aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/40-eigenwerte/grundlagen.tex
diff options
context:
space:
mode:
authorfabioviecelli <80270098+fabioviecelli@users.noreply.github.com>2021-09-08 09:23:56 +0200
committerfabioviecelli <80270098+fabioviecelli@users.noreply.github.com>2021-09-08 09:23:56 +0200
commit910a4f556d89d75ee07384a2a3fb963334552264 (patch)
tree53f346e2de59d4bf1365535b709f0a2e8ebffba1 /buch/chapters/40-eigenwerte/grundlagen.tex
parentErgänzungen (diff)
parenteditorial edits clifford (diff)
downloadSeminarMatrizen-910a4f556d89d75ee07384a2a3fb963334552264.tar.gz
SeminarMatrizen-910a4f556d89d75ee07384a2a3fb963334552264.zip
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'buch/chapters/40-eigenwerte/grundlagen.tex')
-rw-r--r--buch/chapters/40-eigenwerte/grundlagen.tex662
1 files changed, 73 insertions, 589 deletions
diff --git a/buch/chapters/40-eigenwerte/grundlagen.tex b/buch/chapters/40-eigenwerte/grundlagen.tex
index 69618a9..91294f1 100644
--- a/buch/chapters/40-eigenwerte/grundlagen.tex
+++ b/buch/chapters/40-eigenwerte/grundlagen.tex
@@ -3,18 +3,23 @@
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
-\section{Grundlagen
+\section{Matrixpotenzen
\label{buch:section:grundlagen}}
-\rhead{Grundlagen}
-Die Potenzen $A^k$ sind besonders einfach zu berechnen, wenn die Matrix
-Diagonalform hat, wenn also $A=\operatorname{diag}(\lambda_1,\dots,\lambda_n)$
-ist.
-In diesem Fall ist $Ae_k=\lambda_k e_k$ für jeden Standardbasisvektor $e_k$.
-Statt sich auf Diagonalmatrizen zu beschränken könnten man also auch
-Vektoren $v$ suchen, für die gilt $Av=\lambda v$, die also von $A$ nur
-gestreckt werden.
-Gelingt es, eine Basis aus solchen sogenanten {\em Eigenvektoren} zu finden,
-dann kann man die Matrix $A$ durch Basiswechsel in diese Form bringen.
+\rhead{Matrixpotenzen}
+Die Zerlegung einer Matrix in einfachere Blöcke ist gleichbedeutend
+damit, Basen für Unterräume zu finden, die sich unter der Abbildung
+nicht ändern.
+Im Allgemeinen wird der ganze Raum $\Bbbk^n$ kein solcher invarianter
+Unterraum sein.
+In diesem Abschnitt soll gezeigt werden, wie man durch Iteration
+der Abbildung, also durch Betrachtung von Matrixpotenzen, immer zu
+\index{Matrixpotenz}%
+einer Zerlegung in invariante Unterräume kommen kann.
+\index{invarianter Unterraum}%
+\index{Unterraum, invarianter}%
+Daraus ergibt sich dann in Abschnitt~\ref{buch:subsection:nilpotente-matrizen}
+bereits eine Normalform für nilpotente Matrizen.
+\index{nilpotent}%
\begin{figure}
\centering
@@ -53,8 +58,7 @@ ist.
\label{buch:subsection:kern-und-bild}}
In diesem Abschnitt ist $A\in M_n(\Bbbk)$, $A$ beschreibt eine lineare
Abbildung $f\colon\Bbbk^n\to \Bbbk^n$.
-In diesem Abschnitt sollen Kern und Bild der Potenzen $A^k$ untersucht
-werden.
+Im Folgenden sollen Kern und Bild der Potenzen $A^k$ untersucht werden.
\begin{definition}
Wir bezeichnen Kern und Bild der iterierten Abbildung $A^k$ mit
\[
@@ -66,6 +70,8 @@ Wir bezeichnen Kern und Bild der iterierten Abbildung $A^k$ mit
=
\operatorname{im} A^k.
\]
+\index{KkA@$\mathcal{K}^k(A)$}%
+\index{JkA@$\mathcal{J}^k(A)$}%
\end{definition}
Durch Iteration wird das Bild immer kleiner.
@@ -106,7 +112,7 @@ folgt
\{0\}.
\label{buch:eigenwerte:eqn:Jkchain}
\end{equation}
-Für die Kerne gilt etwas Ähnliches.
+Für die Kerne gilt etwas Ähnliches, sie werden immer grösser.
Ein Vektor $x\in \mathcal{K}^k(A)$ erfüllt $A^kx=0$.
Dann erfüllt er aber erst recht auch
\[
@@ -181,7 +187,7 @@ bestimmten $\mathcal{J}^{i+2}(A)$.
$\mathcal{J}^{i+2}(A)$ besteht aus all jenen Vektoren, die als
$Ax$ mit $x\in\mathcal{J}^{i+1}(A)=\mathcal{J}^i(A)$ erhalten
werden können.
-Es gibt also insbesondere ein $y\in\Bbbk^i$ mit $x=A^iy$.
