&1\\
+1&2&0\\
+0&1&2
+\end{pmatrix}
+\begin{pmatrix}
+2&1&0\\
+0&2&1\\
+1&0&2
+\end{pmatrix}
+=
+\begin{pmatrix}
+5&2&2\\
+2&5&2\\
+2&2&5
+\end{pmatrix}
+\end{align*}
+Es gilt also $AA^t=A^tA$, die Matrix ist also normal.
+\begin{teilaufgaben}
+\item Das charakteristische Polynom ist
+\begin{align}
+\chi_A(\lambda)
+&=\left|
+\begin{matrix}
+2-\lambda & 1 & 0  \\
+ 0 & 2-\lambda & 1 \\
+ 1 & 0 & 2-\lambda
+\end{matrix}
+\right|
+=
+(2-\lambda)^3+1
+\label{4005:charpoly}
+\\
+&=-\lambda^3 -6\lambda^2 + 12\lambda +9.
+\notag
+\end{align}
+Mit einem Taschenrechner kann man die Nullstellen finden,
+aber man kann das auch die Form \eqref{4005:charpoly}
+des charakteristischen Polynoms direkt faktorisieren:
+\begin{align*}
+\chi_A(\lambda)
+&=
+(2-\lambda)^3+1
+\\
+&=
+((2-\lambda)+1)
+((2-\lambda)^2 -(2-\lambda)+1)
+\\
+&=
+(3-\lambda)
+(\lambda^2-3\lambda +4-2+\lambda +1)
+\\
+&=
+(3-\lambda)
+(\lambda^2-2\lambda +3)
+\end{align*}
+Daraus kann man bereits einen Eigenwert $\lambda=3$ ablesen,
+die weiteren Eigenwerte sind die Nullstellen des zweiten Faktors, die
+man mit der Lösungsformel für quadratische Gleichungen finden kann:
+\begin{align*}
+\lambda_{\pm}
+&=
+\frac{3\pm\sqrt{9-12}}{2}
+=
+\frac{3}{2} \pm\frac{\sqrt{-3}}{2}
+=
+\frac{3}{2} \pm i\frac{\sqrt{3}}{2}
+\end{align*}
+\item
+Wir müssen $z=A$ und $\overline{z}=A^t$ im Polynom $p(z,\overline{z})$
+substituieren und erhalten
+\begin{align*}
+B
+&=
+\frac{3-\sqrt{3}}6 \begin{pmatrix}5&2&2\\2&5&2\\2&2&5\end{pmatrix}
++\frac{\sqrt{3}-1}{2}I
+\\
+&=
+\begin{pmatrix}
+ 2.1547005& 0.42264973& 0.42264973 \\
+ 0.4226497& 2.15470053& 0.42264973 \\
+ 0.4226497& 0.42264973& 2.15470053
+\end{pmatrix}
+\end{align*}
+\item
+Tatsächlich gibt die Berechnung der Eigenwerte
+den einfachen Eigenwert $\mu_0=3=|\lambda_0|$
+und
+den doppelten Eigenwert $\mu_{\pm} = \sqrt{3}=1.7320508=|\lambda_{\pm}|$.
+\qedhere
+\end{teilaufgaben}
+\end{loesung}
diff --git a/buch/chapters/60-gruppen/chapter.tex b/buch/chapters/60-gruppen/chapter.tex
index d07db3f..c2aa68d 100644
--- a/buch/chapters/60-gruppen/chapter.tex
+++ b/buch/chapters/60-gruppen/chapter.tex
@@ -7,6 +7,30 @@
\label{buch:chapter:matrizengruppen}}
\lhead{Matrizengruppen}
\rhead{}
+Matrizen können dazu verwendet werden, Symmetrien von geometrischen oder
+physikalischen Systemen zu beschreiben.
+Neben diskreten Symmetrien wie zum Beispiel Spiegelungen gehören dazu
+auch kontinuierliche Symmetrien wie Translationen oder Invarianz einer
+phyisikalischen Grösse über die Zeit.
+Solche Symmetrien müssen durch Matrizen beschrieben werden können,
+die auf stetige oder sogar differenzierbare Art von der Zeit abhängen.
+Die Menge der Matrizen, die zur Beschreibung solcher Symmetrien benutzt
+werden, muss also eine zusätzliche Struktur haben, die ermöglicht,
+sinnvoll über Stetigkeit und Differenzierbarkeit bei Matrizen
+zu sprechen.
+
+Die Menge der Matrizen bilden zunächst eine Gruppe,
+die zusätzliche differenziarbare Struktur macht daraus
+eine sogenannte Lie-Gruppe.
+Die Ableitungen nach einem Parameter liegen in der sogenannten
+Lie-Algebra, einer Matrizen-Algebra mit dem antisymmetrischen
+Lie-Klammer-Produkt $[A,B]=AB-BA$, auch Kommutator genannt.
+Lie-Gruppe und Lie-Algebra sind eng miteinander verknüpft,
+so eng, dass sich die meisten Eigenschaften der Gruppe aus den Eigenschaften
+der Lie-Gruppe aus der Lie-Algebra ableiten lassen.
+Die Verbindung wird hergestellt durch die Exponentialabbildung.
+Ziel dieses Kapitels ist, die Grundzüge dieses interessanten
+Zusammenhangs darzustellen.
\input{chapters/60-gruppen/symmetrien.tex}
\input{chapters/60-gruppen/lie-gruppen.tex}
diff --git a/buch/chapters/60-gruppen/images/castle.jpeg b/buch/chapters/60-gruppen/images/castle.jpeg
new file mode 100644
index 0000000..bf90a36
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/castle.jpeg
Binary files differ
diff --git a/buch/chapters/60-gruppen/lie-algebren.tex b/buch/chapters/60-gruppen/lie-algebren.tex
index 69d4b1d..6c6b74b 100644
--- a/buch/chapters/60-gruppen/lie-algebren.tex
+++ b/buch/chapters/60-gruppen/lie-algebren.tex
@@ -6,3 +6,258 @@
\section{Lie-Algebren
\label{buch:section:lie-algebren}}
\rhead{Lie-Algebren}
+Im vorangegangenen Abschnitt wurde gezeigt, dass alle beschriebenen
+Matrizengruppen als Untermannigfaltigkeiten im $n^2$-dimensionalen
+Vektorraum $M_n(\mathbb{R}9$ betrachtet werden können.
+Die Gruppen haben damit nicht nur die algebraische Struktur einer
+Matrixgruppe, sie haben auch die geometrische Struktur einer
+Mannigfaltigkeit.
+Insbesondere ist es sinnvoll, von Ableitungen zu sprechen.
+
+Eindimensionale Untergruppen einer Gruppe können auch als Kurven
+innerhalb der Gruppe angesehen werden.
+In diesem Abschnitt soll gezeigt werden, wie man zu jeder eindimensionalen
+Untergruppe einen Vektor in $M_n(\mathbb{R})$ finden kann derart, dass
+der Vektor als Tangentialvektor an diese Kurve gelten kann.
+Aus einer Abbildung zwischen der Gruppe und diesen Tagentialvektoren
+erhält man dann auch eine algebraische Struktur auf diesen Tangentialvektoren,
+die sogenannte Lie-Algebra.
+Sie ist charakteristisch für die Gruppe.
+Insbesondere werden wir sehen, wie die Gruppen $\operatorname{SO}(3)$
+und $\operatorname{SU}(2)$ die gleich Lie-Algebra haben und dass die
+Lie-Algebra von $\operatorname{SO}(3)$ mit dem Vektorprodukt in $\mathbb{R}^3$
+übereinstimmt.
+
+%
+% Tangentialvektoren und SO(2)
+%
+\subsection{Tangentialvektoren und $\operatorname{SO}(2)$}
+Die Drehungen in der Ebene können reell als Matrizen der Form
+\[
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha&-\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+\]
+als eidimensionale Kurve innerhalb von $M_2(\mathbb{R})$ beschrieben
+werden.
+Alternativ können Drehungen um den Winkel $\alpha$ als mit Hilfe von
+der Abbildung
+$
+\alpha\mapsto e^{i\alpha}
+$
+als komplexe Zahlen vom Betrag $1$ beschrieben werden.
+Dies sind zwei verschiedene Parametrisierungen der gleichen
+geometrischen Transformation.
+
+Die Ableitung nach $\alpha$ ist $ie^{i\alpha}$, der Tangentialvektor
+im Punkt $e^{i\alpha}$ ist also $ie^{i\alpha}$.
+Die Multiplikation mit $i$ ist die Drehung um $90^\circ$, der Tangentialvektor
+ist also der um $90^\circ$ gedrehte Ortsvektor zum Punkt auf der Kurve.
+
+In der Darstelllung als $2\times 2$-Matrix ist die Ableitung
+\[
+\frac{d}{d\alpha}D_\alpha
+=
+\frac{d}{d\alpha}
+\begin{pmatrix}
+\cos\alpha& -\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+=
+\begin{pmatrix}
+-\sin\alpha & -\cos\alpha \\
+ \cos\alpha & -\sin\alpha
+\end{pmatrix}.
+\]
+Die rechte Seite kann wieder mit der Drehmatrix $D_\alpha$ geschrieben
+werden, es ist nämlich
+\[
+\frac{d}{d\alpha}D_\alpha
+=
+\begin{pmatrix}
+-\sin\alpha & -\cos\alpha \\
+ \cos\alpha & -\sin\alpha
+\end{pmatrix}
+=
+\begin{pmatrix}
+\cos\alpha & -\sin\alpha\\
+\sin\alpha & \cos\alpha
+\end{pmatrix}
+\begin{pmatrix}
+0&-1\\
+1& 0
+\end{pmatrix}
+=
+D_\alpha J.
+\]
+Der Tangentialvektor an die Kurve $\alpha\mapsto D_\alpha$ innerhalb
+$M_2(\mathbb{R})$ im Punkt $D_\alpha$ ist also die Matrix
+$JD_\alpha$.
+Die Matrix $J$ ist die Drehung um $90^\circ$, denn $J=D_{\frac{\pi}2}$.
+Der Zusammenhang zwischen dem Punkt $D_\alpha$ und dem Tangentialvektor
+ist also analog zur Beschreibug mit komplexen Zahlen.
+
+Im Komplexen vermittelt die Exponentialfunktion den Zusammenhang zwischen
+dem Winkel $\alpha$ und dre Drehung $e^{i\alpha}$.
+Der Grund dafür ist natürlich die Differentialgleichung
+\[
+\frac{d}{d\alpha} z(\alpha) = iz(\alpha).
