diff options
author | LordMcFungus <mceagle117@gmail.com> | 2021-03-22 18:05:11 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-03-22 18:05:11 +0100 |
commit | 76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7 (patch) | |
tree | 11b2d41955ee4bfa0ae5873307c143f6b4d55d26 /buch/chapters/05-zahlen/rational.tex | |
parent | more chapter structure (diff) | |
parent | add title image (diff) | |
download | SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.tar.gz SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.zip |
Merge pull request #1 from AndreasFMueller/master
update
Diffstat (limited to 'buch/chapters/05-zahlen/rational.tex')
-rw-r--r-- | buch/chapters/05-zahlen/rational.tex | 177 |
1 files changed, 177 insertions, 0 deletions
diff --git a/buch/chapters/05-zahlen/rational.tex b/buch/chapters/05-zahlen/rational.tex new file mode 100644 index 0000000..9d2f59e --- /dev/null +++ b/buch/chapters/05-zahlen/rational.tex @@ -0,0 +1,177 @@ +% +% rational.tex -- rationale Zahlen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +% !TeX spellcheck = de_CH +\section{Rationale Zahlen +\label{buch:section:rationale-zahlen}} +\rhead{Rationale Zahlen} +In den ganzen Zahlen sind immer noch nicht alle linearen Gleichungen +lösbar, es gibt keine ganze Zahl $x$ mit $3x=1$. +Die nötige Erweiterung der ganzen Zahlen lernen Kinder noch bevor sie +die negativen Zahlen kennenlernen. + +Wir können hierbei denselben Trick anwenden, +wie schon beim Übergang von den natürlichen zu den ganzen Zahlen. +Wir kreieren wieder Paare $(z, n)$, deren Elemente nennen wir \emph{Zähler} und +\emph{Nenner}, wobei $z, n \in \mathbb Z$ und zudem $n \ne 0$. +Die Rechenregeln für Addition und Multiplikation lauten +\[ +(a, b) + (c, d) += +(ad + bc, bd) +\qquad \text{und} \qquad +(a, b) \cdot (c, d) += +(ac, bd) +. +\] +Die ganzen Zahlen lassen sich als in dieser Darstellung als +$z \mapsto (z, 1)$ einbetten. + +Ähnlich wie schon bei den ganzen Zahlen ist diese Darstellung +aber nicht eindeutig. +Zwei Paare sind äquivalent, wenn sich deren beide Elemente um denselben Faktor +unterscheiden, +\[ +(a, b) +\sim +(c, d) +\quad \Leftrightarrow \quad +\exists \lambda \in \mathbb Z \colon +\lambda a = c +\wedge +\lambda b = d +. +\] +Dass es sich hierbei wieder um eine Äquivalenzrelation handelt, lässt sich +einfach nachprüfen. + +Durch die neuen Regen gibt es nun zu jedem Paar $(a, b)$ mit $a \ne 0$ +ein Inverses $(b, a)$ bezüglich der Multiplikation, +wie man anhand der folgenden Rechnung sieht, +\[ +(a, b) \cdot (b, a) += +(a \cdot b, b \cdot a) += +(a \cdot b, a \cdot b) +\sim +(1, 1) +. +\] + +\subsubsection{Brüche} +Rationale Zahlen sind genau die Äquivalenzklassen dieser Paare $(a, b)$ von +ganzen Zahlen $a$ und $b\ne 0$. +Da diese Schreibweise recht unhandlich ist, wird normalerweise die Notation +als Bruch $\frac{a}{b}$ verwendet. +Die Rechenregeln werden dadurch zu den wohlvertrauten +\[ +\frac{a}{b}+\frac{c}{d} += +\frac{ad+bc}{bd}, +\qquad\text{und}\qquad +\frac{a}{b}\cdot\frac{c}{d} += +\frac{ac}{bd} +\] +und die speziellen Brüche $\frac{0}{b}$ und $\frac{1}{1}$ erfüllen die +Regeln +\[ +\frac{a}{b}+\frac{0}{d} = \frac{ad}{bd} \sim \frac{a}{b}, +\qquad +\frac{a}{b}\cdot \frac{0}{c} = \frac{0}{bc} +\qquad\text{und}\qquad +\frac{a}{b}\cdot \frac{1}{1} = \frac{a}{b}. +\] +Wir sind uns gewohnt, die Brüche $\frac{0}{b}$ mit der Zahl $0$ und +$\frac{1}{1}$ mit der Zahl $1$ zu identifizieren. + +\subsubsection{Kürzen} +Wie bei den ganzen Zahlen entstehen durch die Rechenregeln viele Brüche, +denen wir den gleichen Wert zuordnen möchten. +Zum Beispiel folgt +\[ +\frac{ac}{bc} - \frac{a}{b} += +\frac{abc-abc}{b^2c} += +\frac{0}{b^2c}, +\] +wir müssen also die beiden Brüche als gleichwertig betrachten. +Allgemein gelten die zwei Brüche $\frac{a}{b}$ und $\frac{c}{d}$ +als äquivalent, wenn $ad-bc= 0$ gilt. +Dies ist gleichbedeutend mit der früher definierten Äquivalenzrelation +und bestätigt, dass die beiden Brüche +\[ +\frac{ac}{bc} +\qquad\text{und}\qquad +\frac{a}{b} +\] +als gleichwertig zu betrachten sind. +Der Übergang von links nach rechts heisst {\em Kürzen}, +\index{Kürzen}% +der Übergang von rechts nach links heisst {\em Erweitern}. +\index{Erweitern}% +Eine rationale Zahl ist also eine Menge von Brüchen, die durch +Kürzen und Erweitern ineinander übergeführt werden können. + +Die Menge der Äquivalenzklassen von Brüchen ist die Menge $\mathbb{Q}$ +der rationalen Zahlen. +In $\mathbb{Q}$ sind Addition, Subtraktion und Multiplikation mit den +gewohnten Rechenregeln, die bereits in $\mathbb{Z}$ gegolten haben, +uneingeschränkt möglich. + +\subsubsection{Kehrwert} +Zu jedem Bruch $\frac{a}{b}$ lässt sich der Bruch $\frac{b}{a}$, +der sogenannte {\em Kehrwert} +\index{Kehrwert} +konstruieren. +Er hat die Eigenschaft, dass +\[ +\frac{a}{b}\cdot\frac{b}{a} += +\frac{ab}{ba} += +1 +\] +gilt. +Der Kehrwert ist also das multiplikative Inverse, jede von $0$ verschiedene +rationale Zahl hat eine Inverse. + +\subsubsection{Lösung von linearen Gleichungen} +Mit dem Kehrwert lässt sich jetzt jede lineare Gleichung lösen. +\index{lineares Gleichungssystem}% +Die Gleichung $ax=b$ hat die Lösung +\[ +ax = \frac{a}{1} \frac{u}{v} = \frac{b}{1} +\qquad\Rightarrow\qquad +\frac{1}{a} + \frac{a}{1} \frac{u}{v} = \frac{1}{a}\frac{b}{1} +\qquad\Rightarrow\qquad +\frac{u}{v} = \frac{b}{a}. +\] +Dasselbe gilt auch für rationale Koeffizienten $a$ und $b$. +In der Menge $\mathbb{Q}$ kann man also beliebige lineare Gleichungen +lösen. + +\subsubsection{Körper} +$\mathbb{Q}$ ist ein Beispiel für einen sogenannten {\em Körper}, +\index{Körper}% +in dem die arithmetischen Operationen Addition, Subtraktion, Multiplikation +und Division möglich sind mit der einzigen Einschränkung, dass nicht durch +$0$ dividiert werden kann. +Körper sind die natürliche Bühne für die lineare Algebra, da sich lineare +Gleichungssysteme ausschliesslich mit den Grundoperation lösen lassen. + +Wir werden im Folgenden für verschiedene Anwendungszwecke weitere Körper +konstruieren, zum Beispiel die reellen Zahlen $\mathbb{R}$ und die +rationalen Zahlen $\mathbb{C}$. +Wann immer die Wahl des Körpers keine Rolle spielt, werden wir den +Körper mit $\Bbbk$ bezeichnen. +\index{$\Bbbk$}% + + + |