aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/10-vektorenmatrizen
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-06-27 19:18:10 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-06-27 19:18:10 +0200
commit73d6991ee272175e13f8f86f10a9a6d55bfda166 (patch)
treeaf255a9788be45bb43283913f9984d768fa1e3e7 /buch/chapters/10-vektorenmatrizen
parentadd label requested by reed-solomon-Paper (diff)
downloadSeminarMatrizen-73d6991ee272175e13f8f86f10a9a6d55bfda166.tar.gz
SeminarMatrizen-73d6991ee272175e13f8f86f10a9a6d55bfda166.zip
add example
Diffstat (limited to 'buch/chapters/10-vektorenmatrizen')
-rw-r--r--buch/chapters/10-vektorenmatrizen/linear.tex82
1 files changed, 82 insertions, 0 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/linear.tex b/buch/chapters/10-vektorenmatrizen/linear.tex
index 2fcf199..ac2b85d 100644
--- a/buch/chapters/10-vektorenmatrizen/linear.tex
+++ b/buch/chapters/10-vektorenmatrizen/linear.tex
@@ -839,6 +839,83 @@ die Eigenschaft $A^{-1}A=I$ ganz allgemein gezeigt.
\subsubsection{Determinante}
XXX TODO
+\begin{beispiel}
+Die Inverse der Matrix
+\begin{equation}
+A=\begin{pmatrix}
+1&a&a\\
+a&1&a\\
+a&a&1
+\end{pmatrix}
+\label{buch:vektoren-und-matrizen:abeispiel:eqn1}
+\end{equation}
+ist mit Hilfe von Determinanten besonders einfach zu invertieren.
+Die Determinante von $A$ ist nach der Sarrus-Formel
+\[
+\det A
+=
+1 + 2a^3 - 3a^2.
+\]
+Die adjungiert Matrix ist
+\begin{align*}
+A^{-1}
+&=
+\frac{1}{\det{A}}
+\begin{pmatrix}
+\det A_{11} & \det A_{21} & \det A_{31} \\
+\det A_{12} & \det A_{22} & \det A_{32} \\
+\det A_{13} & \det A_{23} & \det A_{33}
+\end{pmatrix}
+\\
+&=
+\frac{1}{2a^3-3a^2+1}
+\renewcommand\arraystretch{1.1}
+\begin{pmatrix*}[r]
+\left|\begin{matrix}1&a\\a&1\end{matrix}\right|
+&
+-\left|\begin{matrix}a&a\\a&1\end{matrix}\right|
+&
+\left|\begin{matrix}a&a\\1&a\end{matrix}\right|
+\\
+-\left|\begin{matrix}a&a\\a&1\end{matrix}\right|
+&
+\left|\begin{matrix}1&a\\a&1\end{matrix}\right|
+&
+-\left|\begin{matrix}1&a\\a&a\end{matrix}\right|
+\\
+\left|\begin{matrix}a&1\\a&a\end{matrix}\right|
+&
+-\left|\begin{matrix}1&a\\a&a\end{matrix}\right|
+&
+\left|\begin{matrix}1&a\\a&1\end{matrix}\right|
+\end{pmatrix*}
+\\
+&=
+\frac{1}{2a^3-3a^2+1}
+\begin{pmatrix}
+1-a^2 & a^2-a & a^2-a\\
+a^2-a & 1-a^2 & a^2-a\\
+a^2-a & a^2-a & 1-a^2
+\end{pmatrix}
+\end{align*}
+Mit $1-a^2=(1+a)(1-a)$ und $a^2-a=a(a-1)$ kann man dies noch etwas
+vereinfachen, indem man den gemeinsamen Faktor $1-a$ ausklammern.
+Man erhält so die Form
+\begin{equation}
+A^{-1}
+=
+\frac{1-a}{2a^3-3a^2+1}
+\begin{pmatrix}
+1+a & -a & -a \\
+ -a & 1+a & -a \\
+ -a & -a & 1+a
+\end{pmatrix}.
+\label{buch:vektoren-und-matrizen:abeispiel:eqn2}
+\end{equation}
+für die Inverse einer Matrix der Form
+\eqref{buch:vektoren-und-matrizen:abeispiel:eqn1}.
+\end{beispiel}
+
%
% Lineare Abbildungen
%
@@ -1133,3 +1210,8 @@ n-\operatorname{def}A.
\subsubsection{Quotient}
TODO: $\operatorname{im} A \simeq \Bbbk^m/\ker A$
+
+
+
+
+