+\]
+Die analoge Differentialgleichung
+\[
+\frac{d}{d\alpha} D_\alpha = J D_\alpha
+\]
+führt auf die Matrix-Exponentialreihe
+\begin{align*}
+D_\alpha
+=
+\exp (J\alpha)
+&=
+\sum_{k=0}^\infty \frac{(J\alpha)^k}{k!}
+=
+\biggl(
+1-\frac{\alpha^2}{2!} + \frac{\alpha^4}{4!} -\frac{\alpha^6}{6!}+\dots
+\biggr)
++
+J\biggl(
+\alpha - \frac{\alpha^3}{3!}
++ \frac{\alpha^5}{5!}
+- \frac{\alpha^7}{7!}+\dots
+\biggr)
+\\
+&=
+I\cos\alpha
++
+J\sin\alpha,
+\end{align*}
+welche der Eulerschen Formel $e^{i\alpha} = \cos\alpha + i \sin\alpha$
+analog ist.
+
+In diesem Beispiel gibt es nur eine Tangentialrichtung und alle in Frage
+kommenden Matrizen vertauschen miteinander.
+Es ist daher nicht damit zu rechnen, dass sich eine interessante
+Algebrastruktur für die Ableitungen konstruieren lässt.
+
+%
+% Die Lie-Algebra einer Matrizengruppe
+%
+\subsection{Lie-Algebra einer Matrizengruppe}
+Das eindimensionale Beispiel $\operatorname{SO}(2)$ hat gezeigt, dass
+die Tangentialvektoren in einem beliebigen Punkt $D_\alpha$ aus dem
+Tangentialvektor im Punkt $I$ durch Anwendung der Drehung hervorgehen,
+die $I$ in $D_\alpha$ abbildet.
+Die Drehungen einer eindimensionalen Untergruppe transportieren daher
+den Tangentialvektor in $I$ entlang der Kurve auf jeden beliebigen
+anderen Punkt.
+Zu jedem Tangentialvektor im Punkt $I$ dürfte es daher genau eine
+eindimensionale Untergruppe geben.
+
+Sei die Abbildung $\varrho\colon\mathbb{R}\to G$ eine Einparameter-Untergruppe
+von $G\subset M_n(\mathbb{R})$.
+Durch Ableitung der Gleichung $\varrho(t+x) = \varrho(t)\varrho(x)$ nach
+$x$ folgt die Differentialgleichung
+\[
+\varrho'(t)
+=
+\frac{d}{dx}\varrho(t+x)\bigg|_{x=0}
+=
+\varrho(t) \frac{d}{dx}\varrho(0)\bigg|_{x=0}
+=
+\varrho(t) \varrho'(0).
+\]
+Der Tangentialvektor in $\varrho'(t)$ in $\varrho(t)$ ist daher
+der Tangentialvektor $\varrho'(0)$ in $I$ transportiert in den Punkt
+$\varrho(t)$ mit Hilfe der Matrix $\varrho(t)$.
+
+Aus der Differentialgleichung folgt auch, dass
+\[
+\varrho(t) = \exp (t\varrho'(0)).
+\]
+Zu einem Tangentialvektor in $I$ kann man also immer die
+Einparameter-Untergruppe mit Hilfe der Differentialgleichung
+oder der expliziten Exponentialreihe rekonstruieren.
+
+Die eindimensionale Gruppe $\operatorname{SO}(2)$ ist abelsch und
+hat einen eindimensionalen Tangentialraum, man kann also nicht mit
+einer interessanten Algebrastruktur rechnen.
+Für eine höherdimensionale, nichtabelsche Gruppe sollte sich aus
+der Tatsache, dass es verschiedene eindimensionale Untergruppen gibt,
+deren Elemente nicht mit den Elemente einer anderen solchen Gruppe
+vertauschen, eine interessante Algebra konstruieren lassen, deren
+Struktur die Nichtvertauschbarkeit wiederspiegelt.
+
+Seien also $A$ und $B$ Tangentialvektoren einer Matrizengruppe $G$,
+die zu den Einparameter-Untergruppen $\varphi(t)=\exp At$ und
+$\varrho(t)=\exp Bt$ gehören.
+Insbesondere gilt $\varphi'(0)=A$ und $\varrho'(0)=B$.
+Das Produkt $\pi(t)=\varphi(t)\varrho(t)$ ist allerdings nicht notwendigerweise
+eine Einparametergruppe, denn dazu müsste gelten
+\begin{align*}
+\pi(t+s)
+&=
+\varphi(t+s)\varrho(t+s)
+=
+\varphi(t)\varphi(s)\varrho(t)\varrho(s)
+\\
+=
+\pi(t)\pi(s)
+&=
+\varphi(t)\varrho(t)\varphi(s)\varrho(s)
+\end{align*}
+Durch Multiplikation von links mit $\varphi(t)^{-1}$ und
+mit $\varrho(s)^{-1}$ von rechts folgt, dass dies genau dann gilt,
+wenn
+\[
+\varphi(s)\varrho(t)=\varrho(t)\varphi(s).
+\]
+Die beiden Seiten dieser Gleichung sind erneut verschiedene Punkte
+in $G$.
+Durch Multiplikation mit $\varrho(t)^{-1}$ von links und mit
+$\varphi(s)^{-1}$ von rechts erhält man die äquivaliente
+Bedingung
+\begin{equation}
+\varrho(-t)\varphi(s)\varrho(t)\varphi(-s)=I.
+\label{buch:lie:konjugation}
+\end{equation}
+Ist die Gruppe $G$ nicht kommutativ, kann man nicht
+annehmen, dass diese Bedingung erfüllt ist.
+
+Aus \eqref{buch:lie:konjugation} erhält man jetzt eine Kurve
+\[
+t \mapsto \gamma(t,s) = \varrho(-t)\varphi(s)\varrho(t)\varphi(-s) \in G
+\]
+in der Gruppe, die für $t=0$ durch $I$ geht.
+Ihren Tangentialvektor kann man durch Ableitung bekommen:
+\begin{align*}
+\frac{d}{dt}\gamma(t,s)
+&=
+-\varrho'(-t)\varphi(s)\varrho(t)\varphi(-s)
++\varrho(-t)\varphi(s)\varrho'(t)\varphi(-t)
+\\
+\frac{d}{dt}\gamma(t)\bigg|_{t=0}
+&=
+-B\varphi(s) + \varphi(-s)B
+\end{align*}
+Durch erneute Ableitung nach $s$ erhält man dann
+\begin{align*}
+\frac{d}{ds} \frac{d}{dt}\gamma(t,s)\bigg|_{t=0}
+&=
+-B\varphi'(s) - \varphi(-s)B
+\end{align*}
+
+%
+% Die Lie-Algebra von SO(3)
+%
+\subsection{Die Lie-Algebra von $\operatorname{SO}(3)$}
+
+%
+% Die Lie-Algebra von SU(2)
+%
+\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$}
+
+
+
+
diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex
index cb1ca84..1268ce2 100644
--- a/buch/chapters/60-gruppen/lie-gruppen.tex
+++ b/buch/chapters/60-gruppen/lie-gruppen.tex
@@ -6,3 +6,321 @@
\section{Lie-Gruppen
\label{buch:section:lie-gruppen}}
\rhead{Lie-Gruppen}
+
+\subsection{Drehungen in der Ebene
+\label{buch:gruppen:drehungen2d}}
+Drehungen der Ebene können in einer orthonormierten Basis durch
+Matrizen der Form
+\[
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha&-\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+\]
+dargestellt werden.
+Wir bezeichnen die Menge der Drehmatrizen in der Ebene mit
+$\operatorname{SO}(2)\subset\operatorname{GL}_2(\mathbb{R})$.
+Die Abbildung
+\[
+D_{\bullet}
+\colon
+\mathbb{R}\to \operatorname{SO}(2)
+:
+\alpha \mapsto D_{\alpha}
+\]
+hat die Eigenschaften
+\begin{align*}
+D_{\alpha+\beta}&= D_{\alpha}D_{\beta}
+\\
+D_0&=I
+\\
+D_{2k\pi}&=I\qquad \forall k\in\mathbb{Z}.
+\end{align*}
+Daraus folgt zum Beispiel, dass $D_{\bullet}$ eine $2\pi$-periodische
+Funktion ist.
+$D_{\bullet}$ bildet die Menge der Winkel $[0,2\pi)$ bijektiv auf
+die Menge der Drehmatrizen in der Ebene ab.
+
+Ein alternatives Bild für die Drehungen der Ebene kann man in der komplexen
+Ebene $\mathbb{C}$ erhalten.
+Die Multiplikation mit der komplexen Zahl $e^{i\alpha}$ beschreibt eine
+Drehung der komplexen Ebene um den Winkel $\alpha$.
+Die Zahlen der Form $e^{i\alpha}$ haben den Betrag $1$ und die Abbildung
+\[
+f\colon \mathbb{R}\to \mathbb{C}:\alpha \mapsto e^{i\alpha}
+\]
+hat die Eigenschaften
+\begin{align*}
+f(\alpha+\beta) &= f(\alpha)f(\beta)
+\\
+f(0)&=1
+\\
+f(2\pi k)&=1\qquad\forall k\in\mathbb{Z},
+\end{align*}
+die zu den Eigenschaften der Abbildung $\alpha\mapsto D_{\alpha}$
+analog sind.
+
+Jede komplexe Zahl $z$ vom Betrag $1$ kann geschrieben werden in der Form
+$z=e^{i\alpha}$, die Abbildung $f$ ist also eine Parametrisierung des
+Einheitskreises in der Ebene.
+Wir bezeichen $S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ die komplexen Zahlen vom
+Betrag $1$.
+$S^1$ ist eine Gruppe bezüglich der Multiplikation, da für jede Zahl
+$z,w\in S^1$ gilt
+$|z^{-1}|=1$ und $|zw|=1$ und damit $z^{-1}\in S^1$ und $zw\in S^1$.
+
+Zu einer komplexen Zahl $z\in S^1$ gibt es einen bis auf Vielfache
+von $2\pi$ eindeutigen Winkel $\alpha(z)$ derart, dass $e^{i\alpha(z)}=z$.
+Damit kann man jetzt die Abbildung
+\[
+\varphi
+\colon
+S^1\to \operatorname{SO}(2)
+:
+z\mapsto D_{\alpha(z)}
+\]
+konstruieren.
+Da $D_{\alpha}$ $2\pi$-periodisch ist, geben um Vielfache
+von $2\pi$ verschiedene Wahlen von $\alpha(z)$ die gleiche
+Matrix $D_{\alpha(z)}$, die Abbildung $\varphi$ ist daher
+wohldefiniert.
+$\varphi$ erfüllt ausserdem die Bedingungen
+\begin{align*}
+\varphi(z_1z_2)
+&=
+D_{\alpha(z_1z_2)}
+=
+D_{\alpha(z_1)+\alpha(z_2)}
+=
+D_{\alpha(z_1)}D_{\alpha(z_2)}
+=
+\varphi(z_1)\varphi(z_2)
+\\
+\varphi(1)
+&=
+D_{\alpha(1)}
+=
+D_0
+=
+I
+\end{align*}
+Die Abbildung $\varphi$ ist ein Homomorphismus der Gruppe $S^1$
+in die Gruppe $\operatorname{SO}(2)$.
