diff options
author | Nao Pross <np@0hm.ch> | 2021-05-07 00:14:48 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2021-05-07 00:14:48 +0200 |
commit | 20f68f26c0f82496e63b422b65a849a607325ef1 (patch) | |
tree | 1403426884f2b1caeabfa36a0e2dd3ddf07c0689 /buch/chapters/40-eigenwerte | |
parent | Create slide to show all point groups (diff) | |
parent | neue folie (diff) | |
download | SeminarMatrizen-20f68f26c0f82496e63b422b65a849a607325ef1.tar.gz SeminarMatrizen-20f68f26c0f82496e63b422b65a849a607325ef1.zip |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/40-eigenwerte/chapter.tex | 1 | ||||
-rw-r--r-- | buch/chapters/40-eigenwerte/normalformen.tex | 254 | ||||
-rw-r--r-- | buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima | 121 | ||||
-rw-r--r-- | buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex | 97 |
4 files changed, 471 insertions, 2 deletions
diff --git a/buch/chapters/40-eigenwerte/chapter.tex b/buch/chapters/40-eigenwerte/chapter.tex index 242a5e5..24ea57d 100644 --- a/buch/chapters/40-eigenwerte/chapter.tex +++ b/buch/chapters/40-eigenwerte/chapter.tex @@ -46,5 +46,6 @@ Dies wird in Abschnitt~\ref{buch:section:spektraltheorie} beschrieben. \uebungsaufgabe{4003} \uebungsaufgabe{4004} \uebungsaufgabe{4005} +\uebungsaufgabe{4006} \end{uebungsaufgaben} diff --git a/buch/chapters/40-eigenwerte/normalformen.tex b/buch/chapters/40-eigenwerte/normalformen.tex index c21c403..9169f65 100644 --- a/buch/chapters/40-eigenwerte/normalformen.tex +++ b/buch/chapters/40-eigenwerte/normalformen.tex @@ -330,9 +330,259 @@ Es ist das Polynom geringsten Grades über $\Bbbk'$, welches $m(A)=0$ erfüllt. \subsection{Reelle Normalform \label{buch:subsection:reelle-normalform}} +Wenn eine reelle Matrix $A$ komplexe Eigenwerte hat, ist die Jordansche +Normalform zwar möglich, aber die zugehörigen Basisvektoren werden ebenfalls +komplexe Komponenten haben. +Für eine rein reelle Rechnung ist dies nachteilig, da der Speicheraufwand +dadurch verdoppelt und der Rechenaufwand für Multiplikationen vervierfacht +wird. -\subsection{Obere Hessenberg-Form -\label{buch:subsection:obere-hessenberg-form}} +Die nicht reellen Eigenwerte von $A$ treten in konjugiert komplexen Paaren +$\lambda_i$ und $\overline{\lambda}_i$ auf. +Wir betrachten im Folgenden nur ein einziges Paar $\lambda=a+ib$ und +$\overline{\lambda}=a-ib$ von konjugiert komplexen Eigenwerten mit +nur je einem einzigen $n\times n$-Jordan-Block $J$ und $\overline{J}$. +Ist $\mathcal{B}=\{b_1,\dots,b_n\}$ die Basis für den Jordan-Block $J$, +dann kann man die Vektoren +$\overline{\mathcal{B}}=\{\overline{b}_1,\dots,\overline{b}_n\}$ als Basis für +$\overline{J}$ verwenden. +Die vereinigte Basis +$\mathcal{C} = \mathcal{B}\cup\overline{\mathcal{B}} += \{b_1,\dots,b_n,\overline{b}_1,\dots,\overline{b}_n\}$ +erzeugen einen $2n$-dimensionalen Vektorraum, +der direkte Summe der beiden von $\mathcal{B}$ und $\overline{\mathcal{B}}$ +erzeugen Vektorräume $V=\langle\mathcal{B}\rangle$ und +$\overline{V}=\langle\overline{\mathcal{B}}\rangle$ ist. +Es ist also +\[ +U=\langle \mathcal{C}\rangle += +V\oplus \overline{V}. +\] +Wir bezeichnen die lineare Abbildung mit den Jordan-Blöcken +$J$ und $\overline{J}$ wieder mit $A$. + +Auf dem Vektorraum $U$ hat die lineare Abbildung in der Basis +$\mathcal{C}$ die Matrix +\[ +A= +\begin{pmatrix} +J&0\\ +0&\overline{J} +\end{pmatrix} += +\begin{pmatrix} +\lambda& 1 & & & &&&&&\\ + &\lambda& 1 & & &&&&&\\ + & &\lambda&\ddots& &&&&&\\ + & & &\ddots& 1 &&&&&\\ + & & & &\lambda&&&&&\\ +&&&& &\overline{\lambda}&1&& & \\ +&&&& &&\overline{\lambda}&1& & \\ +&&&& &&&\overline{\lambda} &\dots& \\ +&&&& &&& &\dots&1\\ +&&&& &&& &&\overline{\lambda}\\ +\end{pmatrix}. +\] + +Die Jordan-Normalform bedeutet, dass +\[ +\begin{aligned} +Ab_1&=\lambda b_1 & + A\overline{b}_1 &= \overline{\lambda} \overline{b}_1 \\ +Ab_2&=\lambda b_2 + b_1 & + A\overline{b}_2 &= \overline{\lambda} \overline{b}_2 +\overline{b_1}\\ +Ab_3&=\lambda b_3 + b_2 & + A\overline{b}_3 &= \overline{\lambda} \overline{b}_3 +\overline{b_2}\\ + &\;\vdots & + &\;\vdots \\ +Ab_n&=\lambda b_n + b_{n-1} & + A\overline{b}_n &= \overline{\lambda} \overline{b}_n +\overline{b_{n-1}} +\end{aligned} +\] +Für die Linearkombinationen +\begin{equation} +\begin{aligned} +c_i &= \frac{b_i+\overline{b}_i}{\sqrt{2}}, +& +d_i &= \frac{b_i-\overline{b}_i}{i\sqrt{2}} +\end{aligned} +\label{buch:eigenwerte:eqn:reellenormalformumrechnung} +\end{equation} +folgt dann für $k>1$ +\begin{align*} +Ac_k +&= +\frac{Ab_k+A\overline{b}_k}{2} +& +Ad_k +&= +\frac{Ab_k-A\overline{b}_k}{2i} +\\ +&= +\frac1{\sqrt{2}}(\lambda b_k + b_{k-1} ++ \overline{\lambda}\overline{b}_k + \overline{b}_{k-1}) +& +&= +\frac1{i\sqrt{2}}(\lambda b_k + b_{k-1} +- \overline{\lambda}\overline{b}_k - \overline{b}_{k-1}) +\\ +&= +\frac1{\sqrt{2}}(\alpha b_k + i\beta b_k + \alpha \overline{b}_k -i\beta \overline{b}_k) ++ +c_{k-1} +& +&= +\frac1{i\sqrt{2}}( +\alpha b_k + i\beta b_k - \alpha \overline{b}_k +i\beta \overline{b}_k) ++ +d_{k-1} +\\ +&= +\alpha +\frac{b_k+\overline{b}_k}{\sqrt{2}} ++ +i \beta \frac{b_k-\overline{b}_k}{\sqrt{2}} ++ +c_{k-1} +& +&= +\alpha +\frac{b_k-\overline{b}_k}{i\sqrt{2}} ++ +i \beta \frac{b_k+\overline{b}_k}{i\sqrt{2}} ++ +d_{k-1} +\\ +&= \alpha c_k -\beta d_k ++ +c_{k-1} +& +&= \alpha d_k + \beta c_k ++ +d_{k-1}. +\end{align*} +Für $k=1$ fallen die Terme $c_{k-1}$ und $d_{k-1}$ weg. +In der Basis $\mathcal{D}=\{c_1,d_1,\dots,c_n,d_n\}$ hat die Matrix +also die {\em reelle