aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/10-vektorenmatrizen
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-01-29 20:59:05 +0100
committerAndreas Müller <andreas.mueller@ost.ch>2021-01-29 20:59:05 +0100
commit474af74b757abcc54670c8de170c7458543a801a (patch)
treeabb0fd44390ab8969ff07c2bec7550b4046a31d5 /buch/chapters/10-vektorenmatrizen
parentMerge pull request #2 from Ayexor/master (diff)
downloadSeminarMatrizen-474af74b757abcc54670c8de170c7458543a801a.tar.gz
SeminarMatrizen-474af74b757abcc54670c8de170c7458543a801a.zip
new stuff about parrondo
Diffstat (limited to '')
-rw-r--r--buch/chapters/10-vektorenmatrizen/Makefile.inc2
-rw-r--r--buch/chapters/10-vektorenmatrizen/algebren.tex95
-rw-r--r--buch/chapters/10-vektorenmatrizen/chapter.tex7
-rw-r--r--buch/chapters/10-vektorenmatrizen/gruppen.tex184
-rw-r--r--buch/chapters/10-vektorenmatrizen/hadamard.tex307
-rw-r--r--buch/chapters/10-vektorenmatrizen/koerper.tex4
-rw-r--r--buch/chapters/10-vektorenmatrizen/linear.tex12
-rw-r--r--buch/chapters/10-vektorenmatrizen/ringe.tex4
-rw-r--r--buch/chapters/10-vektorenmatrizen/strukturen.tex28
9 files changed, 630 insertions, 13 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/Makefile.inc b/buch/chapters/10-vektorenmatrizen/Makefile.inc
index 954e52c..f769a79 100644
--- a/buch/chapters/10-vektorenmatrizen/Makefile.inc
+++ b/buch/chapters/10-vektorenmatrizen/Makefile.inc
@@ -6,10 +6,12 @@
CHAPTERFILES = $(CHAPTERFILES) \
chapters/10-matrizenvektoren/linear.tex \
+ chapters/10-matrizenvektoren/strukturen.tex \
chapters/10-matrizenvektoren/gruppen.tex \
chapters/10-matrizenvektoren/ringe.tex \
chapters/10-matrizenvektoren/algebren.tex \
chapters/10-matrizenvektoren/koerper.tex \
+ chapters/10-matrizenvektoren/hadamard.tex \
chapters/10-matrizenvektoren/uebungsaufgaben/1001.tex \
chapters/10-matrizenvektoren/uebungsaufgaben/1002.tex \
chapters/10-matrizenvektoren/chapter.tex
diff --git a/buch/chapters/10-vektorenmatrizen/algebren.tex b/buch/chapters/10-vektorenmatrizen/algebren.tex
index 821c408..6b355ee 100644
--- a/buch/chapters/10-vektorenmatrizen/algebren.tex
+++ b/buch/chapters/10-vektorenmatrizen/algebren.tex
@@ -3,5 +3,96 @@
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
-\section{Algebren
-\label{buch:grundlagen:section:algebren}}
+\subsection{Algebren
+\label{buch:grundlagen:subsection:algebren}}
+
+\subsubsection{Die Algebra der Funktionen $\Bbbk^X$}
+Sie $X$ eine Menge und $\Bbbk^X$ die Menge aller Funktionen $X\to \Bbbk$.
+Auf $\Bbbk^X$ kann man Addition, Multiplikation mit Skalaren und
+Multiplikation von Funktionen punktweise definieren.
+Für zwei Funktion $f,g\in\Bbbk^X$ und $\lambda\in\Bbbk$ definiert man
+\[
+\begin{aligned}
+&\text{Summe $f+g$:}
+&
+(f+g)(x) &= f(x)+g(x)
+\\
+&\text{Skalare $\lambda f$:}
+&
+(\lambda f)(x) &= \lambda f(x)
+\\
+&\text{Produkt $f\cdot g$:}
+&
+(f\cdot g)(x) &= f(x) g(x)
+\end{aligned}
+\]
+Man kann leicht nachprüfen, dass die Menge der Funktionen $\Bbbk^X$
+mit diesen Verknüfungen die Struktur einer $\Bbbk$-Algebra erhält.