+Die Menge der Drehmatrizen in der Ebene kann also mit dem Einheitskreis
+in der komplexen Ebene identifiziert werden.
+
+%
+% Isometrien von R^n
+%
+\subsection{Isometrien von $\mathbb{R}^n$
+\label{buch:gruppen:isometrien}}
+Lineare Abbildungen der Ebene $\mathbb{R}^n$ mit dem üblichen Skalarprodukt
+können durch $n\times n$-Matrizen beschrieben werden.
+Die Matrizen, die das Skalarprodukt erhalten, bilden eine Gruppe,
+die in diesem Abschnitt genauer untersucht werden soll.
+Eine Matrix $A\in M_{2}(\mathbb{R})$ ändert das Skalarprodukt nicht, wenn
+für jedes beliebige Paar $x,y$ von Vektoren gilt
+$\langle Ax,Ay\rangle = \langle x,y\rangle$.
+Das Standardskalarprodukt kann mit dem Matrixprodukt ausgedrückt werden:
+\[
+\langle Ax,Ay\rangle
+=
+(Ax)^tAy
+=
+x^tA^tAy
+=
+x^ty
+=
+\langle x,y\rangle
+\]
+für jedes Paar von Vektoren $x,y\in\mathbb{R}$.
+
+Mit dem Skalarprodukt kann man auch die Matrixelemente einer Matrix
+einer Abbildung $f$ in der Standardbasis bestimmen.
+Das Skalarprodukt $\langle e_i, v\rangle$ ist die Länge der Projektion
+des Vektors $v$ auf die Richtung $e_i$.
+Die Komponenten von $Ae_j$ sind daher $a_{ij}=\langle e_i,f(e_j)\rangle$.
+Die Matrix $A$ der Abbildung $f$ hat also die Matrixelemente
+$a_{ij}=e_i^tAe_j$.
+
+\subsubsection{Die orthogonale Gruppe $\operatorname{O}(n)$}
+Die Matrixelemente von $A^tA$ sind
+$\langle A^tAe_i, e_j\rangle =\langle e_i,e_j\rangle = \delta_{ij}$
+sind diejenigen der Einheitsmatrix,
+die Matrix $A$ erfüllt $AA^t=I$ oder $A^{-1}=A^t$.
+Dies sind die {\em orthogonalen} Matrizen.
+Die Menge $\operatorname{O}(n)$ der isometrischen Abbildungen besteht
+daher aus den Matrizen
+\[
+\operatorname{O}(n)
+=
+\{ A\in M_n(\mathbb{R})\;|\; AA^t=I\}.
+\]
+Die Matrixgleichung $AA^t=I$ liefert $n(n+1)/2$ unabhängige Bedingungen,
+die die orthogonalen Matrizen innerhalb der $n^2$-dimensionalen
+Menge $M_n(\mathbb{R})$ auszeichnen.
+Die Menge $\operatorname{O}(n)$ der orthogonalen Matrizen hat daher
+die Dimension
+\[
+n^2 - \frac{n(n+1)}{2}
+=
+\frac{2n^2-n^2-n}{2}
+=
+\frac{n(n-1)}2.
+\]
+Im Spezialfall $n=2$ ist die Gruppe $O(2)$ eindimensional.
+
+\subsubsection{Die Gruppe $\operatorname{SO}(n)$}
+Die Gruppe $\operatorname{O}(n)$ enhält auch Isometrien, die
+die Orientierung des Raumes umkehren, wie zum Beispiel Spiegelungen.
+Wegen $\det (AA^t)=\det A\det A^t = (\det A)^2=1$ kann die Determinante
+einer orthogonalen Matrix nur $\pm 1$ sein.
+Orientierungserhaltende Isometrien haben Determinante $1$.
+
+Die Gruppe
+\[
+\operatorname{SO}(n)
+=
+\{A\in\operatorname{O}(n)\;|\; \det A=1\}
+\]
+heisst die {\em spezielle orthogonale Gruppe}.
+Die Dimension der Gruppe $\operatorname{O}(n)$ ist $n(n-1)/2$.
+
+\subsubsection{Die Gruppe $\operatorname{SO}(3)$}
+Die Gruppe $\operatorname{SO}(3)$ der Drehungen des dreidimensionalen
+Raumes hat die Dimension $3(3-1)/2=3$.
+Eine Drehung wird festgelegt durch die Richtung der Drehachse und den
+Drehwinkel.
+Die Richtung der Drehachse ist ein Einheitsvektor, also ein Punkt
+auf der zweidimensionalen Kugel.
+Der Drehwinkel ist der dritte Parameter.
+
+Drehungen mit kleinen Drehwinkeln können zusammengesetzt werden
+aus den Matrizen
+\[
+D_{x,\alpha}
+=
+\begin{pmatrix}
+1&0&0\\
+0&\cos\alpha&-\sin\alpha\\
+0&\sin\alpha& \cos\alpha
+\end{pmatrix},
+\qquad
+D_{y,\beta}
+=
+\begin{pmatrix}
+ \cos\beta&0&\sin\beta\\
+ 0 &1& 0 \\
+-\sin\beta&0&\cos\beta
+\end{pmatrix},
+\qquad
+D_{z,\gamma}
+=
+\begin{pmatrix}
+\cos\gamma&-\sin\gamma&0\\
+\sin\gamma& \cos\gamma&0\\
+ 0 & 0 &1
+\end{pmatrix},
+\]
+die Drehungen um die Koordinatenachsen um den Winkel $\alpha$
+beschreiben.
+Auch die Winkel $\alpha$, $\beta$ und $\gamma$ können als die
+drei Koordinaten der Mannigkfaltigkeit $\operatorname{SO}(3)$
+angesehen werden.
+
+%
+% Die Gruppe SU(2)
+%
+\subsection{Die Gruppe $\operatorname{SU}(2)$
+\label{buch:gruppen:su2}}
+Die Menge der Matrizen
+\[
+\operatorname{SU}(2)
+=
+\left\{
+\left.
+A=\begin{pmatrix} a&b\\c&d\end{pmatrix}
+\;\right|\;
+a,b,c,d\in\mathbb{C},\det(A)=1, AA^*=I
+\right\}
+\]
+heisst die {\em spezielle unitäre Gruppe}.
+Wegen $\det(AB)=\det(A)\det(B)=1$ und $(AB)^*AB=B^*A^*AB=B^*B=I$ ist
+$\operatorname{SU}(2)$ eine Untergruppe von $\operatorname{GL}_2(\mathbb{C})$.
+Die Bedingungen $\det A=1$ und $AA^*=I$ schränken die möglichen Werte
+von $a$ und $b$ weiter ein.
+Aus
+\[
+A^*
+=
+\begin{pmatrix}
+\overline{a}&\overline{c}\\
+\overline{b}&\overline{d}
+\end{pmatrix}
+\]
+und den Bedingungen führen die Gleichungen
+\[
+\begin{aligned}
+a\overline{a}+b\overline{b}&=1
+&&\Rightarrow&|a|^2+|b|^2&=1
+\\
+a\overline{c}+b\overline{d}&=0
+&&\Rightarrow&
+\frac{a}{b}&=-\frac{\overline{d}}{\overline{c}}
+\\
+c\overline{a}+d\overline{b}&=0
+&&\Rightarrow&
+\frac{c}{d}&=-\frac{\overline{b}}{\overline{a}}
+\\
+c\overline{c}+d\overline{d}&=1&&\Rightarrow&|c|^2+|d|^2&=1
+\\
+ad-bc&=1
+\end{aligned}
+\]
+Aus der zweiten Gleichung kann man ableiten, dass es eine Zahl $t\in\mathbb{C}$
+gibt derart, dass $c=-t\overline{b}$ und $d=t\overline{a}$.
+Damit wird die Bedingung an die Determinante zu
+\[
+1
+=
+ad-bc = at\overline{a} - b(-t\overline{b})
+=
+t(|a|^2+|b|^2)
+=
+t,
+\]
+also muss die Matrix $A$ die Form haben
+\[
+A
+=
+\begin{pmatrix}
+a&b\\
+-\overline{b}&\overline{a}
+\end{pmatrix}
+\qquad\text{mit}\quad |a|^2+|b|^2=1.
+\]
+Schreibt man $a=a_1+ia_2$ und $b=b_1+ib_2$ mit rellen $a_i$ und $b_i$,
+dann besteht $SU(2)$ aus den Matrizen der Form
+\[
+A=
+\begin{pmatrix}
+ a_1+ia_2&b_1+ib_2\\
+-b_1+ib_2&a_1-ia_2
+\end{pmatrix}
+\]
+mit der zusätzlichen Bedingung
+\[
+|a|^2+|b|^2
+=
+a_1^2 + a_2^2 + b_1^2 + b_2^2 = 1.
+\]
+Die Matrizen von $\operatorname{SU}(2)$ stehen daher in einer
+eins-zu-eins-Beziehung zu den Vektoren $(a_1,a_2,b_1,b_2)\in\mathbb{R}^4$
+eines vierdimensionalen reellen Vektorraums mit Länge $1$.
+Geometrisch betrachtet ist also $\operatorname{SU}(2)$ eine dreidmensionalen
+Kugel, die in einem vierdimensionalen Raum eingebettet ist.
+
+
+
diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex
index 8d5c0e0..cb07475 100644
--- a/buch/chapters/60-gruppen/symmetrien.tex
+++ b/buch/chapters/60-gruppen/symmetrien.tex
@@ -7,4 +7,102 @@
\section{Symmetrien
\label{buch:section:symmetrien}}
\rhead{Symmetrien}
+Der geometrische Begriff der Symmetrie meint die Eigenschaft eines
+geometrischen Objektes, dass es bei einer Bewegung auf sich selbst
+abgebildet wird.
+Das Wort stammt aus dem altgriechischen, wo es {\em Gleichmass}
+bedeutet.
+Spiegelsymmetrische Objekte zeichnen sich zum Beispiel dadurch aus,
+dass Messungen von Strecken die gleichen Werte ergeben wie die Messungen
+der entsprechenden gespiegelten Strecken (siehe auch
+Abbildung~\ref{buch:lie:bild:castlehoward}, was die Herkunft des
+Begriffs verständlich macht.
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/60-gruppen/images/castle.jpeg}
+\caption{Das Castle Howard in Yorkshire war in dieser ausgeprägt symmetrischen
+Form geplant, wurde dann aber in modifizeirter Form gebaut.
+Messungen zwischen Punkten in der rechten Hälfte des Bildes
+ergeben die gleichen Werte wie Messungen entsprechenden Strecken
+in der linken Hälfte, was den Begriff Symmetrie rechtfertigt.
+\label{buch:lie:bild:castlehoward}}
+\end{figure}
+In der Physik wird dem Begriff der Symmetrie daher auch eine erweiterte
+Bedeutung gegeben.
+Jede Transformation eines Systems, welche bestimmte Grössen nicht
+verändert, wird als Symmetrie bezeichnet.
