aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2021-07-28 18:56:44 +0200
committerNao Pross <np@0hm.ch>2021-07-28 18:56:44 +0200
commit993d2dde3a8d97325fc7413522113b3cc77ffe97 (patch)
tree07c9fddca586c2a71991c40f1a2999c700039f4c
parentOn subscripts (diff)
parentrewrite schönflies first two points (diff)
downloadSeminarMatrizen-993d2dde3a8d97325fc7413522113b3cc77ffe97.tar.gz
SeminarMatrizen-993d2dde3a8d97325fc7413522113b3cc77ffe97.zip
Merge branch 'master' of github.com:NaoPross/SeminarMatrizen
-rw-r--r--buch/papers/punktgruppen/crystals.tex10
1 files changed, 4 insertions, 6 deletions
diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex
index ae48b0a..befdb46 100644
--- a/buch/papers/punktgruppen/crystals.tex
+++ b/buch/papers/punktgruppen/crystals.tex
@@ -143,13 +143,11 @@ Im vorausgegangenen Abschnitt wurde gezeigt, dass in einem zweidimensionalen Kri
Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schönflies-Symbol bezeichnet.
Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat.
Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind.
- Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Untergruppen von Schönflies verwendet.
\begin{itemize}
- \item Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\).
- Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert.
- Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt.
- \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, weil das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt.
- Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist.
+ \item In Kristallen ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\) zu finden.
+ Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nicht kompatibel mit der Translationssymmetrie eines Kristalles.
+ \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:Kristallkassen} auf \(C\) nur ganz bestimmte Subskripte folgen. Ist im Subskript eine Zahl \(n\) zu finden, symbolisiert \(n\), dass es sich um eine \(n\)-fache Symmetrie handelt.
+ Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} keine mögliche Rotationssymmetrie eines Kristalles ist.
\item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse.
\begin{itemize}
\item Der Subskript \(h\) bezeichnet eine horizontale Spiegelebene, während \(v\) eine Symmetrieebene. Eine Symmetrieebene ist eine Spiegelebene, die sich mit der Symmetrie dreht. \(C_{3v}\) hat zum Beispiel eine vertikale Spiegelebene, die als 3 Spiegelebenen erscheint, weil es eine 3-fache Drehung gibt.