+Es gibt also insbesondere ein $y\in\Bbbk^n$ mit $x=A^iy$.
Dann ist $Ax=A^{i+1}y\in\mathcal{J}^{i+1}(A)$.
Insbesondere besteht $\mathcal{J}^{i+2}(A)$ genau aus den Vektoren
von $\mathcal{J}^{i+1}(A)$.
@@ -238,11 +244,13 @@ $\mathcal{K}^i(A)$ für $i\ge k$ und die identischen Unterräume
$\mathcal{J}^i(A)$ für $i\ge k$ werden mit
\[
\begin{aligned}
-\mathcal{K} &= \mathcal{K}^i(A)&&\forall i\ge k \qquad\text{und}
+\mathcal{K}(A) &= \mathcal{K}^i(A)&&\forall i\ge k \qquad\text{und}
\\
-\mathcal{J} &= \mathcal{J}^i(A)&&\forall i\ge k
+\mathcal{J}(A) &= \mathcal{J}^i(A)&&\forall i\ge k
\end{aligned}
\]
+\index{KA@$\mathcal{K}(A)$}
+\index{JA@$\mathcal{J}(A)$}
bezeichnet.
\end{definition}
@@ -259,6 +267,7 @@ Abbildungen zwischen ``kleineren'' Räumen zu zerlegen, wo sie leichter
analysiert werden können.
\begin{definition}
+\label{buch:eigenwerte:def:invarianter-unterraum}
Sei $f\colon V\to V$ eine lineare Abbildung eines Vektorraums in sich
selbst.
Ein Unterraum $U\subset V$ heisst {\em invarianter Unterraum},
@@ -267,6 +276,8 @@ wenn
f(U) = \{ f(x)\;|\; x\in U\} \subset U
\]
gilt.
+\index{invarianter Unterraum}%
+\index{Unterraum, invarianter}%
\end{definition}
Der Kern $\ker A$ einer linearen Abbildung ist trivialerweise ein
@@ -337,11 +348,11 @@ A'
\left(
\begin{array}{ccc|ccc}
&&&&&\\
-&A_{\mathcal{K}'}&&&&\\
+&A'_{\mathcal{K}}&&&&\\
&&&&&\\
\hline
&&&&&\\
-&&&&A_{\mathcal{J}'}&\\
+&&&&A'_{\mathcal{J}}&\\
&&&&&\\
\end{array}
\right)
@@ -361,21 +372,24 @@ und $\mathcal{K}(A)$ reduziert die lineare Abbildung auf zwei Abbildungen
mit speziellen Eigenschaften.
Es wurde bereits in Satz~\label{buch:eigenwerte:satz:fJinj} gezeigt,
dass die Einschränkung auf $\mathcal{J}(A)$ injektiv ist.
-Die Einschränkung auf $\mathcal{K}(A)$ bildet nach Definition alle
+Die Einschränkung auf $\mathcal{K}(A)$ bildet nach
+Definition~\ref{buch:eigenwerte:def:KundJ} alle
Vektoren nach $k$-facher Iteration auf $0$ ab, $A^k\mathcal{K}(A)=0$.
Solche Abbildungen haben eine speziellen Namen.
\begin{definition}
\label{buch:eigenwerte:def:nilpotent}
-Eine Matrix $A$ heisst nilpotent, wenn es eine Zahl $k$ gibt, so dass
+Eine Matrix $A$ heisst {\em nilpotent}, wenn es eine Zahl $k$ gibt, so dass
$A^k=0$.
+\index{nilpotent}%
\end{definition}
\begin{beispiel}
Obere (oder untere) Dreiecksmatrizen mit Nullen auf der Diagonalen
sind nilpotent.
+\index{Dreicksmatrix}%
Wir rechnen dies wie folgt nach.
-Die Matrix $A$ mit Einträgen $a_{ij}$
+Die Matrix $A$ mit Einträgen $a_{i\!j}$
\[
A=\begin{pmatrix}
0 &a_{12}&a_{13}&\dots &a_{1,n-1}&a_{1n} \\
@@ -386,35 +400,35 @@ A=\begin{pmatrix}
0 & 0 & 0 &\dots & 0 & 0
\end{pmatrix}
\]
-erfüllt $a_{ij}=0$ für $i\ge j$.
+erfüllt $a_{i\!j}=0$ für $i\ge j$.
Wir zeigen jetzt, dass sich bei der Multiplikation die nicht
verschwinden Elemente bei der Multiplikation noch rechts oben
verschieben.
Dazu multiplizieren wir zwei Matrizen $B$ und $C$ mit
-$b_{ij}=0$ für $i+k>j$ und $c_{ij}=0$ für $i+l>j$.
+$b_{i\!j}=0$ für $i+k>j$ und $c_{i\!j}=0$ für $i+l>j$.
In der folgenden graphischen Darstellung der Matrizen sind die
Bereiche, wo die Matrixelemente verschwinden, weiss.
\begin{center}
\includegraphics{chapters/40-eigenwerte/images/nilpotent.pdf}
\end{center}
-Bei der Berechnung des Elementes $d_{ij}$ wird die Zeile $i$ von $B$
+Bei der Berechnung des Elementes $d_{i\!j}$ wird die Zeile $i$ von $B$
mit der Spalte $j$ von $C$ multipliziert.