+
+Die Algebra der Funktionen $\Bbbk^X$ hat auch ein Einselement:
+die konstante Funktion
+\[
+1\colon [a,b] \to \Bbbk : x \mapsto 1
+\]
+mit Wert $1$ erfüllt
+\[
+(1\cdot f)(x) = 1(x) f(x) = f(x)
+\qquad\Rightarrow\qquad 1\cdot f = f,
+\]
+die Eigenschaft einer Eins in der Algebra.
+
+\subsubsection{Die Algebra der stetigen Funktionen $C([a,b])$}
+Die Menge der stetigen Funktionen $C([a,b])$ ist natürlich eine Teilmenge
+aller Funktionen: $C([a,b])\subset \mathbb{R}^{[a,b]}$ und erbt damit
+auch die Algebraoperationen.
+Man muss nur noch sicherstellen, dass die Summe von stetigen Funktionen,
+das Produkt einer stetigen Funktion mit einem Skalar und das Produkt von
+stetigen Funktionen wieder eine stetige Funktion ist.
+Eine Funktion ist genau dann stetig, wenn an jeder Stelle der Grenzwert
+mit dem Funktionswert übereinstimmt.
+Genau dies garantieren die bekannten Rechenregeln für stetige Funktionen.
+Für zwei stetige Funktionen $f,g\in C([a,b])$ und einen Skalar
+$\lambda\in\mathbb{R}$ gilt
+\[
+\begin{aligned}
+&\text{Summe:}
+&
+\lim_{x\to x_0} (f+g)(x)
+&=
+\lim_{x\to x_0} (f(x)+g(x))
+=
+\lim_{x\to x_0} f(x) + \lim_{x\to x_0}g(x)
+=
+f(x_0)+g(x_0) = (f+g)(x_0)
+\\
+&\text{Skalare:}
+&
+\lim_{x\to x_0} (\lambda f)(x)
+&=
+\lim_{x\to x_0} (\lambda f(x)) = \lambda \lim_{x\to x_0} f(x)
+=
+\lambda f(x_0) = (\lambda f)(x_0)
+\\
+&\text{Produkt:}
+&
+\lim_{x\to x_0}(f\cdot g)(x)
+&=
+\lim_{x\to x_0} f(x)\cdot g(x)
+=
+\lim_{x\to x_0} f(x)\cdot
+\lim_{x\to x_0} g(x)
+=
+f(x_0)g(x_0)
+=
+(f\cdot g)(x_0).
+\end{aligned}
+\]
+für jeden Punkt $x_0\in[a,b]$.
+Damit ist $C([a,b])$ eine $\mathbb{R}$-Algebra.
+Die Algebra hat auch eine Eins, da die konstante Funktion $1(x)=1$
+stetig ist.
+
+
+
+
+
diff --git a/buch/chapters/10-vektorenmatrizen/chapter.tex b/buch/chapters/10-vektorenmatrizen/chapter.tex
index abe9ba9..e59374c 100644
--- a/buch/chapters/10-vektorenmatrizen/chapter.tex
+++ b/buch/chapters/10-vektorenmatrizen/chapter.tex
@@ -9,12 +9,11 @@
\rhead{}
\input{chapters/10-vektorenmatrizen/linear.tex}
-\input{chapters/10-vektorenmatrizen/gruppen.tex}
-\input{chapters/10-vektorenmatrizen/ringe.tex}
-\input{chapters/10-vektorenmatrizen/algebren.tex}
-\input{chapters/10-vektorenmatrizen/koerper.tex}
+\input{chapters/10-vektorenmatrizen/strukturen.tex}
+\input{chapters/10-vektorenmatrizen/hadamard.tex}
\section*{Übungsaufgaben}
+\rhead{Übungsaufgaben}
\aufgabetoplevel{chapters/10-vektorenmatrizen/uebungsaufgaben}
\begin{uebungsaufgaben}
\uebungsaufgabe{1001}
diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex
index fe77009..1f9db81 100644
--- a/buch/chapters/10-vektorenmatrizen/gruppen.tex
+++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex
@@ -3,6 +3,186 @@
%
% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapeprswil
%
-\section{Gruppen
-\label{buch:grundlagen:setion:gruppen}}
+\subsection{Gruppen
+\label{buch:grundlagen:subsection:gruppen}}
\rhead{Gruppen}
+Die kleinste sinnvolle Struktur ist die einer Gruppe.
