diff options
author | fabioviecelli <80270098+fabioviecelli@users.noreply.github.com> | 2021-09-08 09:23:56 +0200 |
---|---|---|
committer | fabioviecelli <80270098+fabioviecelli@users.noreply.github.com> | 2021-09-08 09:23:56 +0200 |
commit | 910a4f556d89d75ee07384a2a3fb963334552264 (patch) | |
tree | 53f346e2de59d4bf1365535b709f0a2e8ebffba1 /buch/chapters/30-endlichekoerper/chapter.tex | |
parent | Ergänzungen (diff) | |
parent | editorial edits clifford (diff) | |
download | SeminarMatrizen-910a4f556d89d75ee07384a2a3fb963334552264.tar.gz SeminarMatrizen-910a4f556d89d75ee07384a2a3fb963334552264.zip |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'buch/chapters/30-endlichekoerper/chapter.tex')
-rw-r--r-- | buch/chapters/30-endlichekoerper/chapter.tex | 3 |
1 files changed, 2 insertions, 1 deletions
diff --git a/buch/chapters/30-endlichekoerper/chapter.tex b/buch/chapters/30-endlichekoerper/chapter.tex index 1a0a323..b4c602e 100644 --- a/buch/chapters/30-endlichekoerper/chapter.tex +++ b/buch/chapters/30-endlichekoerper/chapter.tex @@ -8,13 +8,14 @@ \lhead{Endliche Körper} \rhead{} Aus den ganzen Zahlen $\mathbb{Z}$ entsteht ein Körper, indem wir Brüche -bilden alle von $0$ verschiedenen Nenner zulassen. +bilden und dabei alle von $0$ verschiedenen Nenner zulassen. Der Körper der rationalen Zahlen $\mathbb{Q}$ enthält unendliche viele Zahlen und hat zusätzlich die sogenannte archimedische Eigenschaft, nämliche dass es zu zwei positiven rationalen Zahlen $a$ und $b$ immer eine ganze Zahl $n$ gibt derart, dass $na>b$. Dies bedeutet auch, dass es in den rationalen Zahlen beliebig grosse Zahlen gibt. + Man kann aus den ganzen Zahlen aber auch eine Reihe von Körpern ableiten, die diese Eigenschaft nicht haben. Nicht überraschend werden die ersten derartigen Körper, die wir |