Die blau eingefärbten Elemente in dieser Zeile und Spalte sind $0$.
Aus der Darstellung ist abzulesen, dass das Produkt verschwindet,
-die roten, von $0$ verschiedenen Elemente von den blauen Elementen
-annihiliert werden.
+wenn die roten, von $0$ verschiedenen Elemente von den blauen
+Elementen annihiliert werden.
Dies passiert immer, wenn $i+k>j-l$ ist, oder $i+(k+l)> j$.
Wir wenden diese Beobachtung jetzt auf die Potenzen $A^s$ an.
-Für die Matrixelemente von $A^s$ schreiben wir $a^s_{ij}$.
-Wir behaupten, dass die Matrixelemente $A^s$ die Bedingung
-$a_{ij}^s=0$ für $i+s>j$ erfüllen.
+Für die Matrixelemente von $A^s$ schreiben wir $a^s_{i\!j}$.
+Wir behaupten, dass die Matrixelemente von $A^s$ die Bedingung
+$a_{i\!j}^s=0$ für $i+s>j$ erfüllen.
Dies ist für $s=1$ nach Voraussetzung richtig, dies ist die
-Induktionsvoraussetzung.
-Nehmen wir jetzt an, dass $a_{ij}^s=0$ für $i+s>j$, dann folgt
-aus obiger Rechnung, dass $a_{ij}^{s+1}=0$ für $i+s+1>j$, so
+Induktionsverankerung.
+Nehmen wir jetzt an, dass $a_{i\!j}^s=0$ für $i+s>j$, dann folgt
+aus obiger Rechnung, dass $a_{i\!j}^{s+1}=0$ für $i+s+1>j$, so
dass die Bedingung auch für $A^s$ gilt (Induktionsschritt).
-Mit vollständiger Induktion folgt, dass $a_{ij}^s=0$ für $i+s>j$.
+Mit vollständiger Induktion folgt, dass $a_{i\!j}^s=0$ für $i+s>j$.
Insbesondere ist $A^n=0$, die Matrix $A$ ist nilpotent.
\end{beispiel}
@@ -468,6 +482,9 @@ Wir bezeichnen mit $N_n$ eine Matrix der Form
Mit etwas mehr Sorgfalt kann man auch die Bedingung, dass $A^{n-1}\ne 0$
sein muss, im Satz~\ref{buch:eigenwerte:satz:nnilpotent} loswerden.
+Sie bedeutet nämlich dass sich die Matrix in mehrere kleinere Blöcke
+der Form~\eqref{buch:eigenwerte:eqn:nnilpotent} zerlegen lässt, wie
+der folgende Satz zeigt.
\begin{satz}
\label{buch:eigenwerte:satz:allgnilpotent}
@@ -492,11 +509,18 @@ A'
& & &\multicolumn{1}{|c|}{\raisebox{0pt}[17pt][12pt]{\phantom{x}$N_{k_l}$}\phantom{x}}\\
\cline{4-4}
\end{array}
-\right)
+\right).
\label{buch:eigenwerte:eqn:allgnilpotent}
\end{equation}
\end{satz}
+Im Abschnitt~\ref{buch:subsection:normalform-einer-nilpotenten-matrix}
+wird ein Algorithmus zur Bestimmung einer geeigneten Basis für die
+Normalform~\eqref{buch:eigenwerte:eqn:allgnilpotent} in etwas mehr
+Detail dargestellt.
+
+Aus Satz lässt sich für eine beliebige lineare Abbildung auch bereits eine
+partielle Normalform finden.
Die Einschränkung von $f$ auf den invarianten Unterraum $\mathcal{K}(A)$
ist nilpotent.
Die Zerlegung $V=\mathcal{J}(A)\oplus \mathcal{K}(A)$ führt also zu einer
@@ -508,7 +532,6 @@ $\mathcal{K}(A)$ eine Basis so wählen, dass die Matrix die Blockform
\eqref{buch:eigenwerte:eqn:allgnilpotent} erhält.
-
\begin{figure}
\centering
\includegraphics[width=\textwidth]{chapters/40-eigenwerte/images/jknilp.pdf}
@@ -602,7 +625,7 @@ ist ein Block der Form $N_k$.
Für $0\le k\le l-1$ sind die Vektoren $A^kb_i$,
solange sie von $0$ verschieden sind,
alle nach Konstruktion linear unabhängig, sie bilden eine Basis
-von $\mathcal{K}^l(A)=\mathbb{R}^n$.
+von $\mathcal{K}^l(A)=\Bbbk^n$.
\begin{beispiel}
Die Basis für die Zerlegung der Matrix
@@ -618,7 +641,7 @@ A
in Blockform soll nach der oben beschriebenen Methode ermittelt werden.
Zunächst kann man nachrechnen, dass $A^2=0$ ist.