+Eine solche besteht aus einer Menge $G$ mit einer Verknüpfung,
+die additiv
+\begin{align*}
+G\times G \to G&: (g,h) = gh
+\intertext{oder multiplikativ }
+G\times G \to G&: (g,h) = g+h
+\end{align*}
+geschrieben werden kann.
+Ein Element $0\in G$ heisst {\em neutrales Element} bezüglich der additiv
+geschriebenen Verknüpfung falls $0+x=x$ für alle $x\in G$.
+\index{neutrales Element}%
+Ein Element $e\in G$ heisst neutrales Element bezüglich der multiplikativ
+geschriebneen Verknüpfung, wenn $ex=x$ für alle $x\in G$.
+In den folgenden Definitionen werden wir immer die multiplikative
+Schreibweise verwenden, für Fälle additiv geschriebener siehe auch die
+Beispiele weiter unten.
+
+\begin{definition}
+\index{Gruppe}%
+Ein {\em Gruppe}
+\index{Gruppe}%
+ist eine Menge $G$ mit einer Verknüfung mit folgenden
+Eigenschaften:
+\begin{enumerate}
+\item
+Die Verknüpfung ist assoziativ: $(ab)c=a(bc)$ für alle $a,b,c\in G$.
+\item
+Es gibt ein neutrales Element $e\in G$
+\item
+Für jedes Element $g\in G$ gibt es ein Element $h\in G$ mit
+$hg=e$.
+\end{enumerate}
+Das Element $h$ heisst auch das Inverse Element zu $g$.
+\end{definition}
+
+Falls nicht jedes Element invertierbar ist, aber wenigstens ein neutrales
+Element vorhanden ist, spricht man von einem {\em Monoid}.
+\index{Monoid}%
+Hat man nur eine Verknüpfung, spricht man oft von einer {\em Halbruppe}.
+\index{Halbgruppe}%
+
+\begin{definition}
+Eine Gruppe $G$ heisst abelsch, wenn $ab=ba$ für alle $a,b\in G$.
+\end{definition}
+
+Additiv geschrieben Gruppen werden immer als abelsch angenommen,
+multiplikativ geschrieben Gruppen können abelsch oder nichtabelsch sein.
+
+\subsubsection{Beispiele von Gruppen}
+
+\begin{beispiel}
+Die Menge $\mathbb{Z}$ mit der Addition ist eine additive Gruppe mit
+dem neutralen Element $0$.
+Das additive Inverse eines Elementes $a$ ist $-a$.
+\end{beispiel}
+
+\begin{beispiel}
+Die von Null verschiedenen Elemente $\Bbbk^*$ eines Zahlekörpers bilden
+bezüglich der Multiplikation eine Gruppe mit neutralem Element $1$.
+Das multiplikative Inverse eines Elementes $a\in \Bbbk$ mit $a\ne 0$
+ist $a^{-1}=\frac1{a}$.
+\end{beispiel}
+
+\begin{beispiel}
+Die Vektoren $\Bbbk^n$ bilden bezüglich der Addition eine Gruppe mit
+dem Nullvektor als neutralem Element.
+Betrachtet man $\Bbbk^n$ als Gruppe, verliert man die Multiplikation
+mit Skalaren aus den Augen.
+$\Bbbk^n$ als Gruppe zu bezeichnen ist also nicht falsch, man
+verliert dadurch aber
+\end{beispiel}
+
+\begin{beispiel}
+Die Menge aller quadratischen $n\times n$-Matrizen $M_n(\Bbbk)$ ist
+eine Gruppe bezüglich der Addition mit der Nullmatrix als neutralem
+Element.
+Bezügich der Matrizenmultiplikation ist $M_n(\Bbbk)$ aber keine
+Gruppe, da sich die singulären Matrizen nicht inverieren lassen.
+Die Menge der invertierbaren Matrizen
+\[
+\operatorname{GL}_n(\Bbbk)
+=
+\{
+A\in M_n(\Bbbk)\;|\; \text{$A$ invertierbar}
+\}
+\]
+ist bezüglich der Multiplikation eine Gruppe.
