aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/05-zahlen/natuerlich.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@othello.ch>2021-01-15 17:04:33 +0100
committerAndreas Müller <andreas.mueller@othello.ch>2021-01-15 17:04:33 +0100
commit6c6543a136f7e18bfb002f6cc72381c8d33d1c14 (patch)
tree18ba1104246a05843927906544e2cd4907382994 /buch/chapters/05-zahlen/natuerlich.tex
parentadd new chapter on homology (diff)
downloadSeminarMatrizen-6c6543a136f7e18bfb002f6cc72381c8d33d1c14.tar.gz
SeminarMatrizen-6c6543a136f7e18bfb002f6cc72381c8d33d1c14.zip
Einleitung und Kapitel 1 hinzugefügt
Diffstat (limited to 'buch/chapters/05-zahlen/natuerlich.tex')
-rw-r--r--buch/chapters/05-zahlen/natuerlich.tex224
1 files changed, 224 insertions, 0 deletions
diff --git a/buch/chapters/05-zahlen/natuerlich.tex b/buch/chapters/05-zahlen/natuerlich.tex
new file mode 100644
index 0000000..278aa5e
--- /dev/null
+++ b/buch/chapters/05-zahlen/natuerlich.tex
@@ -0,0 +1,224 @@
+%
+% natuerlich.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Natürlich Zahlen
+\label{buch:section:natuerliche-zahlen}}
+\rhead{Natürliche Zahlen}
+Die natürlichen Zahlen sind die Zahlen, mit denen wir zählen.
+\index{natürliche Zahlen}%
+\index{$\mathbb{N}$}%
+Sie abstrahieren das Konzept der Anzahl der Elemente einer endlichen
+Menge.
+Da die leere Menge keine Elemente hat, muss die Menge der natürlichen
+Zahlen auch die Zahl $0$ enthalten.
+Wir schreiben
+\[
+\mathbb{N}
+=
+\{
+0,1,2,3,\dots
+\}.
+\]
+
+\subsubsection{Peano-Axiome}
+Man kann den Zählprozess durch die folgenden Axiome von Peano beschreiben:
+\index{Peano-Axiome}%
+\begin{enumerate}
+\item $0\in\mathbb N$.
+\item Jede Zahl $n\in \mathbb{N}$ hat einen {\em Nachfolger}
+$n'\in \mathbb{N}$.
+\index{Nachfolger}%
+\item $0$ ist nicht Nachfolger einer Zahl.
+\item Wenn zwei Zahlen $n,m\in\mathbb{N}$ den gleichen Nachfolger haben,
+$n'=m'$, dann sind sie gleich $n=m$.
+\item Enthält eine Menge $X$ die Zahl $0$ und mit jeder Zahl auch ihren
+Nachfolger, dann ist $X\subset\mathbb{N}$.
+\end{enumerate}
+
+\subsubsection{Addition}
+Aus der Nachfolgereigenschaft lässt sich durch wiederholte Anwendung
+die vertrautere Addition konstruieren.
+\index{Addition!in $\mathbb{N}$}%
+Um die Zahl $n\in\mathbb{N}$ um $m\in\mathbb{N}$ zu vermehren, also
+$n+m$ auszurechnen, kann man rekursiven Regeln
+\begin{align*}
+n+0&=n\\
+n+m'&=(n+m)'
+\end{align*}
+festlegen.
+Nach diesen Regeln ist
+\[
+5+3
+=
+5+2'
+=
+(5+2)'
+=
+(5+1')'
+=
+((5+1)')'
+=
+((5+0')')'
+=
+(((5)')')'.
+\]
+Dies ist genau die Art und Weise, wie kleine Kinder Rechnen lernen.
+Sie Zählen von $5$ ausgehend um $3$ weiter.
+Der dritte Nachfolger von $5$ heisst üblicherweise $8$.
+
+Die algebraische Struktur, die hier konstruiert worden ist, heisst
+eine Halbgruppe.
+Allerdings kann man darin zum Beispiel nur selten Gleichungen
+lösen, zum Beispiel hat $3+x=1$ keine Lösung.
+Die Addition ist nicht immer umkehrbar.
+
+\subsubsection{Multiplikation}
+Es ist klar, dass auch die Multiplikation definiert werden kann,
+sobald die Addition definiert ist.
+Die Rekursionsformeln
+\begin{align}
+n\cdot 0 &= 0 \notag \\
+n\cdot m' &= n\cdot m + n
+\label{buch:zahlen:multiplikation-rekursion}
+\end{align}
+legen jedes Produkt von natürlichen Zahlen fest, zum Beispiel
+\[
+5\cdot 3
+=
+5\cdot 2'
+=
+5\cdot 2 + 5
+=
+5\cdot 1' + 5
+=
+5\cdot 1 + 5 + 5
+=
+5\cdot 0' + 5 + 5
+=
+5\cdot 0 + 5 + 5 + 5
+=
+5 + 5 + 5.
+\]
+Doch auch bezüglich der Multiplikation ist $\mathbb{N}$ unvollständig,
+die Beispielgleichung $3x=1$ hat eine Lösung in $\mathbb{N}$.
+
+\subsubsection{Rechenregeln}
+Aus den Definitionen lassen sich auch die Rechenregeln ableiten,
+die man für die alltägliche Rechnung braucht.
+Zum Beispiel kommt es nicht auf die Reihenfolge der Summanden
+oder Faktoren an.