Der Kern von $A$ ist der Lösungsraum der Gleichung $Ax=0$, da alle Zeilen
-Vielfache der ersten Zeile sind, recht es zu verlangen, dass die
+Vielfache der ersten Zeile sind, reicht es zu verlangen, dass die
Komponenten $x_i$ der Lösung die Gleichung
\[
3x_1+x_2-2x_3=0
@@ -631,9 +654,10 @@ Wir verwenden daher die beiden Vektoren
\[
b_3=e_1=\begin{pmatrix} 1\\0\\0 \end{pmatrix}
,\qquad
-b_2=Ab_3=\begin{pmatrix*}[r] 3\\-21\\-6 \end{pmatrix*},
+b_2=Ab_3=\begin{pmatrix*}[r] 3\\-21\\-6 \end{pmatrix*}.
\]
-in dieser Basis hat $A$ die Matrix $N_2$.
+In einem Unterraum mit
+dieser Basis hat $A$ die Matrix $N_2$.
Jetzt muss noch ein Basisvektor $b_1$ gefunden werden,
der in $\ker A=\mathbb{L}$ liegt und so, dass $b_1$ und $b_2$
linear unabhängig sind.
@@ -641,7 +665,7 @@ Die zweite Bedingung kann leicht dadurch sichergestellt werden,
dass man die erste Komponente von $b_1$ als $0$ wählt.
Eine mögliche Lösung ist dann
\[
-b_1=\begin{pmatrix}0\\2\\1\end{pmatrix}
+b_1=\begin{pmatrix}0\\2\\1\end{pmatrix}.
\]
Die Matrix
\[
@@ -668,557 +692,17 @@ B^{-1}\begin{pmatrix*}[r]
0&0& -6
\end{pmatrix*}
=
-\begin{pmatrix}
-0&0&0\\
-0&0&1\\
-0&0&0
-\end{pmatrix}
-=
-N_3.
-\qedhere
-\]
-\end{beispiel}
-
-%
-% Begriff des Eigenwertes und Eigenvektors
-%
-\subsection{Eigenwerte und Eigenvektoren
-\label{buch:subsection:eigenwerte-und-eigenvektoren}}
-In diesem Abschnitt betrachten wir Vektorräume $V=\Bbbk^n$ über einem
-beliebigen Körper $\Bbbk$ und quadratische Matrizen
-$A\in M_n(\Bbbk)$.
-In den meisten Anwendungen wird $\Bbbk=\mathbb{R}$ sein.
-Da aber in $\mathbb{R}$ nicht alle algebraischen Gleichungen lösbar sind,
-ist es manchmal notwendig, den Vektorraum zu erweitern um zum Beispiel
-Eigenschaften der Matrix $A$ abzuleiten.
-
-\begin{definition}
-Ein Vektor $v\in V$ heisst {\em Eigenvektor} von $A$ zum Eigenwert
-$\lambda\in\Bbbk$, wenn $v\ne 0$ und $Av=\lambda v$ gilt.
-\end{definition}
-
-Die Bedingung $v\ne 0$ dient dazu, pathologische Situationen auszuschliessen.
-Für den Nullvektor gilt $A0=\lambda 0$ für jeden beliebigen Wert von
-$\lambda\in\Bbbk$.
-Würde man $v=0$ zulassen, wäre jede Zahl in $\Bbbk$ ein Eigenwert,
-ein Eigenwert von $A$ wäre nichts besonderes.
-Ausserdem wäre $0$ ein Eigenvektor zu jedem beliebigen Eigenwert.
-
-Eigenvektoren sind nicht eindeutig bestimmt, jedes von $0$ verschiedene
-Vielfache von $v$ ist ebenfalls ein Eigenvektor.
-Zu einem Eigenwert kann man also einen Eigenvektor jeweils mit
-geeigneten Eigenschaften finden, zum Beispiel kann man für $\Bbbk = \mathbb{R}$
-Eigenvektoren auf Länge $1$ normieren.
-Im Folgenden werden wir oft die abkürzend linear unabhängige Eigenvektoren
-einfach als ``verschiedene'' Eigenvektoren bezeichnen.
-
-Wenn $v$ ein Eigenvektor von $A$ zum Eigenwert $\lambda$ ist, dann kann
-man ihn mit zusätzlichen Vektoren $v_2,\dots,v_n$ zu einer Basis
-$\mathcal{B}=\{v,v_2,\dots,v_n\}$
-von $V$ ergänzen.
-Die Vektoren $v_k$ mit $k=2,\dots,n$ werden von $A$ natürlich auch
-in den Vektorraum $V$ abgebildet, können also als Linearkombinationen
-\[
-Av = a_{1k}v + a_{2k}v_2 + a_{3k}v_3 + \dots a_{nk}v_n
-\]
-dargestellt werden.
-In der Basis $\mathcal{B}$ bekommt die Matrix $A$ daher die Form
-\[
-A'
-=
-\begin{pmatrix}
-\lambda&a_{12}&a_{13}&\dots &a_{1n}\\
- 0 &a_{22}&a_{23}&\dots &a_{2n}\\
- 0 &a_{32}&a_{33}&\dots &a_{3n}\\
-\vdots &\vdots&\vdots&\ddots&\vdots\\
- 0 &a_{n2}&a_{n3}&\dots &a_{nn}
-\end{pmatrix}.