+Die Gruppe $\operatorname{GL}_n(\Bbbk)$ ist eine echte Teilmenge
+von $M_n(\Bbbk)$, die Addition und Multiplikation führen im Allgemeinen
+aus der Gruppe heraus, es gibt also keine Mögichkeit, in der Gruppe
+$\operatorname{GL}_n(\Bbbk)$ diese Operationen zu verwenden.
+\end{beispiel}
+
+\subsubsection{Einige einfache Rechenregeln in Gruppen}
+Die Struktur einer Gruppe hat bereits eine Reihe von
+Einschränkungen zur Folge.
+Zum Beispiel sprach die Definition des neutralen Elements $e$ nur von
+Produkten der Form $ex=x$, nicht von Produkten $xe$.
+Und die Definition des inversen Elements $h$ von $g$ hat nur
+verlangt, dass $gh=e$, es wurde nichts gesagt über das Produkt $hg$.
+
+\begin{satz}
+\label{buch:vektorenmatrizen:satz:gruppenregeln}
+Ist $G$ eine Gruppe mit neutralem Element $e$, dann gilt
+\begin{enumerate}
+\item
+$xe=x$ für alle $x\in G$
+\item
+Es gibt nur ein neutrales Element.
+Wenn also $f\in G$ mit $fx=x$ für alle $x\in G$, ist dann folgt $f=e$.
+\item
+Wenn $hg=e$ gilt, dann auch $gh=e$ und $h$ ist durch $g$ eindeutig bestimmt.
+\end{enumerate}
+\end{satz}
+
+\begin{proof}[Beweis]
+Wir beweisen als Erstes den ersten Teil der Eigenschaft~3.
+Sei $h$ die Inverse von $g$, also $hg=e$.
+Sei weiter $i$ die Inverse von $h$, also $ih=e$.
+Damit folgt jetzt
+\[
+g
+=
+eg
+=
+(ih)g
+=
+i(hg)
+=
+ie.
+\]
+Wende man dies auf das Produkt $gh$ an, folgt
+\[
+gh
+=
+(ie)h
+=
+i(eh)
+=
+ih
+=
+e
+\]
+Es ist also nicht nur $hg=e$ sondern immer auch $gh=e$.
+
+Für eine Inverse $h$ von $g$ folgt
+\[
+ge
+=
+g(hg)
+=
+(gh)g
+=
+eg
+=
+g,
+\]
+dies ist die Eigenschaft~1.
+
+Sind $f$ und $e$ neutrale Elemente, dann folgt
+\[
+f = fe = e
+\]
+aus der Eigenschaft~1.
+
+Schliesslich sei $x$ ein beliebiges Inverses von $g$, dann ist
+$xg=e$, dann folgt
+$x=xe=x(gh)=(xg)h = eh = h$, es gibt also nur ein Inverses von $g$.
+\end{proof}
+
+Diesem Problem sind wir zum Beispiel auch in
+Abschnitt~\ref{buch:grundlagen:subsection:gleichungssyteme}
+begegnet, wo wir nur gezeigt haben, dass $AA^{-1}=E$ ist.
+Da aber die invertierbaren Matrizen eine Gruppe
+bilden, folgt jetzt aus dem Satz automatisch, dass auch $A^{-1}A=E$.
+
+
+
+
diff --git a/buch/chapters/10-vektorenmatrizen/hadamard.tex b/buch/chapters/10-vektorenmatrizen/hadamard.tex
new file mode 100644
index 0000000..1fd0373
--- /dev/null
+++ b/buch/chapters/10-vektorenmatrizen/hadamard.tex
@@ -0,0 +1,307 @@
+%
+% hadamard.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Hadamard-Algebra
+\label{buch:section:hadamard-algebra}}
+\rhead{Hadamard-Algebra}
+Das Matrizenprodukt ist nicht die einzige Möglichkeit, ein Produkt auf
+Vektoren oder Matrizen zu definieren.
+In diesem Abschnitt soll das Hadamard-Produkt beschrieben werden,
+welches zu einer kommutativen-Algebra-Struktur führt.
