diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-05-06 09:15:45 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-05-06 09:15:45 +0200 |
commit | 57bae13dbcac294db8eca8c48612aa46537371bd (patch) | |
tree | 1e82b2720a40fcfe260ffe41b81efa24eadcc9f5 | |
parent | add new slides (diff) | |
download | SeminarMatrizen-57bae13dbcac294db8eca8c48612aa46537371bd.tar.gz SeminarMatrizen-57bae13dbcac294db8eca8c48612aa46537371bd.zip |
add new slides
-rw-r--r-- | vorlesungen/10_mseliealgebra/slides.tex | 2 | ||||
-rw-r--r-- | vorlesungen/slides/7/Makefile.inc | 1 | ||||
-rw-r--r-- | vorlesungen/slides/7/chapter.tex | 1 | ||||
-rw-r--r-- | vorlesungen/slides/7/vektorlie.tex | 206 | ||||
-rw-r--r-- | vorlesungen/slides/test.tex | 2 |
5 files changed, 210 insertions, 2 deletions
diff --git a/vorlesungen/10_mseliealgebra/slides.tex b/vorlesungen/10_mseliealgebra/slides.tex index 4e92f74..6d223de 100644 --- a/vorlesungen/10_mseliealgebra/slides.tex +++ b/vorlesungen/10_mseliealgebra/slides.tex @@ -10,7 +10,7 @@ \folie{7/ableitung.tex} \folie{7/liealgebra.tex} % XXX Beispiele von Lie-Algebren -% \folie{7/liealgbeispiel.tex} +\folie{7/liealgbeispiel.tex} % XXX Vektorprodukt als Lie-Algebra % \folie{7/vektorlie.tex} \folie{7/kommutator.tex} diff --git a/vorlesungen/slides/7/Makefile.inc b/vorlesungen/slides/7/Makefile.inc index 84b4e32..aac9585 100644 --- a/vorlesungen/slides/7/Makefile.inc +++ b/vorlesungen/slides/7/Makefile.inc @@ -17,6 +17,7 @@ chapter5 = \ ../slides/7/ableitung.tex \ ../slides/7/liealgebra.tex \ ../slides/7/liealgbeispiel.tex \ + ../slides/7/vektorlie.tex \ ../slides/7/kommutator.tex \ ../slides/7/dg.tex \ ../slides/7/zusammenhang.tex \ diff --git a/vorlesungen/slides/7/chapter.tex b/vorlesungen/slides/7/chapter.tex index 65017c7..668c2a7 100644 --- a/vorlesungen/slides/7/chapter.tex +++ b/vorlesungen/slides/7/chapter.tex @@ -16,6 +16,7 @@ \folie{7/ableitung.tex} \folie{7/liealgebra.tex} \folie{7/liealgbeispiel.tex} +\folie{7/vektorlie.tex} \folie{7/kommutator.tex} \folie{7/dg.tex} \folie{7/zusammenhang.tex} diff --git a/vorlesungen/slides/7/vektorlie.tex b/vorlesungen/slides/7/vektorlie.tex new file mode 100644 index 0000000..621a832 --- /dev/null +++ b/vorlesungen/slides/7/vektorlie.tex @@ -0,0 +1,206 @@ +% +% viktorlie.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Vektorprodukt als Lie-Algebra} +%\vspace{-10pt} +\centering +\begin{tikzpicture}[>=latex,thick] +\arraycolsep=2.4pt +\def\Ax{0} +\def\Ux{4.1} +\def\Kx{7.2} +\def\Rx{13.1} + +\def\Lx{2.2} +\def\Ly{0} +\def\Lz{-2.2} + +\fill[color=red!20] (\Ax,{\Lx-1.55}) rectangle ({\Ux-0.1},{\Lx+0.55}); +\fill[color=red!20] (\Ux,{\Lx-1.55}) rectangle ({\Kx-0.1},{\Lx+0.55}); +\fill[color=red!20] (\Kx,{\Lx-1.55}) rectangle ({\Rx},{\Lx+0.55}); + +\fill[color=darkgreen!20] (\Ax,{\Ly-1.55}) rectangle ({\Ux-0.1},{\Ly+0.55}); +\fill[color=darkgreen!20] (\Ux,{\Ly-1.55}) rectangle ({\Kx-0.1},{\Ly+0.55}); +\fill[color=darkgreen!20] (\Kx,{\Ly-1.55}) rectangle ({\Rx},{\Ly+0.55}); + +\fill[color=blue!20] (\Ax,{\Lz-1.55}) rectangle ({\Ux-0.1},{\Lz+0.55}); +\fill[color=blue!20] (\Ux,{\Lz-1.55}) rectangle ({\Kx-0.1},{\Lz+0.55}); +\fill[color=blue!20] (\Kx,{\Lz-1.55}) rectangle ({\Rx},{\Lz+0.55}); + +\coordinate (A) at (\Ax,3.2); +\coordinate (Ax) at (\Ax,\Lx); +\coordinate (Ay) at (\Ax,\Ly); +\coordinate (Az) at (\Ax,\Lz); + +\node at (A) [right] + {\usebeamercolor[fg]{title}Drehmatrix, $\operatorname{SO}(n)$\strut}; + +\node at (Ax) [right] {$\displaystyle\tiny +D_{x,\alpha}=\begin{pmatrix} +1&0&0\\ +0&\cos\alpha&-\sin\alpha\\ +0&\sin\alpha&\cos\alpha +\end{pmatrix}$}; + +\node at (Ay) [right] {$\displaystyle\tiny +D_{y,\alpha}=\begin{pmatrix} +\cos\alpha&0&\sin\alpha\\ +0&1&0\\ +-\sin\alpha&0&\cos\alpha +\end{pmatrix}$}; + +\node at (Az) [right] {$\displaystyle\tiny +D_{z,\alpha}=\begin{pmatrix} +\cos\alpha&-\sin\alpha&0\\ +\sin\alpha&\cos\alpha&0\\ +0&0&1 +\end{pmatrix}$}; + +\coordinate (U) at (\Ux,3.2); +\coordinate (Ux) at (\Ux,\Lx); +\coordinate (Uy) at (\Ux,\Ly); +\coordinate (Uz) at (\Ux,\Lz); +\coordinate (Ex) at (\Ux,{\Lx-1}); +\coordinate (Ey) at (\Ux,{\Ly-1}); +\coordinate (Ez) at (\Ux,{\Lz-1}); + +\uncover<2->{ +\node at (U) [right] + {\usebeamercolor[fg]{title}Ableitung, $\operatorname{so}(n)$\strut}; + +\node at (Ux) [right] {$\displaystyle\tiny +U_x=\begin{pmatrix*}[r] +0&0&0\\ +0&0&-1\\ +0&1&0 +\end{pmatrix*} +$}; + +\node at (Uy) [right] {$\displaystyle\tiny +U_y=\begin{pmatrix*}[r] +0&0&1\\ +0&0&0\\ +-1&0&0 +\end{pmatrix*} +$}; + +\node at (Uz) [right] {$\displaystyle\tiny +U_z=\begin{pmatrix*}[r] +0&-1&0\\ +1&0&0\\ +0&0&0 +\end{pmatrix*} +$}; +} + +\uncover<9->{ +\node at (Ex) [right] {$\displaystyle +\, e_x = \tiny\begin{pmatrix}1\\0\\0\end{pmatrix} +$}; + +\node at (Ey) [right] {$\displaystyle +\, e_y = \tiny\begin{pmatrix}0\\1\\0\end{pmatrix} +$}; + +\node at (Ez) [right] {$\displaystyle +\, e_z = \tiny\begin{pmatrix}0\\0\\1\end{pmatrix} +$}; +} + +\coordinate (K) at (\Kx,3.2); +\coordinate (Kx) at (\Kx,\Lx); +\coordinate (Ky) at (\Kx,\Ly); +\coordinate (Kz) at (\Kx,\Lz); +\coordinate (Vx) at (\Kx,{\Lx-1}); +\coordinate (Vy) at (\Kx,{\Ly-1}); +\coordinate (Vz) at (\Kx,{\Lz-1}); + +\uncover<3->{ +\node at (K) [right] + {\usebeamercolor[fg]{title}Kommutator\strut}; + +\node at (Kx) [right] {$\displaystyle +\begin{aligned} +[U_y,U_z] &\uncover<4->{= +{\tiny +\begin{pmatrix} +0&0&0\\ +0&0&0\\ +0&1&0 +\end{pmatrix}} +\uncover<5->{\mathstrut- +\tiny +\begin{pmatrix} +0&0&0\\ +0&0&1\\ +0&0&0 +\end{pmatrix}}} +\uncover<6->{=U_x} +\end{aligned} +$}; +} + +\uncover<7->{ +\node at (Ky) [right] {$\displaystyle +\begin{aligned} +[U_z,U_x] &= +{\tiny +\begin{pmatrix} +0&0&1\\ +0&0&0\\ +0&0&0 +\end{pmatrix} +- +\begin{pmatrix} +0&0&0\\ +0&0&0\\ +1&0&0 +\end{pmatrix}} +=U_y +\end{aligned} +$}; +} + +\uncover<8->{ +\node at (Kz) [right] {$\displaystyle +\begin{aligned} +[U_x,U_y] &= +{\tiny +\begin{pmatrix} +0&0&0\\ +1&0&0\\ +0&0&0 +\end{pmatrix} +- +\begin{pmatrix} +0&1&0\\ +0&0&0\\ +0&0&0 +\end{pmatrix}} +=U_z +\end{aligned} +$}; +} + +\uncover<10->{ +\node at (Vx) [right] {$\displaystyle \phantom{]}e_y\times e_z = e_x$}; +} + +\uncover<11->{ +\node at (Vy) [right] {$\displaystyle \phantom{]}e_z\times e_x = e_y$}; +} + +\uncover<12->{ +\node at (Vz) [right] {$\displaystyle \phantom{]}e_x\times e_y = e_z$}; +} + +\end{tikzpicture} +\end{frame} +\egroup diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex index 9e52903..ebdff8a 100644 --- a/vorlesungen/slides/test.tex +++ b/vorlesungen/slides/test.tex @@ -3,5 +3,5 @@ % % (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil % -\folie{7/liealgbeispiel.tex} +\folie{7/vektorlie.tex} |