+Die Gesetze der Physik sind typischerweise unabhängig davon, wo man den
+den Nullpunkt der Zeit oder das räumlichen Koordinatensystems ansetzt,
+eine Transformation des Zeitnullpunktes oder des Ursprungs des
+Koordinatensystems ändert daher die Bewegungsgleichungen nicht, sie ist
+eine Symmetrie des Systems.
+
+Umgekehrt kann man fragen, welche Symmetrien ein System hat.
+Da sich Symmetrien zusammensetzen und umkehren lassen, kann man in davon
+ausgehen, dass die Symmetrietransformationen eine Gruppe bilden.
+Besonders interessant ist dies im Falle von Transformationen, die
+durch Matrizen beschrieben weren.
+Eine unter der Symmetrie erhaltene Eigenschaft definiert so eine
+Untergruppe der Gruppe $\operatorname{GL}_n(\mathbb{R})$ der
+invertierbaren Matrizen.
+Die erhaltenen Eigenschaften definieren eine Menge von Gleichungen,
+denen die Elemente der Untergruppe genügen müssen.
+Als Lösungsmenge einer Gleichung erhält die Untergruppe damit eine
+zusätzliche geometrische Struktur, man nennt sie eine differenzierbare
+Mannigfaltigkeit.
+Dieser Begriff wird im Abschnitt~\ref{buch:subsection:mannigfaltigkeit}
+eingeführt.
+Es wird sich zum Beispiel zeigen, dass die Menge der Drehungen der
+Ebene mit den Punkten eines Kreises parametrisieren lassen,
+die Lösungen der Gleichung $x^2+y^2=1$ sind.
+
+Eine Lie-Gruppe ist eine Gruppe, die gleichzeitig eine differenzierbare
+Mannigfaltigkeit ist.
+Die Existenz von geometrischen Konzepten wie Tangentialvektoren
+ermöglicht zusätzliche Werkzeuge, mit denen diese Gruppe untersucht
+und verstanden werden können.
+Ziel dieses Abschnitts ist, die Grundlagen für diese Untersuchung zu
+schaffen, die dann im Abschnitt~\ref{buch:section:lie-algebren}
+durchgeführt werden soll.
+
+\subsection{Algebraische Symmetrien
+\label{buch:subsection:algebraische-symmetrien}}
+Mit Matrizen lassen sich Symmetrien in einem geometrischen Problem
+oder in einem physikalischen System beschreiben.
+Man denkt dabei gerne zuerst an geometrische Symmetrien wie die
+Symmetrie unter Punktspiegelung oder die Spiegelung an der $x_1$-$x_2$-Ebene,
+wie sie zum Beispiel durch die Abbildungen
+\[
+\mathbb{R}^3\to\mathbb{R}^3 : x\mapsto -x
+\qquad\text{oder}\qquad
+\mathbb{R}^3\to\mathbb{R}^3 :
+\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
+\mapsto
+\begin{pmatrix}-x_1\\x_2\\x_3\end{pmatrix}
+\]
+dargestellt werden.
+Beide haben zunächst die Eigenschaft, dass Längen und Winkel und damit
+das Skalarprodukt erhalten sind.
+Diese Eigenschaft allein erlaubt aber noch nicht, die beiden Transformationen
+zu unterscheiden.
+Die Punktspiegelung zeichnet sich dadurch aus, das alle Geraden und alle
+Ebenen durch den Ursprung auf sich selbst abgebildet werden.
+Dies funktioniert für die Ebenenspiegelung nicht, dort bleibt nur die
+Spiegelungsebene (die $x_1$-$x_2$-Ebene im vorliegenden Fall) und
+ihre Normale erhalten.
+Die folgenden Beispiele sollen zeigen, wie solche Symmetriedefinitionen
+auf algebraische Bedingungen an die Matrixelemente führen.
+
+
+\subsection{Manningfaltigkeiten
+\label{buch:subsection:mannigfaltigkeit}}
+
+\subsection{Der Satz von Noether
+\label{buch:subsection:noether}}
+
+
+
+
+
+
diff --git a/buch/common/teilnehmer.tex b/buch/common/teilnehmer.tex
index aeaddd5..4d57f84 100644
--- a/buch/common/teilnehmer.tex
+++ b/buch/common/teilnehmer.tex
@@ -7,21 +7,21 @@
Joshua Baer, % E
Marius Baumann, % E
Reto Fritsche, % E
-Ahmet Güzel%, % E
+%Ahmet Güzel%, % E
+Alain Keller%, % E
\\
-%Pascal Honegger, % I
-Alain Keller, % E
+Marc Kühne, % B
Robine Luchsinger, % B
-Jan Marbach%, % E
-\\
-Andrea Mozzin Vellen, % E
Naoki Pross, % E
-Michael Schmid%, % MSE
+Thomas Reichlin%, % B
\\
+Michael Schmid, % MSE
Pascal Andreas Schmid, % B
-Thierry Schwaller, % E
-Michael Steiner%, % E
+Adrian Schuler%, % B
\\
+Thierry Schwaller, % E
+Michael Steiner, % E
Tim Tönz, % E
-Fabio Viecelli, % B
+Fabio Viecelli%, % B
+\\
Lukas Zogg%, % B
diff --git a/cover/buchcover.tex b/cover/buchcover.tex
index de0c7d8..834eec4 100644
--- a/cover/buchcover.tex
+++ b/cover/buchcover.tex
@@ -72,27 +72,27 @@
Joshua Baer, % E
Marius Baumann, % E
Reto Fritsche, % E (2)
- Ahmet Güzel%, % E
+ Alain Keller%, % E
+% Ahmet Güzel%, % E
}};
\node at ({\einschlag+2*\gelenk+\ruecken+1.5*\breite},17.75)
[color=white,scale=1]
{\hbox to\hsize{\hfill%
\sf \fontsize{13}{5}\selectfont
- %Pascal Honegger, % I
- Alain Keller, % E
+ Marc Kühne,
Robine Luchsinger, % B
- Jan Marbach, % E
- Andreas Mozzini Vellen%, % E
+ Naoki Pross, % E
+ Thomas Reichlin%, % B
}};
\node at ({\einschlag+2*\gelenk+\ruecken+1.5*\breite},17.1)
[color=white,scale=1]
{\hbox to\hsize{\hfill%
\sf \fontsize{13}{5}\selectfont
- Naoki Pross, % E
Michael Schmid, % MSE
- Pascal Andreas Schmid%, % B
+ Pascal Andreas Schmid, % B
+ Adrian Schuler%,
}};
\node at ({\einschlag+2*\gelenk+\ruecken+1.5*\breite},16.45)
diff --git a/vorlesungen/05_mseendlichekoerper/Makefile b/vorlesungen/05_mseendlichekoerper/Makefile
new file mode 100644
index 0000000..4dd01f2
--- /dev/null
+++ b/vorlesungen/05_mseendlichekoerper/Makefile
@@ -0,0 +1,33 @@
+#
+# Makefile -- endlichekoerper
+#
+# (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+#
+all: endlichekoerper-handout.pdf MathSemMSE-05-endlichekoerper.pdf
+
+include ../slides/Makefile.inc
+
+SOURCES = common.tex slides.tex $(slides)
+
+MathSemMSE-05-endlichekoerper.pdf: MathSemMSE-05-endlichekoerper.tex $(SOURCES)
+ pdflatex MathSemMSE-05-endlichekoerper.tex
+
+endlichekoerper-handout.pdf: endlichekoerper-handout.tex $(SOURCES)
+ pdflatex endlichekoerper-handout.tex
+
+thumbnail: thumbnail.jpg # fix1.jpg
+
+thumbnail.pdf: MathSemMSE-05-endlichekoerper.pdf
+ pdfjam --outfile thumbnail.pdf --papersize '{16cm,9cm}' \
+ MathSemMSE-05-endlichekoerper.pdf 1
+thumbnail.jpg: thumbnail.pdf
+ convert -density 300 thumbnail.pdf \
+ -resize 1920x1080 -units PixelsPerInch thumbnail.jpg
+
+fix1.pdf: MathSemMSE-05-endlichekoerper.pdf
+ pdfjam --outfile fix1.pdf --papersize '{16cm,9cm}' \
+ MathSemMSE-05-endlichekoerper.pdf 1
+fix1.jpg: fix1.pdf
+ convert -density 300 fix1.pdf \
+ -resize 1920x1080 -units PixelsPerInch fix1.jpg
+
diff --git a/vorlesungen/05_mseendlichekoerper/MathSemMSE-05-endlichekoerper.tex b/vorlesungen/05_mseendlichekoerper/MathSemMSE-05-endlichekoerper.tex
new file mode 100644
index 0000000..d03fa99
--- /dev/null
+++ b/vorlesungen/05_mseendlichekoerper/MathSemMSE-05-endlichekoerper.tex
@@ -0,0 +1,14 @@
+%
+% MathSem-05-mseendlichekoerper.tex -- Präsentation
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\documentclass[aspectratio=169]{beamer}
+\input{common.tex}
+\setboolean{presentation}{true}
+\begin{document}
+\begin{frame}
+\titlepage
+\end{frame}
+\input{slides.tex}
+\end{document}
diff --git a/vorlesungen/05_mseendlichekoerper/common.tex b/vorlesungen/05_mseendlichekoerper/common.tex
new file mode 100644
index 0000000..7bd6c65
--- /dev/null
+++ b/vorlesungen/05_mseendlichekoerper/common.tex
@@ -0,0 +1,16 @@
+%
+% common.tex -- gemeinsame definition
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\input{../common/packages.tex}
+\input{../common/common.tex}
+\mode<beamer>{%
+\usetheme[hideothersubsections,hidetitle]{Hannover}
+}
+\beamertemplatenavigationsymbolsempty
+\title[Endliche Körper]{Endliche Körper}
+\author[A.~Müller]{Prof. Dr. Andreas Müller}
+\date[]{}
+\newboolean{presentation}
+
diff --git a/vorlesungen/05_mseendlichekoerper/endlichekoerper-handout.tex b/vorlesungen/05_mseendlichekoerper/endlichekoerper-handout.tex
new file mode 100644
index 0000000..cdb077b
--- /dev/null
+++ b/vorlesungen/05_mseendlichekoerper/endlichekoerper-handout.tex
@@ -0,0 +1,11 @@
+%
+% mseendlichekoerper-handout.tex -- Handout XXX
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\documentclass[handout,aspectratio=169]{beamer}
+\input{common.tex}
+\setboolean{presentation}{false}
+\begin{document}
+\input{slides.tex}
+\end{document}
diff --git a/vorlesungen/05_mseendlichekoerper/slides.tex b/vorlesungen/05_mseendlichekoerper/slides.tex
new file mode 100644
index 0000000..2a3df88
--- /dev/null
+++ b/vorlesungen/05_mseendlichekoerper/slides.tex