+
+%
+% Definition des Hadamard-Produktes
+%
+\subsection{Hadamard-Produkt
+\label{buch:vektorenmatrizen:subsection:hadamard-produkt}}
+Im Folgenden werden wir $\Bbbk^n =M_{n\times 1}(\Bbbk)$ setzen
+und den Fall der Vektoren nicht mehr separat diskutieren.
+Die Addition und Multiplikation mit Skalaren ist in
+$M_{m\times n}(\Bbbk)$ komponentenweise definiert.
+Wir können natürlich auch ein Produkt komponentenweise definieren,
+dies ist das Hadamard-Produkt.
+
+\begin{definition}
+Das {\em Hadamard-Produkt} zweier Matrizen
+$A,B\in M_{m\times n}(\Bbbk)$ ist definiert als die Matrix
+$A\odot B$
+mit den Komponenten
+\[
+(A\odot B)_{ij} = (A)_{ij} (B)_{ij}.
+\]
+Wir nennen $M_{m\times n}(\Bbbk)$ mit der Multiplikation $\odot$
+auch die Hadamard-Algebra $H_{m\times n}(\Bbbk)$.
+\end{definition}
+
+Dies ist jedoch nur interessant, wenn $M_{m\times n}(\Bbbk)$ mit diesem
+Produkt eine interessante algebraische Struktur erhält.
+Dazu müssen die üblichen Verträglichkeitsgesetze zwischen den
+Vektorraumoperationen von $M_{m\times n}(\Bbbk)$ und dem neuen Produkt
+gelten, wir erhalten dann eine Algebra.
+Da alle Operationen elementweise definiert sind, muss man auch alle
+Rechengesetze nur elementweise prüfen.
+Es gilt
+\begin{align*}
+A\odot(B\odot C) &= (A\odot B)\odot C
+&&\Leftrightarrow&
+a_{ij}(b_{ij}c_{ij}) &= (a_{ij}b_{ij})c_{ij}
+\\
+A\odot(B+C) &= A\odot B + A\odot C
+&&\Leftrightarrow&
+a_{ij}(b_{ij}+c_{ij}) &= a_{ij}b_{ij} + a_{ij}c_{ij}
+\\
+(A+B)\odot C&=A\odot C+B\odot C
+&&\Leftrightarrow&
+(a_{ij}+b_{ij})c_{ij}&=a_{ij}c_{ij} + b_{ij}c_{ij}
+\\
+(\lambda A)\odot B &= \lambda (A\odot B)
+&&\Leftrightarrow&
+(\lambda a_{ij})b_{ij}&=\lambda(a_{ij}b_{ij})
+\\
+A\odot(\lambda B)&=\lambda(A\odot B)
+&&\Leftrightarrow&
+a_{ij}(\lambda b_{ij})&=\lambda(a_{ij}b_{ij})
+\end{align*}
+für alle $i,j$.
+
+Das Hadamard-Produkt ist kommutativ, da die Multiplikation in $\Bbbk$
+kommuativ ist.
+Das Hadamard-Produkt kann auch für Matrizen mit Einträgen in einem
+Ring definiert werden, in diesem Fall ist es möglich, dass die entsehende
+Algebra nicht kommutativ ist.
+
+Die Hadamard-Algebra hat auch ein Eins-Elemente, nämlich die Matrix,
+die aus lauter Einsen besteht.
+
+\begin{definition}
+Die sogenannte {\em Einsmatrix} $U$ ist die Matrix
+\[
+U=\begin{pmatrix}
+1&1&\dots&1\\
+\vdots&\vdots&\ddots&\vdots\\
+1&1&\dots&1
+\end{pmatrix}
+\in
+M_{m\times n}(\Bbbk)
+\]
+mit lauter Einträgen $1\in\Bbbk$.
+\end{definition}
+
+Die Hadamard-Algebra ist ein Spezialfall der Algebra der Funktionen
+$\Bbbk^X$.
+Ordnet man dem Vektor $v\in \Bbbk^n$ mit den Komponenten $v_i$
+die Abbildung
+\[
+v\colon [n] \to \Bbbk: i \mapsto v_i
+\]
+zu, dann geht die Addition von Vektoren in die Addition von
+Funktionen über, die Multiplikation von Skalaren mit Vektoren
+geht in die Multiplikation von Funktionen mit Skalaren über
+und die Hadamard-Multiplikation geht über in das Produkt von
+Funktionen.