-\]
-Bereits ein einzelner Eigenwert und ein zugehöriger Eigenvektor
-ermöglichen uns also, die Matrix in eine etwas einfachere Form
-zu bringen.
-
-\begin{definition}
-Für $\lambda\in\Bbbk$ heisst
-\[
-E_\lambda
-=
-\{ v\;|\; Av=\lambda v\}
-\]
-der {\em Eigenraum} zum Eigenwert $\lambda$.
-\index{Eigenraum}%
-\end{definition}
-
-Der Eigenraum $E_\lambda$ ist ein Unterraum von $V$, denn wenn
-$u,v\in E_\lambda$, dann ist
-\[
-A(su+tv)
-=
-sAu+tAv
-=
-s\lambda u + t\lambda v
-=
-\lambda(su+tv),
-\]
-also ist auch $su+tv\in E_\lambda$.
-Der Fall $E_\lambda = \{0\}=0$ bedeutet natürlich, dass $\lambda$ gar kein
-Eigenwert ist.
-
-\begin{satz}
-Wenn $\dim E_\lambda=n$, dann ist $A=\lambda E$.
-\end{satz}
-
-\begin{proof}[Beweis]
-Da $V$ ein $n$-dimensionaler Vektoraum ist, ist $E_\lambda=V$.
-Jeder Vektor $v\in V$ erfüllt also die Bedingung $Av=\lambda v$,
-oder $A=\lambda E$.
-\end{proof}
-
-Wenn man die Eigenräume von $A$ kennt, dann kann man auch die Eigenräume
-von $A+\mu E$ berechnen.
-Ein Vektor $v\in E_\lambda$ erfüllt
-\[
-Av=\lambda v
-\qquad\Rightarrow\qquad
-(A+\mu)v = \lambda v + \mu v
-=
-(\lambda+\mu)v,
-\]
-somit ist $v$ ein Eigenvektor von $A+\mu E$ zum Eigenwert $\lambda+\mu$.
-Insbesondere können wir statt die Eigenvektoren von $A$ zum Eigenwert $\lambda$
-zu studieren, auch die Eigenvektoren zum Eigenwert $0$ von $A-\lambda E$
-untersuchen.
-
-%
-% Invariante Räume
-%
-\subsection{Verallgemeinerte Eigenräume
-\label{buch:subsection:verallgemeinerte-eigenraeume}}
-Wenn $\lambda$ ein Eigenwert der Matrix $A$ ist, dann ist
-ist $A-\lambda E$ injektiv und $\ker(A-\lambda E)\ne 0$.
-Man kann daher die invarianten Unterräume $\mathcal{K}(A-\lambda E)$
-und $\mathcal{J}(A-\lambda E)$.
-
-\begin{beispiel}
-Wir untersuchen die Matrix
-\[
-A
-=
-\begin{pmatrix}
-1&1&-1&0\\
-0&3&-1&1\\
-0&2& 0&1\\
-0&0& 0&2
-\end{pmatrix}
-\]
-Man kann zeigen, dass $\lambda=1$ ein Eigenwert ist.
-Wir suchen die Zerlegung des Vektorraums $\mathbb{R}^4$ in invariante
-Unterräume $\mathcal{K}(A-E)$ und $\mathcal{J}(A-E)$.
-Die Matrix $B=A-E$ ist
-\[
-B
-=
-\begin{pmatrix}
-0&1&-1&0\\
-0&2&-1&1\\
-0&2&-1&1\\
-0&0& 0&2
-\end{pmatrix}
-\]
-und wir berechnen davon die Potenz
-\[
-D=B^4=(A-E)^4
-=
-\begin{pmatrix}
-0&0& 0&0\\
-0&2&-1&4\\
-0&2&-1&4\\
-0&0& 0&1
-\end{pmatrix}.
-\]
-Daraus kann man ablesen, dass das Bild $\operatorname{im}D$
-von $D$ die Basis
-\[
-b_1
-=
-\begin{pmatrix}
-0\\0\\0\\1
-\end{pmatrix}
-, \qquad
-b_2
-=
-\begin{pmatrix}
-0\\1\\1\\0
-\end{pmatrix}
-\]
-hat.
-Für den Kern von $D$ können wir zum Beispiel die Basisvektoren
-\[
-b_3
-=
-\begin{pmatrix}
-0\\1\\2\\0
-\end{pmatrix}
-,\qquad
-b_4
-=
-\begin{pmatrix}
-1\\0\\0\\0
-\end{pmatrix}
-\]
-verwenden.
-
-Als erstes überprüfen wir, ob diese Basisvektoren tatsächlich invariante
-Unterräume sind.
-Für $\mathcal{J}(A-E) = \langle b_1,b_2\rangle$
-berechnen wir
-\begin{align*}
-(A-E)b_1
-&=
-\begin{pmatrix} 0\\4\\4\\1 \end{pmatrix}
-=
-4b_2+b_1,
-\\
-(A-E)b_2
-&=
-\begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}
-=
-b_2.