+Das {\em Kommutativgesetz} besagt
+\[
+a+b=b+a
+\qquad\text{und}\qquad
+a\cdot b = b\cdot a.
+\]
+\index{Kommutativgesetz}%
+Die Kommutativität der Addition werden wir auch in allen weiteren
+Konstruktionen voraussetzen.
+Die Kommutativität des Produktes ist allerdings weniger selbstverständlich
+und wird beim Matrizenprodukt nur noch für spezielle Faktoren zutreffen.
+
+Eine Summe oder ein Produkt mit mehr als zwei Summanden bzw.~Faktoren
+kann in jeder beliebigen Reihenfolge ausgewertet werden,
+\[
+(a+b)+c
+=
+a+(b+c)
+\qquad\text{und}\qquad
+(a\cdot b)\cdot c
+=
+a\cdot (b\cdot c)
+\]
+dies ist das Assoziativgesetz.
+Es gestattet auch eine solche Summe oder ein solches Produkt einfach
+als $a+b+c$ bzw.~$a\cdot b\cdot c$ zu schreiben, da es ja keine Rolle
+spielt, in welcher Reihenfolge man die Teilprodukte berechnet.
+
+Die Konstruktion der Multiplikation als iterierte Addition mit Hilfe
+der Rekursionsformel \eqref{buch:zahlen:multiplikation-rekursion}
+hat auch zur Folge, dass die {\em Distributivgesetze}
+\[
+a\cdot(b+c) = ab+ac
+\qquad\text{und}\qquad
+(a+b)c = ac+bc
+\]
+gilt.
+Das Distributivgesetz drückt die wohlbekannte Regel des
+Ausmultiplizierens aus.
+Ein Distributivgesetz ist also grundlegend dafür, dass man mit den
+Objekten so rechnen kann, wie man das in der elementaren Algebra
+gelernt hat.
+Auch das Distributivgesetz ist daher eine Rechenregel, die wir in
+Zukunft immer dann fordern werden, wenn Addition und Multiplikation
+definiert sind.
+Es gilt immer für Matrizen.
+
+\subsubsection{Teilbarkeit}
+Die Lösbarkeit von Gleichungen der Form $ax=b$ mit $a,b\in\mathbb{N}$
+gibt aber Anlass zu dem sehr nützlichen Konzept der Teilbarkeit.
+\index{Teilbarkeit}%
+Die Zahl $b$ heisst teilbar durch $a$, wenn die Gleichung $ax=b$ eine
+Lösung in $\mathbb{N}$ hat.
+\index{teilbar}%
+Jede natürlich Zahl $n$ ist durch $1$ teilbar und auch durch sich selbst,
+denn $n\cdot 1 = n$.
+Andere Teiler sind dagegen nicht selbstverständlich, die Zahlen
+\[
+\mathbb{P}
+=
+\{2,3,5,7,11,17,19,23,29,\dots\}
+\]
+haben keine weiteren Teiler, sie heissen {\em Primzahlen}.
+\index{Primzahl}%
+Die Menge der natürlichen Zahlen ist die naheliegende Arena
+für die Zahlentheorie.
+\index{Zahlentheorie}%
+
+\subsubsection{Konstruktion der natürlichen Zahlen aus der Mengenlehre}
+Die Peano-Axiome postulieren, dass es natürliche Zahlen gibt.
+Es werden keine Anstrengungen unternommen, die natürlichen Zahlen
+aus noch grundlegenderen mathematischen Objekten zu konstruieren.
+Die Mengenlehre bietet eine solche Möglichkeit.
+Da die natürlichen Zahlen das Konzept der Anzahl der Elemente einer
+Menge abstrahieren, gehört die leere Menge zur Zahl $0$.
+Die Zahl $0$ kann also durch die leere Menge $\emptyset = \{\}$
+wiedergegeeben werden.
+Der Nachfolger muss jetzt als eine Menge mit zwei Elementen konstruiert
+werden.
+Das einzige mit Sicherheit existierende Objekt, das für diese Menge
+zur Verfügung steht, ist $\emptyset$.
+Zur Zahl $1$ gehört daher die Menge $\{\emptyset\}$, eine Menge mit
+genau einem Element.
+Stellt die Menge $N$ die Zahl $n$ dar, dann können wir die zu $n+1$
+gehörige Menge $N'$ dadurch konstruieren, dass wir zu den Elemente
+von $N$ in zusätzliches Element hinzufügen, das noch nicht in $N$ ist,
+zum Beispiel $N$:
+\[
+N' = N \cup \{ N \}.
+\]
+Die natürlichen Zahlen existieren also, wenn wir akzeptieren, dass es
+Mengen gibt.
+Die natürlichen Zahl sind also nacheinander die Mengen
+\begin{align*}
+0 &= \emptyset
+\\
+1 &= \emptyset \cup \{\emptyset\} = \{0\}
+\\
+2 &= 1 \cup \{ 1\} = \{0\}\cup\{1\} = \{0,1\}
+\\
+3 &= 2 \cup \{ 2\} = \{0,1\}\cup \{2\} = \{0,1,2\}
+\\
+&\phantom{n}\vdots
+\\
+n+1&= n \cup \{n\} = \{0,\dots,n-1\} \cup \{n\} = \{0,1,\dots,n\}
+\\
+&\phantom{n}\vdots
+\end{align*}
+
+
+
+
+