+
+Auch die Hadamard-Algebra $H_{m\times n}(\Bbbk)$ kann als Funktionenalgebra
+betrachtet werden.
+Einer Matrix $A\in H_{m\times n}(\Bbbk)$ ordnet man die Funktion
+\[
+a\colon [m]\times [n] : (i,j) \mapsto a_{ij}
+\]
+zu.
+Dabei gehen die Algebraoperationen von $H_{m\times n}(\Bbbk)$ über
+in die Algebraoperationen der Funktionenalgebra $\Bbbk^{[m]\times [n]}$.
+Aus der Einsmatrix der Hadamard-Algebra wird dabei zur konstanten
+Funktion $1$ auf $[m]\times[n]$.
+
+\subsection{Hadamard-Produkt und Matrizenalgebra
+\label{buch:vektorenmatrizen:subsection:vertraeglichkeit}}
+Es ist nur in Ausnahmefällen, Hadamard-Produkt und Matrizen-Produkt
+gleichzeitig zu verwenden.
+Das liegt daran, dass die beiden Produkte sich überhaupt nicht
+vertragen.
+
+\subsubsection{Unverträglichkeit von Hadamard- und Matrizen-Produkt}
+Das Hadamard-Produkt und das gewöhnliche Matrizenprodukt sind
+in keiner Weise kompatibel.
+Die beiden Matrizen
+\[
+A=\begin{pmatrix}3&4\\4&5\end{pmatrix}
+\qquad\text{und}\qquad
+B=\begin{pmatrix}-5&4\\4&-3\end{pmatrix}
+\]
+sind inverse Matrizen bezüglich des Matrizenproduktes, also
+$AB=E$.
+Für das Hadamard-Produkt gilt dagegen
+\[
+A\odot B
+=
+\begin{pmatrix}
+-15& 16\\
+ 16&-15
+\end{pmatrix}.
+\]
+Die Inverse einer Matrix $A$ Bezüglich des Hadamard-Produktes hat
+die Einträge $a_{ij}^{-1}$.
+Die Matrix $E$ ist bezüglich des gewöhnlichen Matrizenproduktes
+invertierbar, aber sie ist bezüglich des Hadamard-Produktes nicht
+invertierbar.
+
+\subsubsection{Einbettung der Hadamard-Algebra ein eine Matrizenalgebra}
+Hadamard-Algebren können als Unteralgebren einer Matrizenalgebra
+betrachtet werden.
+Der Operator $\operatorname{diag}$ bildet Vektoren ab in Diagonalmatrizen
+nach der Regel
+\[
+\operatorname{diag}
+\colon
+\Bbbk^n \to M_n(\Bbbk)
+:
+\begin{pmatrix}
+v_1\\
+\vdots\\
+v_n
+\end{pmatrix}
+\mapsto
+\begin{pmatrix}
+v_1&\dots&0\\
+\vdots&\ddots&\vdots\\
+0&\dots&v_n
+\end{pmatrix}
+\]
+Das Produkt von Diagonalmatrizen ist besonders einfach.
+Für zwei Vektoren $a,b\in\Bbbk^n$
+\[
+a\odot b
+=
+\begin{pmatrix}
+a_1b_1\\
+\vdots\\
+a_nb_n
+\end{pmatrix}
+\mapsto
+\begin{pmatrix}
+a_1b_1&\dots&0\\
+\vdots&\ddots&\vdots\\
+0&\dots&a_nb_n
+\end{pmatrix}
+=
+\begin{pmatrix}
+a_1&\dots&0\\
+\vdots&\ddots&\vdots\\
+0&\dots&a_n
+\end{pmatrix}
+\begin{pmatrix}
+b_1&\dots&0\\
+\vdots&\ddots&\vdots\\
+0&\dots&b_n
+\end{pmatrix}.
+\]
+Das Hadamard-Produkt der Vektoren geht also über in das gewöhnliche
+Matrizenprodukt der Diagonalmatrizen.
+
+Für die Hadamard-Matrix ist die Einbettung etwas komplizierter.