@@ -0,0 +1,30 @@
+%
+% slides.tex --
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Euklidischer Algorithmus}
+\folie{4/ggt.tex}
+\folie{4/euklidmatrix.tex}
+\folie{4/euklidbeispiel.tex}
+\folie{4/euklidtabelle.tex}
+
+\section{Endlicher Körper}
+\folie{4/fp.tex}
+\folie{4/division.tex}
+\folie{4/gauss.tex}
+\folie{4/dh.tex}
+
+\section{Charakteristik}
+\folie{4/charakteristik.tex}
+\folie{4/char2.tex}
+\folie{4/frobenius.tex}
+\folie{4/qundr.tex}
+
+\section{Körpererweiterung}
+\folie{4/divisionpoly.tex}
+\folie{4/euklidpoly.tex}
+\folie{4/polynomefp.tex}
+\folie{4/alpha.tex}
+\folie{4/schieberegister.tex}
+
diff --git a/vorlesungen/06_spektral2/slides.tex b/vorlesungen/06_spektral2/slides.tex
index b049f2f..905c47d 100644
--- a/vorlesungen/06_spektral2/slides.tex
+++ b/vorlesungen/06_spektral2/slides.tex
@@ -3,20 +3,28 @@
%
% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+\section{Plan}
+\folie{5/plan.tex}
+\folie{5/planbeispiele.tex}
+
\section{Normen}
\folie{2/norm.tex}
-\folie{2/skalarprodukt.tex}
+%\folie{2/skalarprodukt.tex}
\folie{2/operatornorm.tex}
-\section{Matrix-Analysis}
+\section{Potenzreihen}
\folie{5/konvergenzradius.tex}
\folie{5/krbeispiele.tex}
+\folie{5/spektrum.tex}
\folie{5/spektralgelfand.tex}
\folie{5/Aiteration.tex}
\folie{5/satzvongelfand.tex}
-% XXX stone weierstrass incomplete
+
+\section{Polynomapproximation}
+\folie{5/normal.tex}
+\folie{5/normalbeispiel.tex}
+\folie{5/normalbeispiel34.tex}
\folie{5/stoneweierstrass.tex}
-\folie{5/spektrum.tex}
+\folie{5/swbeweis.tex}
% XXX polynome auf dem spektrum
% XXX Motiviation für *-Operation
-\folie{5/normal.tex}
diff --git a/vorlesungen/slides/4/Makefile.inc b/vorlesungen/slides/4/Makefile.inc
index ad1081e..6616f56 100644
--- a/vorlesungen/slides/4/Makefile.inc
+++ b/vorlesungen/slides/4/Makefile.inc
@@ -17,6 +17,10 @@ chapter4 = \
../slides/4/euklidpoly.tex \
../slides/4/polynomefp.tex \
../slides/4/schieberegister.tex \
+ ../slides/4/charakteristik.tex \
+ ../slides/4/char2.tex \
+ ../slides/4/frobenius.tex \
+ ../slides/4/qundr.tex \
../slides/4/alpha.tex \
../slides/4/chapter.tex
diff --git a/vorlesungen/slides/4/chapter.tex b/vorlesungen/slides/4/chapter.tex
index a10712a..6872018 100644
--- a/vorlesungen/slides/4/chapter.tex
+++ b/vorlesungen/slides/4/chapter.tex
@@ -16,3 +16,7 @@
\folie{4/polynomefp.tex}
\folie{4/alpha.tex}
\folie{4/schieberegister.tex}
+\folie{4/charakteristik.tex}
+\folie{4/char2.tex}
+\folie{4/frobenius.tex}
+\folie{4/qundr.tex}
diff --git a/vorlesungen/slides/4/char2.tex b/vorlesungen/slides/4/char2.tex
new file mode 100644
index 0000000..2b5709a
--- /dev/null
+++ b/vorlesungen/slides/4/char2.tex
@@ -0,0 +1,48 @@
+%
+% char2.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Charakteristik 2}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Plus und Minus}
+\[
+x+x = 2x = 0
+\uncover<2->{\Rightarrow
+-x=x}
+\]
+\end{block}
+\uncover<3->{%
+\begin{block}{Quadrieren}
+In $\mathbb{F}_2$ ist $2=0$, d.h
+\[
+(x+y)^2
+=
+x^2 + 2xy + y^2
+\uncover<4->{=
+x^2 + y^2}
+\]
+für alle $x,y\in\Bbbk$
+\end{block}}
+\uncover<6->{%
+\begin{block}{Frobenius-Automorphismus}
+\[
+(x+y)^{2^n} = x^{2^n}+y^{2^n}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Pascal-Dreieck}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/30-endlichekoerper/images/binomial2.pdf}
+\end{center}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/charakteristik.tex b/vorlesungen/slides/4/charakteristik.tex
new file mode 100644
index 0000000..a0d6d3e
--- /dev/null
+++ b/vorlesungen/slides/4/charakteristik.tex
@@ -0,0 +1,71 @@
+%
+% charakteristisk.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Primkörper und Charakteristik}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Primkörper}
+$1\in\Bbbk$
+\begin{enumerate}
+\item<2->
+$n\cdot 1\ne 0\;\forall n\in\mathbb{N}$\uncover<3->{:
+$\Rightarrow$
+$\mathbb{Z}\subset \Bbbk$}
+\uncover<4->{%
+$\Rightarrow$
+$\mathbb{Q}\subset \Bbbk$}
+\item<5->
+$\{n\mathbb{Z}\;|\;
+\text{$n\cdot 1 = 0$ in $\Bbbk$}\}
+=
+p\mathbb{Z}$
+\uncover<6->{
+$\Rightarrow$
+$\mathbb{F}_p\subset \Bbbk$}
+\end{enumerate}
+\end{block}
+\uncover<7->{%
+\begin{block}{Primkörper}
+Der Primkörper $\operatorname{Prim}(\Bbbk)$
+eines Körpers $\Bbbk$ ist der kleinste in $\Bbbk$
+enthaltene Körper
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{block}{Charakteristik}
+\vspace{-10pt}
+\[
+\operatorname{char}(\Bbbk)
+=
+\begin{cases}
+\uncover<9->{p&\qquad \operatorname{Prim}(\Bbbk) = \mathbb{F}_p}\\
+\uncover<10->{0&\qquad \operatorname{Prim}(\Bbbk) = \mathbb{Q}}
+\end{cases}
+\]
+\vspace{-10pt}
+\end{block}}
+\uncover<11->{%
+\begin{block}{Vektorraum}
+$\Bbbk$ ist ein Vektorraum über $\operatorname{Prim}(\Bbbk)$
+durch Einschränkung der Multiplikation auf $\operatorname{Prim}(\Bbbk)$
+(Körperstruktur vergessen)
+\end{block}}
+\uncover<12->{%
+\begin{block}{Endliche Körper}
+\begin{itemize}
+\item<13->
+Endliche Körper haben immer Charakteristik $p\ne 0$
+\item<14->
+$\Bbbk$ ist eine endlichdimensionaler $\mathbb{F}_p$-Vektorraum
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/euklidmatrix.tex b/vorlesungen/slides/4/euklidmatrix.tex
index be5b3ca..c63afec 100644
--- a/vorlesungen/slides/4/euklidmatrix.tex
+++ b/vorlesungen/slides/4/euklidmatrix.tex
@@ -18,7 +18,7 @@ a_k = b_kq_k + r_k
\;\Rightarrow\;
\left\{
\begin{aligned}
-a_{k+1} &= b_k = \phantom{a_k-q_k}\llap{$-\mathstrut$}b_k \\
+a_{k+1} &= b_k = \phantom{a_k-q_k}b_k \\
b_{k+1} &= \phantom{b_k}\llap{$r_k$} = a_k - q_kb_k
\end{aligned}
\right.}
diff --git a/vorlesungen/slides/4/frobenius.tex b/vorlesungen/slides/4/frobenius.tex
new file mode 100644
index 0000000..56fd78f
--- /dev/null
+++ b/vorlesungen/slides/4/frobenius.tex
@@ -0,0 +1,54 @@
+%
+% frobenius.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Frobenius-Automorphismus}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+$\operatorname{Prim}(\Bbbk) = \mathbb{F}_p$
+\uncover<2->{%
+\begin{block}{Binomial-Koeffizienten}
+\vspace{-10pt}
+\begin{align*}
+\binom{p}{k}
+&=
+\frac{
+{\color{red}p}\cdot(p-1)\cdot(p-2)\cdot\dots\cdot (p-k+1)
+}{
+1\cdot2\cdot3\cdot\dots\cdot k
+}
+\intertext{{\color{red}$p$} wird nicht gekürzt wegen}
+\uncover<3->{1&\not\equiv 0 \mod p}\\
+\uncover<3->{2&\not\equiv 0 \mod p}\\
+\uncover<3->{ &\phantom{a}\vdots}\\
+\uncover<3->{k&\not\equiv 0 \mod p}
+\end{align*}
+\vspace{-10pt}
+\end{block}}
+\vspace{-5pt}
+\uncover<4->{%
+\begin{block}{Frobenius-Authomorphismus}
+\vspace{-10pt}
+\begin{align*}
+\uncover<5->{(x+y)^{p\phantom{\mathstrut^n}}
+&=
+x^{p\phantom{\mathstrut}^n}+y^{p\phantom{mathstrut^n}}}
+\\
+\uncover<6->{(x+y)^{p^n} &= x^{p^n}+y^{p^n}}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Pascal-Dreieck}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/30-endlichekoerper/images/binomial5.pdf}
+\end{center}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/qundr.tex b/vorlesungen/slides/4/qundr.tex
new file mode 100644
index 0000000..a6f89bd
--- /dev/null
+++ b/vorlesungen/slides/4/qundr.tex
@@ -0,0 +1,138 @@
+%
+% qundr.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkred}{rgb}{0.8,0,0}
+\definecolor{darkblue}{rgb}{0,0,0.8}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (ll) at (-6,-3.6);
+\coordinate (lr) at (6,-3.6);
+\coordinate (ur) at (6,3.6);
+\coordinate (ul) at (-6,3.6);
+
+\def\d{0.6}
+\def\D{0.5}
+
+\coordinate (q) at (0,{-2.25+\d});
+\coordinate (r) at (-1.5,{\d+\D});
+\coordinate (a) at (1.5,{\d-\D});
+\coordinate (c) at (0,{2.25+\d});
+
+\coordinate (m1) at ($0.5*(q)+0.5*(r)$);
+\coordinate (m2) at ($0.5*(q)+0.5*(a)$);
+\coordinate (m3) at ($0.5*(c)+0.5*(r)$);
+\coordinate (m4) at ($0.5*(c)+0.5*(a)$);
+
+\def\t{1.5}
+\coordinate (M1) at ($(m1)+\t*(m1)-\t*(m4)$);
+\coordinate (M2) at ($(m2)+\t*(m2)-\t*(m3)$);
+\coordinate (M4) at ($(m4)+\t*(m4)-\t*(m1)$);
+\coordinate (M3) at ($(m3)+\t*(m3)-\t*(m2)$);
+
+\begin{scope}
+\clip (ll) rectangle (ur);
+
+\uncover<3->{
+ \fill[color=blue!30]
+ ($0.9*(m1)+0.1*(M1)+(-6,0)$) -- ($0.9*(m1)+0.1*(M1)$)
+ -- (M4) -- (ul) -- cycle;
+}
+
+\uncover<4->{
+ \fill[color=red!60,opacity=0.5]