-\end{align*}
-Dies beweist, dass $\mathcal{J}(A-E)$ invariant ist.
-In dieser Basis hat die von $A-E$ beschriebene lineare Abbildung
-auf $\mathcal{J}(A-E)$ die Matrix
-\[
-A_{\mathcal{J}(A-E)}
-=
-\begin{pmatrix}
-1&4\\
-0&1
-\end{pmatrix}.
-\]
-
-Für den Kern $\mathcal{K}(A-E)$ findet man analog
-\[
-\left.
-\begin{aligned}
-Ab_3
-&=
--b_4
-\\
-Ab_4
-&=0
-\end{aligned}
-\quad\right\}
-\qquad\Rightarrow\qquad
-A_{\mathcal{K}(A-E)}
-=
-\begin{pmatrix}
-0&-1\\
-0& 0
-\end{pmatrix}.
-\]
-In der Basis $\mathcal{B}=\{b_1,b_2,b_3,b_4\}$ hat $A$ die Matrix
-in Blockform
-\[
-A'
-=
\left(
-\begin{array}{cc|cr}
-2&4& & \\
-0&2& & \\
+\begin{array}{c|cc}
+0& & \\
\hline
- & &1&-1\\
- & &0& 1
-\end{array}\right),
-\]
-die Blöcke gehören zu den invarianten Unterräumen $\mathcal{K}(A-E)$
-und $\mathcal{K}(A-E)$.
-Die aus $A-E$ gewonnen invarianten Unterräume sind offenbar auch invariante
-Unterräume für $A$.
-\end{beispiel}
-
-\begin{definition}
-Ist $A$ eine Matrix mit Eigenwert $\lambda$, dann heisst der invariante
-Unterraum
-\[
-\mathcal{E}_{\lambda}(A)
-=
-\mathcal{K}(A-\lambda E)
-\]
-der verallgemeinerte Eigenraum von $A$.
-\end{definition}
-
-Es ist klar, dass
-$E_\lambda(A)=\ker (A-\lambda E)\subset\mathcal{E}_{\lambda}(A)$.
-
-\subsection{Zerlegung in invariante Unterräume
-\label{buch:subsection:zerlegung-in-invariante-unterraeume}}
-Wenn $\lambda$ kein Eigenwert von $A$ ist, dann ist $A-\lambda E$
-injektiv und damit $\ker(A-\lambda E)=0$.
-Es folgt, dass $\mathcal{K}^i(A-\lambda E)=0$ und daher auch
-$\mathcal{J}^i(A-\lambda E)=V$.
-Die Zerlegung in invariante Unterräume $\mathcal{J}(A-\lambda E)$ und
-$\mathcal{K}(A-\lambda E)$ liefert in diesem Falle also nichts Neues.
-
-Für einen Eigenwert $\lambda_1$ von $A$ dagegen, erhalten wir die Zerlegung
-\[
-V
-=
-\mathcal{E}_{\lambda_1}(A)
-\oplus
-\underbrace{\mathcal{J}(A-\lambda_1 E)}_{\displaystyle =V_2},
-\]
-wobei $\mathcal{E}_{\lambda_1}(A)\ne 0$ ist.
-Die Matrix $A-\lambda_1 E$ ist eingeschränkt auf $\mathcal{E}_{\lambda_1}(A)$
-nilpotent.
-Die Zerlegung in invariante Unterräume ist zwar mit Hilfe von $A-\lambda_1E$
-gewonnen worden, ist aber natürlich auch eine Zerlegung in invariante
-Unterräume für $A$.
-Wir können daher das Problem auf $V_2$ einschränken und nach einem weiteren
-Eigenwert $\lambda_2$ von $A$ in $V_2$ suchen, was wieder eine Zerlegung
-in invariante Unterräume liefert.
-Indem wir so weiterarbeiten, bis wir den ganzen Raum ausgeschöpft haben,
-können wir eine Zerlegung des ganzen Raumes $V$ finden, so dass $A$ auf
-jedem einzelnen Summanden eine sehr einfach Form hat:
-
-\begin{satz}
-\label{buch:eigenwerte:satz:zerlegung-in-eigenraeume}
-Sei $V$ ein $\Bbbk$-Vektorraum und $f$ eine lineare Abbildung mit Matrix
-$A$ derart, dass alle Eigenwerte $\lambda_1,\dots,\lambda_l$ von $A$
-in $\Bbbk$ sind.
-Dann gibt es eine Zerlegung von $V$ in verallgemeinerte Eigenräume
-\[
-V
-=
-\mathcal{E}_{\lambda_1}(A)
-\oplus
-\mathcal{E}_{\lambda_2}(A)
-\oplus
-\dots
-\oplus
-\mathcal{E}_{\lambda_l}(A).
-\]
-Die Einschränkung von $A-\lambda_{i}E$ auf den Eigenraum
-$\mathcal{E}_{\lambda_i}(A)$ ist nilpotent.