+Wir machen aus einer Matrix erst einen Vektor, den wir dann mit
+dem $\operatorname{diag}$ in eine Diagonalmatrix umwandeln:
+\[
+\begin{pmatrix}
+a_{11}&\dots&a_{1n}\\
+\vdots&\ddots&\vdots\\
+a_{m1}&\dots
+\end{pmatrix}
+\mapsto
+\begin{pmatrix}
+a_{11}\\
+\vdots\\
+a_{1n}\\
+a_{21}\\
+\vdots\\
+a_{2n}\\
+\vdots\\
+a_{nn}
+\end{pmatrix}
+\]
+Bei dieser Abbildung geht die Hadamard-Multiplikation wieder in
+das gewöhnliche Matrizenprodukt über.
+
+% XXX Faltungsmatrizen und Fouriertheorie
+\subsubsection{Beispiel: Faltung und Fourier-Theorie}
+
+\subsection{Weitere Verknüpfungen
+\label{buch:vektorenmatrizen:subsection:weitere}}
+
+\subsubsection{Transposition}
+Das Hadamard-Produkt verträgt sich mit der Transposition:
+\[
+(A\odot B)^t = A^t \odot B^t.
+\]
+Insbesondere ist das Hadamard-Produkt zweier symmetrischer Matrizen auch
+wieder symmetrisch.
+
+\subsubsection{Frobeniusnorm}
+Das Hadamard-Produkt in der Hadamard-Algebra $H_{m\times n}(\mathbb{R})$
+nimmt keine Rücksicht auf die Dimensionen einer Matrix und ist nicht
+unterscheidbar von $\mathbb{R}^{m\times n}$ mit dem Hadamard-Produkt.
+Daher darf auch der Begriff einer mit den algebraischen Operationen
+verträglichen Norm nicht von von den Dimensionen abhängen.
+Dies führt auf die folgende Definition einer Norm.
+
+\begin{definition}
+Die {\em Frobenius-Norm} einer Matrix $A\in H_{m\times n}\mathbb{R})$
+mit den Einträgen $(a_{ij})=A$ ist
+\[
+\| A\|_F
+=
+\sqrt{
+\sum_{i,j} a_{ij}^2
+}.
+\]
+Das {\em Frobenius-Skalarprodukt} zweier Matrizen
+$A,B\in H_{m\times n}(\mathbb{R})$
+ist
+\[
+\langle A,B\rangle_F
+=
+\sum_{i,j} a_{ij} b_{ij}
+=
+\operatorname{Spur} A^t B
+\]
+und es gilt $\|A\|_F = \sqrt{\langle A,A\rangle}$.
+\end{definition}
+
+Für komplexe Matrizen muss
+
+\begin{definition}
+Die {\em komplexe Frobenius-Norm} einer Matrix $A\in H_{m\times n}(\mathbb{C})$
+ist
+\[
+\| A\|
+=
+\sqrt{
+\sum_{i,j} |a_{ij}|^2
+}
+=
+\sqrt{
+\sum_{i,u} \overline{a}_{ij} a_{ij}
+}
+\]
+das {\em komplexe Frobenius-Skalarprodukt} zweier Matrizen
+$A,B\in H_{m\times n}(\mathbb{C})$ ist das Produkt
+\[
+\langle A,B\rangle_F
+=
+\sum_{i,j}\overline{a}_{ij} b_{ij}
+=
+\operatorname{Spur} (A^* B)
+\]
+und es gilt $\|A\|_F = \sqrt{\langle A,A\rangle}$.
+\end{definition}
+
+% XXX Frobeniusnorm
+
+\subsubsection{Skalarprodukt}
+
+% XXX Skalarprodukt
+
+
+
diff --git a/buch/chapters/10-vektorenmatrizen/koerper.tex b/buch/chapters/10-vektorenmatrizen/koerper.tex
index c9d3a64..888513e 100644
--- a/buch/chapters/10-vektorenmatrizen/koerper.tex
+++ b/buch/chapters/10-vektorenmatrizen/koerper.tex
@@ -3,8 +3,8 @@
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschwêizer Fachhochschule
%
-\section{Körper
-\label{buch:section:koerper}}
+\subsection{Körper
+\label{buch:subsection:koerper}}
Die Multiplikation ist in einer Algebra nicht immer umkehrbar.