+ ($0.9*(m2)+0.1*(M2)$) -- ($0.9*(m2)+0.1*(M2)+(6,0)$)
+ -- (ur) -- (M3) -- cycle;
+}
+
+\uncover<2->{
+ \fill[color=darkgreen!60,opacity=0.5]
+ ($1.09*(m3)-0.09*(M3)$) -- ($1.09*(m3)-0.09*(M3)+(-6,0)$)
+ -- (ll) -- (M2) -- cycle;
+}
+
+\uncover<6->{
+ \fill[color=gray,opacity=0.5]
+ ({6-0.1},{\d+0.22}) rectangle ({6-2.4},{\d+0.62});
+ \node[color=yellow] at (6,\d) [above left] {überabzählbar\strut};
+
+ \fill[color=gray,opacity=0.5]
+ ({-6+0.1},{\d-0.15}) rectangle ({-6+1.75},{\d-0.55});
+ \node[color=yellow] at (-6,\d) [below right] {abzählbar\strut};
+
+ \draw[color=yellow,line width=2pt] (-7,\d) -- (7,\d);
+}
+
+\end{scope}
+
+\node at (q) {$\mathbb{Q}$\strut};
+\node at ($(q)+(0,-0.2)$) [below] {Primkörper};
+
+\uncover<3->{
+ \node at (r) {$\mathbb{R}$\strut};
+ \node at (r) [left] {$\text{reelle Zahlen}=\mathstrut$};
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (q) -- (r);
+ \node at ($0.5*(q)+0.5*(r)$)
+ [below,rotate={atan((-2.25-\D)/1.5)}] {index $\infty$};
+ \node[color=blue] at (ul)
+ [above right] {topologische Vervollständigung};
+}
+
+\uncover<4->{
+ \node at (a) {$\mathbb{A}$\strut};
+ \node at (a) [right] {$\mathstrut = \text{algebraische Zahlen}$};
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (q) -- (a);
+ \node at ($0.5*(q)+0.5*(a)$)
+ [below,rotate={atan((2.25-\D)/1.5)}] {index $\infty$};
+ \node[color=red] at (ur)
+ [above left] {algebraische Vervollständigung};
+}
+
+\uncover<5->{
+ \node at (c) {$\mathbb{C}$\strut};
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (r) -- (c);
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (a) -- (c);
+ \node at ($(c)+(0,0.2)$) [above] {komplexe Zahlen};
+ \node at ($0.5*(r)+0.5*(c)$)
+ [above,rotate={atan((2.25-\D)/1.5)}] {index 2};
+ \node at ($0.5*(a)+0.5*(c)$)
+ [above,rotate={atan((-2.25-\D)/1.5)}] {index $\infty$};
+}
+
+\uncover<3->{
+ \node[color=darkblue] at (ul) [below right]
+ {\begin{minipage}{0.3\textwidth}\raggedright
+ Grenzwerte von Cauchy-Folgen in $\mathbb{Q}$ hinzufügen
+ \end{minipage}};
+}
+
+\uncover<4->{
+ \node[color=darkred] at (ur) [below left]
+ {\begin{minipage}{0.3\textwidth}\raggedleft
+ Nullstellen von Polynomen in $\mathbb{Q}[X]$ hinzufügen
+ \end{minipage}};
+}
+
+\uncover<2->{
+ \node[color=darkgreen] at (ll) [above right]
+ {\begin{minipage}{0.4\textwidth}\raggedright
+ \begin{block}{Archimedische Eigenschaft}
+ Für $a>b >0$ gibt es $n\in\mathbb{N}$ mit
+ $n\cdot b > a$
+ \end{block}
+ \end{minipage}};
+
+ \node[color=darkgreen] at (ll) [below right]
+ {geordneter Körper, nötig für die Definition von Cauchy-Folgen};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/5/Makefile.inc b/vorlesungen/slides/5/Makefile.inc
index 4ca3de4..5b849ec 100644
--- a/vorlesungen/slides/5/Makefile.inc
+++ b/vorlesungen/slides/5/Makefile.inc
@@ -5,6 +5,8 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
chapter5 = \
+ ../slides/5/plan.tex \
+ ../slides/5/planbeispiele.tex \
../slides/5/verzerrung.tex \
../slides/5/motivation.tex \
../slides/5/charpoly.tex \
@@ -27,6 +29,8 @@ chapter5 = \
\
../slides/5/spektrum.tex \
../slides/5/normal.tex \
+ ../slides/5/normalbeispiel.tex \
+ ../slides/5/normalbeispiel34.tex \
../slides/5/unitaer.tex \
\
../slides/5/konvergenzradius.tex \
@@ -36,9 +40,12 @@ chapter5 = \
../slides/5/satzvongelfand.tex \
\
../slides/5/stoneweierstrass.tex \
+ ../slides/5/swbeweis.tex \
../slides/5/potenzreihenmethode.tex \
../slides/5/logarithmusreihe.tex \
../slides/5/exponentialfunktion.tex \
../slides/5/hyperbolisch.tex \
+ \
+ ../slides/5/approximation.tex \
../slides/5/chapter.tex
diff --git a/vorlesungen/slides/5/approximation.tex b/vorlesungen/slides/5/approximation.tex
new file mode 100644
index 0000000..a35bae7
--- /dev/null
+++ b/vorlesungen/slides/5/approximation.tex
@@ -0,0 +1,56 @@
+%
+% approximation.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+
+\begin{frame}[t]
+\frametitle{Approximation einer reellen Funktion}
+\vspace{-18pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.5\textwidth}
+\begin{block}{Gegeben}
+Eine stetige Funktion $f\colon[a,b]\to\mathbb{R}$
+\end{block}
+\end{column}
+\begin{column}{0.5\textwidth}
+\uncover<2->{%
+\begin{block}{Gesucht}
+Approximationspolynome $p_n\to f$ gleichmässig auf $[a,b]$
+\end{block}}
+\end{column}
+\end{columns}
+\uncover<3->{%
+\begin{block}{Lösungsmöglichkeiten}
+\vspace{-3pt}
+\begin{center}
+\renewcommand{\arraystretch}{1.3}
+\begin{tabular}{|p{4.2cm}|l|}
+\hline
+Familie&Approximationspolynom für $[a,b]=[0,1]$
+\\
+\hline
+\uncover<4->{%
+\raggedright
+Lagrange-Interpolationspolynom}
+&\uncover<5->{%
+$\displaystyle\begin{aligned}
+l(x)&=(x-x_0)(x-x_1)\dots(x-x_n),\quad x_k = \frac{k}{n}
+\\
+p_n(x)&= \sum_{k=0}^n f(x_k)\frac{l(x)}{x-x_k}
+\end{aligned}$}
+\\
+\hline\uncover<6->{%
+\raggedright
+Approximation mit Bernstein-Polynomen}
+&\uncover<7->{$\displaystyle \begin{aligned}
+B_{k,n}(t) &= \frac{1}{(b-a)^n}\binom{n}{k}(t-a)^k(b-t)^{n-k}
+\\
+B_n(f)(t) &= \sum_{k=0}^n B_{k,n}(t) \cdot f\biggl(\frac{k}{n}\biggr)
+\end{aligned}$}
+\\
+\hline
+\end{tabular}
+\end{center}
+\end{block}}
+\end{frame}
diff --git a/vorlesungen/slides/5/beispiele/kombiniert.jpg b/vorlesungen/slides/5/beispiele/kombiniert.jpg
index 9cb789c..bebc36f 100644
--- a/vorlesungen/slides/5/beispiele/kombiniert.jpg
+++ b/vorlesungen/slides/5/beispiele/kombiniert.jpg
Binary files differ
diff --git a/vorlesungen/slides/5/beispiele/kombiniert.pov b/vorlesungen/slides/5/beispiele/kombiniert.pov
index c187d08..d17adb7 100644
--- a/vorlesungen/slides/5/beispiele/kombiniert.pov
+++ b/vorlesungen/slides/5/beispiele/kombiniert.pov
@@ -18,5 +18,6 @@ ebene(k21, k22, gruen2)
arrow(O, j11, at, orange1)
arrow(O, j12, at, orange1)
arrow(O, k11, at, gruen1)
+gerade(k11, gruen1)
ebene(j11, j12, orange1)
diff --git a/vorlesungen/slides/5/chapter.tex b/vorlesungen/slides/5/chapter.tex
index 96eea29..cdf2ea5 100644
--- a/vorlesungen/slides/5/chapter.tex
+++ b/vorlesungen/slides/5/chapter.tex
@@ -3,6 +3,8 @@
%
% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi
%
+\folie{5/plan.tex}
+\folie{5/planbeispiele.tex}
\folie{5/verzerrung.tex}
\folie{5/motivation.tex}
\folie{5/charpoly.tex}
@@ -28,9 +30,13 @@
\folie{5/Aiteration.tex}
\folie{5/satzvongelfand.tex}
\folie{5/stoneweierstrass.tex}
+\folie{5/swbeweis.tex}
\folie{5/potenzreihenmethode.tex}
\folie{5/logarithmusreihe.tex}
\folie{5/exponentialfunktion.tex}
\folie{5/hyperbolisch.tex}
\folie{5/spektrum.tex}
\folie{5/normal.tex}
+\folie{5/normalbeispiel.tex}
+\folie{5/normalbeispiel34.tex}
+\folie{5/approximation.tex}
diff --git a/vorlesungen/slides/5/normalbeispiel.tex b/vorlesungen/slides/5/normalbeispiel.tex
new file mode 100644
index 0000000..e130c15
--- /dev/null
+++ b/vorlesungen/slides/5/normalbeispiel.tex
@@ -0,0 +1,108 @@
+%
+% normalbeispiel.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkred}{rgb}{0.8,0,0}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beispiele für normale Matrizen}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.49\textwidth}
+\uncover<3->{%
+\begin{block}{Symmetrisch und Antisymmetrisch}
+$A\in M_n(\mathbb{C})$
+\begin{align*}
+A&=\pm A^t &&\Rightarrow &AA^* &=A\overline{A^t} =\pm A\overline{A}
+\\
+ & && & &=\pm\overline{A}A =\overline{A^t}A
+\\
+ & && & &=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.49\textwidth}
+\uncover<4->{%
+\begin{block}{Orthogonal}
+$A\in M_n(\mathbb{R})\;\Rightarrow\; A^*=A^t$
+\begin{align*}
+AA^t&=I &&\Rightarrow& AA^*&=AA^t=I\\
+ & && & &=A^tA=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.49\textwidth}
+\uncover<1->{%
+\begin{block}{Hermitesch und Antihermitesch}
+$A\in M_n(\mathbb{C})$
+\begin{align*}
+A&=\pm A^* &&\Rightarrow &AA^* &=\pm A^2=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.49\textwidth}
+\uncover<2->{%
+\begin{block}{Unitär}
+$A\in M_n(\mathbb{C})$
+\begin{align*}
+AA^*&=I &&\Rightarrow& AA^*=I=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+%\uncover<5->{%
+%\begin{block}{Weitere}
+%$N\in M_n(\mathbb{C})$ nilpotent, $N^k=0$\uncover<11->{
+%$\Rightarrow$
+%normal für $l=k-l\Rightarrow l=\frac{k}{2}$}
+%\uncover<6->{%
+%\[
+%\left.