-\end{satz}
-
-\subsection{Das charakteristische Polynom
-\label{buch:subsection:das-charakteristische-polynom}}
-Ein Eigenvektor von $A$ erfüllt $Av=\lambda v$ oder gleichbedeutend
-$(A-\lambda E)v=0$, er ist also eine nichttriviale Lösung des homogenen
-Gleichungssystems mit Koeffizientenmatrix $A-\lambda E$.
-Ein Eigenwert ist also ein Skalar derart, dass $A-\lambda E$
-singulär ist.
-Ob eine Matrix singulär ist, kann mit der Determinante festgestellt
-werden.
-Die Eigenwerte einer Matrix $A$ sind daher die Nullstellen
-von $\det(A-\lambda E)$.
-
-\begin{definition}
-Das {\em charakteristische Polynom}
-\[
-\chi_A(x)
-=
-\det (A-x E)
-=
-\left|
-\begin{matrix}
-a_{11}-x & a_{12} & \dots & a_{1n} \\
-a_{21} & a_{22}-x & \dots & a_{2n} \\
-\vdots &\vdots &\ddots & \vdots \\
-a_{n1} & a_{n2} &\dots & a_{nn}-x
-\end{matrix}
-\right|.
-\]
-der Matrix $A$ ist ein Polynom vom Grad $n$ mit Koeffizienten in $\Bbbk$.
-\end{definition}
-
-Findet man eine Nullstelle $\lambda\in\Bbbk$ von $\chi_A(x)$,
-dann ist die Matrix $A-\lambda E\in M_n(\Bbbk)$ und mit dem Gauss-Algorithmus
-kann man auch mindestens einen Vektor $v\in \Bbbk^n$ finden,
-der $Av=\lambda v$ erfüllt.
-Eine Matrix der Form wie in Satz~\ref{buch:eigenwerte:satz:jordanblock}
-hat
-\[
-\chi_A(x)
-=
-\left|
-\begin{matrix}
-\lambda-x & 1 & & & & \\
- & \lambda-x & 1 & & & \\
- & & \lambda-x & & & \\
- & & &\ddots& & \\
- & & & &\lambda-x& 1 \\
- & & & & &\lambda-x
-\end{matrix}
-\right|
-=
-(\lambda-x)^n
-=
-(-1)^n (x-\lambda)^n
-\]
-als charakteristisches Polynom, welches $\lambda$ als einzige
-Nullstelle hat.
-Der Eigenraum der Matrix ist aber nur eindimensional, man kann also
-im Allgemeinen für jede Nullstelle des charakteristischen Polynoms
-nicht mehr als einen Eigenvektor (d.~h.~einen eindimensionalen Eigenraum)
-erwarten.
-
-Wenn das charakteristische Polynom von $A$ keine Nullstellen in $\Bbbk$ hat,
-dann kann es auch keine Eigenvektoren in $\Bbbk^n$ geben.
-Gäbe es nämlich einen solchen Vektor, dann müsste eine der Komponenten
-des Vektors von $0$ verschieden sein, wir nehmen an, dass es die Komponente
-in Zeile $k$ ist.
-Die Komponente $v_k$ kann man auf zwei Arten berechnen, einmal als
-die $k$-Komponenten von $Av$ und einmal als $k$-Komponente von $\lambda v$:
-\[
-a_{k1}v_1+\dots+a_{kn}v_n = \lambda v_k.
-\]
-Da $v_k\ne 0$ kann man nach $\lambda$ auflösen und erhält
-\[
-\lambda = \frac{a_{k1}v_1+\dots + a_{kn}v_n}{v_k}.
-\]
-Alle Terme auf der rechten Seite sind in $\Bbbk$ und werden nur mit
-Körperoperationen in $\Bbbk$ verknüpft, also muss auch $\lambda\in\Bbbk$
-sein, im Widerspruch zur Annahme.
-
-Durch Hinzufügen von geeigneten Elementen können wir immer zu einem
-Körper $\Bbbk'$ übergehen, in dem das charakteristische Polynom
-in Linearfaktoren zerfällt.
-In diesem Körper kann man jetzt das homogene lineare Gleichungssystem
-mit Koeffizientenmatrix $A-\lambda E$ lösen und damit mindestens
-einen Eigenvektor $v$ für jeden Eigenwert finden.
-Die Komponenten von $v$ liegen in $\Bbbk'$, und mindestens eine davon kann
-nicht in $\Bbbk$ liegen.
-Das bedeutet aber nicht, dass man diese Vektoren nicht für theoretische
-Überlegungen über von $\Bbbk'$ unabhängige Eigenschaften der Matrix $A$ machen.
-Das folgende Beispiel soll diese Idee illustrieren.
-
-\begin{beispiel}
-Wir arbeiten in diesem Beispiel über dem Körper $\Bbbk=\mathbb{Q}$.
-Die Matrix
-\[
-A=\begin{pmatrix}
--4&7\\
--2&4
-\end{pmatrix}
-\in
-M_2(\mathbb{Q})
-\]
-hat das charakteristische Polynom
-\[
-\chi_A(x)
-=
-\left|
-\begin{matrix}
--4-x&7\\-2&4-x
-\end{matrix}
-\right|
-=
-(-4-x)(4-x)-7\cdot(-2)
-=
--16+x^2+14
-=
-x^2-2.