Die Zahlenkörper von Kapitel~\ref{buch:chapter:zahlen} sind also
sehr spezielle Algebren, man nennt sie Körper.
diff --git a/buch/chapters/10-vektorenmatrizen/linear.tex b/buch/chapters/10-vektorenmatrizen/linear.tex
index 4e3454d..23d16a8 100644
--- a/buch/chapters/10-vektorenmatrizen/linear.tex
+++ b/buch/chapters/10-vektorenmatrizen/linear.tex
@@ -590,6 +590,16 @@ die zu $A$ {\em inverse Matrix}.
\index{inverse Matrix}
Sie wird auch $C=A^{-1}$ geschrieben.
+Die Definition der inversen Matrix stellt sicher, dass $AA^{-1}=E$ gilt,
+daraus folgt aber noch nicht, dass auch $A^{-1}A=E$ ist.
+Die Eigenschaften der Matrizenmultiplikation stellen jedoch sicher,
+dass die Menge der invertierbaren Matrizen eine Struktur bilden,
+die man Gruppe nennt, die in Abschnitt~\ref{buch:grundlagen:subsection:gruppen}
+genauer untersucht wird.
+In diesem Zusammenhang wird dann auf
+Seite~\pageref{buch:vektorenmatrizen:satz:gruppenregeln}
+die Eigenschaft $A^{-1}A=E$ ganz allgemein gezeigt.
+
\subsubsection{Determinante}
%
@@ -839,7 +849,7 @@ Das Bild einer $m\times n$-Matrix $A$ ist die Menge
Zwei Vektoren $a,b\in\operatorname{im}$ haben Urbilder $u,w\in V$ mit
$f(u)=a$ und $f(w)=b$.
-Für Summe und Skalarprodukt folgt
+Für Summe und Multiplikation mit Skalaren folgt
\[
\begin{aligned}
a+b&= f(u)+f(v)=f(u+v) &&\Rightarrow a+b\in\operatorname{im}f\\
diff --git a/buch/chapters/10-vektorenmatrizen/ringe.tex b/buch/chapters/10-vektorenmatrizen/ringe.tex
index f35c490..e53bde5 100644
--- a/buch/chapters/10-vektorenmatrizen/ringe.tex
+++ b/buch/chapters/10-vektorenmatrizen/ringe.tex
@@ -3,6 +3,6 @@
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
-\section{Ringe und Moduln
-\label{buch:grundlagen:section:ringe}}
+\subsection{Ringe und Moduln
+\label{buch:grundlagen:subsection:ringe}}
\rhead{Ringe}
diff --git a/buch/chapters/10-vektorenmatrizen/strukturen.tex b/buch/chapters/10-vektorenmatrizen/strukturen.tex
new file mode 100644
index 0000000..6ff4f36
--- /dev/null
+++ b/buch/chapters/10-vektorenmatrizen/strukturen.tex
@@ -0,0 +1,28 @@
+%
+% strukturen.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Algebraische Strukturen
+\label{buch:section:algebraische-Strukturen}}
+Im Laufe der Definition der Vektorräume $\Bbbk^n$ und der
+Operationen für die Matrizen in $M_{m\times n}(\Bbbk)$ haben
+wir eine ganze Reihe von algebraischen Strukturen kennengelernt.
+Nicht immer sind alle Operationen verfügbar, in einem Vektorraum
+gibt es normalerweise kein Produkt.
+Und bei der Konstruktion des Zahlensystems wurde gezeigt, dass
+additive oder multiplikative Inverse nicht selbstverständlich
+sind.
+Sinnvolle Mathematik lässt sich aber erst betreiben, wenn zusammen
+mit den vorhandenen Operationen auch einige Regeln erfüllt sind.
+Die schränkt die Menge der sinnvollen Gruppierungen von Eigenschaften
+ein.
+In diesem Abschnitten sollen diesen sinnvollen Gruppierungen von
+Eigenschaften Namen gegeben werden.
+
+\input{chapters/10-vektorenmatrizen/gruppen.tex}
+\input{chapters/10-vektorenmatrizen/ringe.tex}
+\input{chapters/10-vektorenmatrizen/algebren.tex}
+\input{chapters/10-vektorenmatrizen/koerper.tex}
+
+