+%\begin{aligned}
+%A &=N^l+(N^t)^{k-l}
+%\\
+%A^t&=(N^t)^l+N^{k-1}
+%\end{aligned}
+%\right\}
+%\uncover<7->{%
+%\Rightarrow
+%\left\{
+%\begin{aligned}
+%\mathstrut
+%A^t A
+%&\only<8>{=
+%((N^t)^l+N^{k-l}) (N^l+(N^t)^{k-l})}
+%\uncover<9->{=
+%{\color<10>{darkgreen}(N^t)^lN^l}
+%\only<9>{+
+%{\color{orange}(N^t)^k}}
+%+
+%{\color<10>{darkred}N^{k-l}(N^t)^{k-l}}
+%\only<9>{+
+%{\color{orange}N^k}}}
+%\\
+%\mathstrut
+%A A^t
+%&\only<8>{=
+%(N^l+(N^t)^{k-l})((N^t)^l+N^{k-l})}
+%\uncover<9->{=
+%{\color<10>{darkred}N^l(N^t)^l}
+%+
+%\only<9>{{\color{orange}N^k}
+%+
+%{\color{orange}(N^t)^k}
+%+}
+%{\color<10>{darkgreen}(N^t)^{k-l}N^{k-l}}}
+%\end{aligned}
+%\right.}
+%\hspace{20cm}
+%\]}
+%\end{block}}
+\end{frame}
diff --git a/vorlesungen/slides/5/normalbeispiel34.tex b/vorlesungen/slides/5/normalbeispiel34.tex
new file mode 100644
index 0000000..f2647b0
--- /dev/null
+++ b/vorlesungen/slides/5/normalbeispiel34.tex
@@ -0,0 +1,80 @@
+%
+% normalbeispiel34.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkred}{rgb}{0.8,0,0}
+\begin{frame}[t]
+\frametitle{Beispiele normaler Matrizen für $n=3$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.49\textwidth}
+\begin{align*}
+A
+&=
+\begin{pmatrix}
+\alpha&\beta & 0 \\
+ 0 &\alpha&\beta \\
+\beta & 0 &\alpha
+\end{pmatrix},
+\;
+A^t=
+\begin{pmatrix}
+\alpha& 0 &\beta \\
+\beta &\alpha& 0 \\
+ 0 &\beta &\alpha
+\end{pmatrix}
+&
+\uncover<2->{%
+&\Rightarrow\left\{
+\begin{aligned}
+AA^t&=\begin{pmatrix}
+\alpha^2+\beta^2 & \alpha\beta & \alpha\beta \\
+\alpha\beta & \alpha^2+\beta^2 & \alpha\beta \\
+\alpha\beta & \alpha\beta & \alpha^2+\beta^2
+\end{pmatrix}
+\\
+&\phantom{ooooooooooooooo}\|
+\\
+A^tA&=\begin{pmatrix}
+\alpha^2+\beta^2 & \alpha\beta & \alpha\beta \\
+\alpha\beta & \alpha^2+\beta^2 & \alpha\beta \\
+\alpha\beta & \alpha\beta & \alpha^2+\beta^2
+\end{pmatrix}
+\end{aligned}\right.}
+\\
+\uncover<3->{
+A&=\alpha I + \beta O}\uncover<4->{, O=\begin{pmatrix}0&1&0\\0&0&1\\1&0&0\end{pmatrix}\in \operatorname{O}(3)}
+&
+\uncover<5->{
+&\Rightarrow
+\left\{
+\begin{aligned}
+AA^*&= \alpha^2I^2 + \beta^2
+\ifthenelse{\boolean{presentation}}{ \only<6->{I} }{} \only<-5>{OO^*}
++ \alpha\beta(O+O^*)\\
+A^*A&= \alpha^2I^2 + \beta^2
+\ifthenelse{\boolean{presentation}}{ \only<6->{I} }{} \only<-5>{O^*O}
++ \alpha\beta(O^*+O)
+\end{aligned}
+\right.}
+\\
+\uncover<7->{A&=U+V^*,\text{normal}}\uncover<10->{\text{, }
+{\color{darkgreen}UV}={\color{darkgreen}VU}}
+&
+&\uncover<8->{\Rightarrow
+\left\{
+\begin{aligned}
+AA^* &= UU^* + {\color<9->{darkgreen}UV} + {\color<9->{darkred}V^*U^*} + V^*V
+\\
+A^*A &= U^*U + {\color<9->{darkred}U^*V^*} + {\color<9->{darkgreen}VU} + VV^*
+\end{aligned}
+\right.}
+\end{align*}
+\end{column}
+\begin{column}{0.49\textwidth}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/5/plan.tex b/vorlesungen/slides/5/plan.tex
new file mode 100644
index 0000000..23b1b93
--- /dev/null
+++ b/vorlesungen/slides/5/plan.tex
@@ -0,0 +1,198 @@
+%
+% plan.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.5,0}
+\definecolor{darkred}{rgb}{0.8,0.0,0}
+\begin{frame}[t]
+\frametitle{Was ist $f(A)$?}
+\vspace{-5pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\uncover<7->{
+ \fill[color=blue!20] (-1.5,0.7) rectangle (11.5,3.8);
+}
+
+\uncover<4->{
+ \fill[color=darkgreen!20] (-1.5,-0.7) rectangle (11.5,0.7);
+}
+
+\uncover<12->{
+ \fill[color=darkred!20] (-1.5,-0.7) rectangle (11.5,-3.8);
+}
+
+\begin{scope}[xshift=-1cm]
+\node at (0,0) [left] {$A$};
+\end{scope}
+
+%\foreach \x in {1,...,20}{
+% \only<\x>{ \node at (-1,3) {\x}};
+%}
+
+%
+% Blauer Ast
+%
+
+\uncover<2->{
+ \draw[->,color=blue,shorten <= 0.3cm, shorten >= 0.0cm]
+ (-1.2,0) -- (0,1.3);
+
+ \begin{scope}[xshift=0cm,yshift=1.5cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (3.4,0.6);
+ \draw[color=blue] (0,-0.6) rectangle (3.4,0.6);
+ \node at (0,0) [right] {$\begin{aligned}
+ f&=p\in\mathbb{R}[X]\\
+ f(A)&=p(A)
+ \end{aligned}
+ $};
+ \end{scope}
+}
+
+\uncover<7->{
+ \draw[->,color=blue] (1.8,2.1) -- (3.6,3);
+
+ \begin{scope}[xshift=3.6cm,yshift=3cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (3.7,0.6);
+ \draw[color=blue] (0,-0.6) rectangle (3.7,0.6);
+ \node at (0,0) [right] {\begin{minipage}{3cm}\raggedright
+ $f$ durch $p_n\in\mathbb{R}[X]$\\
+ approximieren
+ \end{minipage}};
+ \end{scope}
+}
+
+\uncover<8->{
+ \draw[->,color=blue] (7.3,3) -- (9.5,1.9);
+
+ \begin{scope}[xshift=7.6cm,yshift=1.5cm]
+ \fill[color=white,opacity=0.7] (0,-0.35) rectangle (3.8,0.4);
+ \draw[color=blue] (0,-0.35) rectangle (3.8,0.4);
+ \node at (0,0) [right] {$\displaystyle f(A) = \lim_{n\to\infty}p_n(A)$};
+ \end{scope}
+}
+
+\uncover<9->{
+ \node[color=blue] at (3.6,1.6) [right] {\begin{minipage}{4cm}
+ \raggedright
+ Konvergenz $p_n\to f$\\
+ auf Spektrum $\operatorname{Sp}(A)\subset\mathbb{R}$
+ \end{minipage}};
+}
+
+\uncover<11->{
+ \node[color=blue] at (-1.5,3.8) [below right]
+ {$A$ symmetrisch: $A=A^*$};
+}
+\uncover<10->{
+ \node[color=blue] at (11.5,3.8) [below left] {$A$ diagonalisierbar};
+}
+
+%
+% Roter Ast
+%
+
+\uncover<12->{
+ \draw[->,color=darkred,shorten <= 0.3cm, shorten >= 0.0cm] (-1.2,0) -- (0,-1.3);
+
+ \begin{scope}[xshift=0cm,yshift=-1.5cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (3.4,0.6);
+ \draw[color=darkred] (0,-0.6) rectangle (3.4,0.6);
+ \node at (0,0) [right] {$\begin{aligned}
+ f&=p\in\mathbb{C}[Z,\overline{Z}]\\
+ f(A)&=p(A,A^*)
+ \end{aligned}$};
+ \end{scope}
+}
+
+\uncover<13->{
+ \node[color=darkred] at (1.7,-2.1) [below left]
+ {Für $|Z|^2 = Z\overline{Z}$};
+}
+
+\uncover<14->{
+ \draw[->,color=darkred] (1.8,-2.1) -- (3.6,-3);
+
+ \begin{scope}[xshift=3.6cm,yshift=-3cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (3.7,0.6);
+ \draw[color=darkred] (0,-0.6) rectangle (3.7,0.6);
+ \node at (0,0) [right] {\begin{minipage}{3.5cm}\raggedright
+ $f$ durch $q_n\in\mathbb{C}[Z,\overline{Z}]$\\
+ approximieren
+ \end{minipage}};
+ \end{scope}
+}
+
+\uncover<15->{
+ \draw[->,color=darkred] (7.3,-3) -- (9.5,-1.85);
+
+ \begin{scope}[xshift=7.6cm,yshift=-1.5cm]
+ \fill[color=white,opacity=0.7] (0,-0.35) rectangle (3.8,0.4);
+ \draw[color=darkred] (0,-0.35) rectangle (3.8,0.4);
+ \node at (0,0) [right]
+ {$\displaystyle f(A) = \lim_{n\to\infty}q_n(A,A^*)$};
+ \end{scope}
+}
+
+\uncover<16->{
+ \node[color=darkred] at (3.6,-1.8) [right] {\begin{minipage}{4cm}
+ \raggedright
+ Konvergenz $p_n\to f$\\
+ auf $\operatorname{Sp}(A)\cup\operatorname{Sp}(A^*)$
+ \end{minipage}};
+}
+
+\uncover<17->{
+ \node[color=darkred] at (11.5,-3.8) [above left] {%
+ \begin{minipage}{3.5cm}\raggedleft
+ nur sinnvoll definiert wenn
+ $AA^*=A^*A$
+ \end{minipage}};
+}
+
+\uncover<18->{
+ \node[color=darkred] at (-1.5,-3.8) [above right]
+ {$A$ normal: $AA^*=A^*A$};
+}
+
+%
+% Grüner Ast
+%
+
+\uncover<3->{
+ \draw[->,color=darkgreen,shorten <= 0.0cm, shorten >= 0.0cm]
+ (-1,0) -- (0,0);
+
+ \begin{scope}[xshift=0cm,yshift=0cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (2.9,0.6);
+ \draw[color=darkgreen] (0,-0.6) rectangle (2.9,0.6);
+ \node at (0,0) [right] {$\displaystyle
+ f(z)=\sum_{k=0}^\infty a_kz^k$};
+ \end{scope}
+}
+
+\uncover<5->{