-\]
-Die Nullstellen sind $\pm\sqrt{2}$ und damit nicht in $\mathbb{Q}$.
-Wir gehen daher über zum Körper $\mathbb{Q}(\!\sqrt{2})$, in dem
-sich zwei Nullstellen $\lambda=\pm\sqrt{2}$ finden lassen.
-Zu jedem Eigenwert lässt sich auch ein Eigenvektor
-$v_{\pm\sqrt{2}}\in \mathbb{Q}(\!\sqrt{2})^2$, und unter Verwendung dieser
-Basis bekommt die Matrix $A'=TAT^{-1}$ Diagonalform.
-Die Transformationsmatrix $T$ enthält Matrixelemente aus
-$\mathbb{Q}(\!\sqrt{2})$, die nicht in $\mathbb{Q}$ liegen.
-Die Matrix $A$ lässt sich also über dem Körper $\mathbb{Q}(\!\sqrt{2})$
-diagonalisieren, nicht aber über dem Körper $\mathbb{Q}$.
-
-Da $A'$ Diagonalform hat mit $\pm\sqrt{2}$ auf der Diagonalen, folgt
-$A^{\prime 2} = 2E$, die Matrix $A'$ erfüllt also die Gleichung
-\begin{equation}
-A^{\prime 2}-E= \chi_{A}(A) = 0.
-\label{buch:grundlagen:eqn:cayley-hamilton-beispiel}
-\end{equation}
-Dies is ein Spezialfall des Satzes von Cayley-Hamilton~\ref{XXX}
-welcher besagt, dass jede Matrix $A$ eine Nullstelle ihres
-charakteristischen Polynoms ist: $\chi_A(A)=0$.
-Die Gleichung~\ref{buch:grundlagen:eqn:cayley-hamilton-beispiel}
-wurde zwar in $\mathbb{Q}(\!\sqrt{2})$ hergeleitet, aber in ihr kommen
-keine Koeffizienten aus $\mathbb{Q}(\!\sqrt{2})$ vor, die man nicht auch
-in $\mathbb{Q}$ berechnen könnte.
-Sie gilt daher ganz allgemein.
-\end{beispiel}
-
-\begin{beispiel}
-Die Matrix
-\[
-A=\begin{pmatrix}
-32&-41\\
-24&-32
-\end{pmatrix}
-\in
-M_2(\mathbb{R})
-\]
-über dem Körper $\Bbbk = \mathbb{R}$
-hat das charakteristische Polynom
-\[
-\det(A-xE)
-=
-\left|
-\begin{matrix}
-32-x&-41 \\
-25 &-32-x
-\end{matrix}
-\right|
-=
-(32-x)(-32-x)-25\cdot(-41)
-=
-x^2-32^2 + 1025
+ &0&1\\
+ &0&0
+\end{array}
+\right)
=
-x^2+1.
+N_3.
+\qedhere
\]
-Die charakteristische Gleichung $\chi_A(x)=0$ hat in $\mathbb{R}$
-keine Lösungen, daher gehen wir zum Körper $\Bbbk'=\mathbb{C}$ über,
-in dem dank dem Fundamentalsatz der Algebra alle Nullstellen zu finden
-sind, sie sind $\pm i$.
-In $\mathbb C$ lassen sich dann auch Eigenvektoren finden, man muss dazu die
-folgenden linearen Gleichungssyteme lösen:
-\begin{align*}
-\begin{tabular}{|>{$}c<{$}>{$}c<{$}|}
-32-i&-41\\
-25 &-32-i
-\end{tabular}
-&
-\rightarrow
-\begin{tabular}{|>{$}c<{$}>{$}c<{$}|}
-1 & t\\
-0 & 0
-\end{tabular}
-&
-\begin{tabular}{|>{$}c<{$}>{$}c<{$}|}
-32+i&-41\\
-25 &-32+i
-\end{tabular}
-&
-\rightarrow
-\begin{tabular}{|>{$}c<{$}>{$}c<{$}|}
-1 & \overline{t}\\
-0 & 0
-\end{tabular},
-\intertext{wobei wir $t=-41/(32-i) =-41(32+i)/1025= -1.28 -0.04i = (64-1)/50$
-abgekürzt haben.
-Die zugehörigen Eigenvektoren sind}
-v_i&=\begin{pmatrix}t\\i\end{pmatrix}
-&
-v_{-i}&=\begin{pmatrix}\overline{t}\\i\end{pmatrix}
-\end{align*}
-Mit den Vektoren $v_i$ und $v_{-i}$ als Basis kann die Matrix $A$ als
-komplexe Matrix, also mit komplexem $T$ in die komplexe Diagonalmatrix
-$A'=\operatorname{diag}(i,-i)$ transformiert werden.
-Wieder kann man sofort ablesen, dass $A^{\prime2}+E=0$, und wieder kann
-man schliessen, dass für die relle Matrix $A$ ebenfalls $\chi_A(A)=0$
-gelten muss.
\end{beispiel}
-
-
-