+ \node[color=darkgreen] at (5.9,0) [above] {$f(z)$ analytisch!};
+}
+\uncover<6->{
+ \node[color=darkgreen] at (5.9,0) [below]
+ {$\varrho(A)<\text{Konvergenzradius}$};
+}
+
+\uncover<4->{
+ \draw[->,color=darkgreen] (2.9,0) -- (8.5,0);
+
+ \begin{scope}[xshift=8.5cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (2.9,0.6);
+ \draw[color=darkgreen] (0,-0.6) rectangle (2.9,0.6);
+ \node at (0,0) [right] {$\displaystyle
+ f(A)=\sum_{k=0}^\infty a_kA^k$};
+ \end{scope}
+}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/5/planbeispiele.tex b/vorlesungen/slides/5/planbeispiele.tex
new file mode 100644
index 0000000..7b98a95
--- /dev/null
+++ b/vorlesungen/slides/5/planbeispiele.tex
@@ -0,0 +1,103 @@
+%
+% planbeispiele.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkred}{rgb}{0.8,0,0}
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\begin{frame}[t]
+\frametitle{Beispiele}
+\vspace{-15pt}
+\begin{columns}[t]
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=blue!20}
+\setbeamercolor{block title}{bg=blue!20}
+\uncover<2->{%
+\begin{block}{$A$ diagonal, $\operatorname{Sp}(A)\subset\mathbb{R}$\strut}
+Beispiele:
+\begin{align*}
+f(x)
+&=
+x^k,
+\\
+f(x)&=
+\sqrt{x},
+\sqrt[k]{x}
+\\
+f(x)&=|x|
+\end{align*}
+\vspace{43pt}
+\end{block}}
+\end{column}
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=darkgreen!20}
+\setbeamercolor{block title}{bg=darkgreen!20}
+\uncover<1->{%
+\begin{block}{$f(z)$ analytisch\strut}
+Beispiele:
+\begin{align*}
+e^z
+&=
+\sum_{k=0}^\infty \frac{z^k}{k!}
+\\
+\cos z
+&=
+\sum_{k=0}^\infty (-1)^k\frac{z^{2k}}{2k!}
+\\
+\sin z
+&=
+\sum_{k=0}^\infty (-1)^k\frac{z^{2k+1}}{(2k+1)!}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=darkred!20}
+\setbeamercolor{block title}{bg=darkred!20}
+\uncover<3->{%
+\begin{block}{$A$ normal, $AA^*=A^*A$\strut}
+Beispiele:
+\begin{align*}
+f(z)&=\sqrt{z\overline{z}}=|z|
+\end{align*}
+\vspace{76pt}
+\end{block}}
+\end{column}
+\end{columns}
+\vspace{-10pt}
+\begin{columns}[t]
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=blue!20}
+\setbeamercolor{block title}{bg=blue!20}
+\uncover<5->{%
+\begin{block}{}
+\vspace{-6pt}
+$f(A)$ wohldefiniert für {\color{blue}diagonalisierbare}
+Matrizen $A\in M_n(\mathbb{R})$
+\end{block}}
+\end{column}
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=darkgreen!20}
+\setbeamercolor{block title}{bg=darkgreen!20}
+\uncover<4->{%
+\begin{block}{}
+\vspace{-6pt}
+$f(A)$ wohldefiniert für {\color{darkgreen}jedes} $A\in M_n(\mathbb{C})$
+\vspace{14pt}
+\end{block}}
+\end{column}
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=darkred!20}
+\setbeamercolor{block title}{bg=darkred!20}
+\uncover<6->{%
+\begin{block}{}
+\vspace{-6pt}
+$f(A)$ wohldefiniert für {\color{darkred}normale}
+Matrizen $A\in M_n(\mathbb{C})$
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/5/stoneweierstrass.tex b/vorlesungen/slides/5/stoneweierstrass.tex
index 3f9cab5..e2e9e30 100644
--- a/vorlesungen/slides/5/stoneweierstrass.tex
+++ b/vorlesungen/slides/5/stoneweierstrass.tex
@@ -3,9 +3,64 @@
%
% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
\begin{frame}[t]
-\frametitle{Stone-Weierstrass}
-
-TODO XXX
-
+\frametitle{Allgemeiner Approximationssatz}
+\vspace{-20pt}
+\begin{columns}[t]
+\begin{column}{0.5\textwidth}
+\begin{theorem}[Stone-Weierstrass, $\mathbb{R}$]
+$A$ eine {\color{darkgreen}$\mathbb{R}$}-Algebra
+von stetigen Funktionen auf einem
+%abgeschlossenen und beschränkten
+kompakten
+Definitionsgebiet $D\subset {\color{darkgreen}\mathbb{R}}$,
+\begin{itemize}
+\item<2-> konstante Funktion $c\in A$,
+\item<3-> für $d_1,d_2\in D$ gibt es ein $s\in A$ mit
+$s(d_1)\ne s(d_2)$.
+\end{itemize}
+\uncover<4->{%
+Dann lässt sich jede stetige Funktion durch Funktionen aus $A$
+approximieren}
+\end{theorem}
+\uncover<5->{
+\begin{block}{Anwendung}
+\uncover<6->{$A={\color{darkgreen}\mathbb{R}}[X]$}\uncover<7->{,
+$s(X)=X$}\uncover<8->{,
+jede stetige Funktion kann durch
+Polynome in $X$ approximiert werden}
+\end{block}}
+\end{column}
+\begin{column}{0.5\textwidth}
+\uncover<9->{%
+\begin{theorem}[Stone-Weierstrass, $\mathbb{C}$]
+$A$ eine {\color<10->{red}$\mathbb{C}$}-Algebra von stetigen Funktionen
+auf einem
+%abgeschlossenen und beschränkten
+kompakten
+Definitionsgebiet $D\subset {\color<10->{red}\mathbb{C}}$,
+\begin{itemize}
+\item konstante Funktion $c\in A$,
+\item für $d_1,d_2\in D$ gibt es ein $s\in A$ mit
+$s(d_1)\ne s(d_2)$.
+\only<11->{
+\item {\color{red}$f\in A\Rightarrow \overline{f}\in A$}
+}
+\end{itemize}
+Dann lässt sich jede stetige Funktion durch Funktionen aus $A$
+approximieren
+\end{theorem}}
+\vspace{-5pt}
+\uncover<12->{%
+\begin{block}{Anwendung}
+$A={\color{red}\mathbb{C}}[Z,\overline{Z}]$\uncover<13->{,
+$s(Z{\color{red},\overline{Z}})=Z$}\uncover<14->{,
+jede stetige Funktion
+lässt sich durch Polynome in $Z{\color{red},\overline{Z}}$ approximieren}
+\end{block}}
+\end{column}
+\end{columns}
\end{frame}
+\egroup
diff --git a/vorlesungen/slides/5/swbeweis.tex b/vorlesungen/slides/5/swbeweis.tex
new file mode 100644
index 0000000..927322b
--- /dev/null
+++ b/vorlesungen/slides/5/swbeweis.tex
@@ -0,0 +1,56 @@
+%
+% swbeweis.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beweisidee Stone-Weierstrass}
+\vspace{-15pt}
+\begin{columns}[t]
+\begin{column}{0.5\textwidth}
+\begin{enumerate}
+\item<1->
+$\exists$ eine monoton wachsende Folge von Polynomen $u_n(t)\to \sqrt{t}$
+gleichmässig auf $[0,1]\subset{\color{darkgreen}\mathbb{R}}$
+\item<2->
+$f\in A$, dann kann man $|f| = \sqrt{f^2}$ beliebig genau approximieren
+durch Funktionen
+in $A$
+\item<3->
+$f,g\in A$, dann kann
+\begin{align*}
+\max(a,b)&={\textstyle\frac12}(f+g+|f-g|)\\
+\min(a,b)&={\textstyle\frac12}(f+g-|f-g|)
+\end{align*}
+in $A$ beliebig genau approximiert werden.
+\end{enumerate}
+\end{column}
+\begin{column}{0.5\textwidth}
+\begin{enumerate}
+\setcounter{enumi}{3}
+\item<4->
+Für $x,y\in D$ und $\alpha,\beta\in\mathbb{R}$ gibt es $f\in A$ mit
+$f(x)=\alpha$ und $f(y)=\beta$
+\item<5->
+Zu
+$f\colon D\to\mathbb{R}$ stetig und $x\in D$ gibt es $g\in A$ mit $g(x)=f(x)$
+und $g(y) \le f(y)+\varepsilon$ für $y\ne x$
+\item<6->
+Für $f$ gibt es endlich viele Approximationen $g_i$ mit Punkten $x_i$
+wie in Schritt~4.
+Dann ist $\max_i g_i$ eine Approximation von $f$, die beliebig genau in
+$A$ approximiert werden kann.
+\end{enumerate}
+\end{column}
+\end{columns}
+
+\vspace{10pt}
+\uncover<7->{%
+Schritt~2 braucht in {\color{red}$\mathbb{C}$} die komplex Konjugierte:
+$|f|^2=f\overline{f}$}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex
index e4b9ad7..d079a05 100644
--- a/vorlesungen/slides/test.tex
+++ b/vorlesungen/slides/test.tex
@@ -4,14 +4,18 @@
% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
%
%\folie{5/verzerrung.tex}
+%\folie{5/plan.tex}
+%\folie{5/planbeispiele.tex}
+%\folie{5/approximation.tex}
% XXX Visualisierung Cayley-Hamilton-Produkte
% XXX \folie{5/chvisual.tex}
% XXX stone weierstrass incomplete
%\folie{5/stoneweierstrass.tex}
+%\folie{5/swbeweis.tex}
% XXX polynome auf dem spektrum
% XXX Motiviation für *-Operation
%\folie{5/normal.tex}
-
+\folie{5/normalbeispiel34.tex}