Normalform} +\begin{equation} +\def\temp#1{\multicolumn{1}{|c}{#1\mathstrut}} +\def\semp#1{\multicolumn{1}{c|}{#1\mathstrut}} +A_{\text{reell}} += +\left( +\begin{array}{cccccccccccc} +\cline{1-4} +\temp{\alpha}& \beta&\temp{ 1}& 0&\temp{} & & & & & &&\\ +\temp{-\beta}&\alpha&\temp{ 0}& 1&\temp{} & & & & & &&\\ +\cline{1-6} + & &\temp{\alpha}& \beta&\temp{ 1}& 0&\temp{} & & & &&\\ + & &\temp{-\beta}&\alpha&\temp{ 0}& 1&\temp{} & & & &&\\ +\cline{3-6} + & & & &\temp{\alpha}& \beta&\temp{} & & & &&\\ + & & & &\temp{-\beta}&\alpha&\temp{} & & & &&\\ +\cline{5-8} + & & & & & &\temp{\phantom{0}}&\phantom{0}&\temp{ }& &&\\ + & & & & & &\temp{\phantom{0}}&\phantom{0}&\temp{ }& &&\\ +\cline{7-12} + & & & & & & & &\temp{\alpha}& \beta&\temp{ 1}&\semp{ 0}\\ + & & & & & & & &\temp{-\beta}&\alpha&\temp{ 0}&\semp{ 1}\\ +\cline{9-12} + & & & & & & & & & &\temp{\alpha}&\semp{ \beta}\\ + & & & & & & & & & &\temp{-\beta}&\semp{\alpha}\\ +\cline{11-12} +\end{array}\right). +\label{buch:eigenwerte:eqn:reellenormalform} +\end{equation} + +Wir bestimmen noch die Transformationsmatrix, die $A$ in die reelle +Normalform bringt. +Dazu beachten wir, dass die Vektoren $c_k$ und $d_k$ in der Basis +$\mathcal{B}$ nur in den Komponenten $k$ und $n+k$ von $0$ verschiedene +Koordinaten haben, nämlich +\[ +c_k += +\frac1{\sqrt{2}} +\left( +\begin{array}{c} +\vdots\\ 1 \\ \vdots\\\hline \vdots\\ 1\\\vdots +\end{array}\right) +\qquad\text{und}\qquad +d_k += +\frac1{i\sqrt{2}} +\left(\begin{array}{c} +\vdots\\ 1 \\ \vdots\\\hline\vdots\\-1\\\vdots +\end{array}\right) += +\frac1{\sqrt{2}} +\left(\begin{array}{c} +\vdots\\-i \\ \vdots\\\hline \vdots\\ i\\\vdots +\end{array}\right) +\] +gemäss \eqref{buch:eigenwerte:eqn:reellenormalformumrechnung}. +Die Umrechnung der Koordinaten von der Basis $\mathcal{B}$ in die Basis +$\mathcal{D}$ +wird daher durch die Matrix +\[ +S += +\frac{1}{\sqrt{2}} +\left(\begin{array}{cccccccccc} +1&-i& & & & & & & & \\ + & &1&-i& & & & & & \\ + & & & &1&-i& & & & \\ + & & & & & &\dots&\dots& & \\ + & & & & & & & &1&-i\\ +\hline +1& i& & & & & & & & \\ + & &1& i& & & & & & \\ + & & & &1& i& & & & \\ + & & & & & &\dots&\dots& & \\ + & & & & & & & &1& i\\ +\end{array}\right) +\] +vermittelt. +Der Nenner $\sqrt{2}$ wurde so gewählt, dass die +Zeilenvektoren der Matrix $S$ als komplexe Vektoren orthonormiert sind, +die Matrix $S$ ist daher unitär und hat die Inverse +\[ +S^{-1} += +S^* += +\frac{1}{\sqrt{2}} +\left(\begin{array}{ccccc|ccccc} + 1& & & & & 1& & & & \\ + i& & & & &-i& & & & \\ + & 1& & & & & 1& & & \\ + & i& & & & &-i& & & \\ + & & 1& & & & & 1& & \\ + & & i& & & & &-i& & \\ + & & &\dots& & & & &\dots& \\ + & & &\dots& & & & &\dots& \\ + & & & & 1& & & & & 1\\ + & & & & i& & & & &-i\\ +\end{array}\right). +\] +Insbesondere folgt jetzt +\[ +A += +S^{-1}A_{\text{reell}}S += +S^*A_{\text{reell}}S +\qquad\text{und}\qquad +A_{\text{reell}} += +SAS^{-1} += +SAS^*. +\] + +%\subsection{Obere Hessenberg-Form +%\label{buch:subsection:obere-hessenberg-form}} diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima new file mode 100644 index 0000000..9c97a2b --- /dev/null +++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima @@ -0,0 +1,121 @@ +/* + * 4006.maxima + * + * (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ + +A: matrix([ a+b*%i, 1, 0, 0 ], + [ 0, a+b*%i, 0, 0 ], + [ 0, 0, a-b*%i, 1 ], + [ 0, 0, 0, a-b*%i ]); + +expand(charpoly(A, x)); + +S: (1/sqrt(2)) * matrix([ 1, -%i, 0, 0 ], + [ 0, 0, 1, -%i ], + [ 1, %i, 0, 0 ], + [ 0, 0, 1, %i ]); + +B: expand(invert(S).A.S); + + +C: subst(2, a, B); +C: subst(3, b, C); +A: subst(2, a, A); +A: subst(3, b, A); + +U: matrix([ 1, 0, 1, 0 ], + [ 0, 1, 1, 2 ], + [ 0, 0, 1, 0 ], + [ 0, 0, 0, 1 ]); +V: matrix([ 1, 0, 0, 0 ], + [ 0, 1, 0, 0 ], + [ 0, 1, 1, 0 ], + [ 1, 0, 0, 1 ]); +T: U.V; +invert(T); + +D: T.C.invert(T); + +p: expand(charpoly(D, x)); + +factor(p); + +lambda: 2+3*%i; + +Dlambda: ratsimp(expand(D - lambda * identfor(D))); +rank(Dlambda); +/* D2: expand(Dlambda.Dlambda); */ +/* rank(D2); */ + +load(functs); + +/* +E: Dlambda; +E[1]: (rational(1/E[1,1]))*E[1]$ +E[2]: E[2] - E[2,1] * E[1]$ +E[3]: E[3] - E[3,1] * E[1]$ +E[4]: E[4] - E[4,1] * E[1]$ +E: ratsimp(E)$ + +E[2]: (rational(1/E[2,2])) * E[2]$ +E[3]: E[3] - E[3,2] * E[2]$ +E[4]: E[4] - E[4,2] * E[2]$ +E: ratsimp(E)$ + +E[3]: (rational(1/E[3,3])) * E[3]$ +E[4]: E[4] - E[4,3] * E[3]$ +E: ratsimp(E)$ + +E[2]: E[2] - E[2,3] * E[3]$ +E[1]: E[1] - E[1,3] * E[3]$ +E: ratsimp(E)$ + +E[1]: E[1] - E[1,2] * E[2]$ +E: ratsimp(E)$ + +E; +*/ + +b1: matrix([1+%i],[2+2*%i],[%i],[1]); +ratsimp(D.b1 - lambda*b1); + +G: Dlambda; +G: addcol(G, b1); +G[1]: (rational(1/G[1,1]))*G[1]$ +G[2]: G[2] - G[2,1] * G[1]$ +G[3]: G[3] - G[3,1] * G[1]$ +G[4]: G[4] - G[4,1] * G[1]$ +G: ratsimp(G)$ + +G[2]: (rational(1/G[2,2])) * G[2]$ +G[3]: G[3] - G[3,2] * G[2]$ +G[4]: G[4] - G[4,2] * G[2]$ +G: ratsimp(G)$ + +G[3]: (rational(1/G[3,3])) * G[3]$ +G[4]: G[4] - G[4,3] * G[3]$ +G: ratsimp(G)$ + +G[2]: G[2] - G[2,3] * G[3]$ +G[1]: G[1] - G[1,3] * G[3]$ +G: ratsimp(G)$ + +G[1]: G[1] - G[1,2] * G[2]$ +G: ratsimp(G)$ + +G; + +b2: matrix([ G[1,5] ], [ G[2,5] ], [ G[3,5] ], [ G[4,5] ]); + +expand(D.b2 - lambda * b2 - b1); + +c1: 2 * realpart(b1); +d1: 2 * imagpart(b1); +c2: 2 * realpart(b2); +d2: 2 * imagpart(b2); + +D.c1 - 2 * c1 + 3 * d1; +D.d1 - 3 * c1 - 2 * d1; +D.c2 - 2 * c2 + 3 * d2 - c1; +D.d2 - 3 * c2 - 2 * d2 - d1; diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex new file mode 100644 index 0000000..7ccc065 --- /dev/null +++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex @@ -0,0 +1,97 @@ +Man findet eine Basis, in der die Matrix +\[ +A=\begin{pmatrix*}[r] + -5& 2& 6& 0\\ +-11& 12& -3& -15\\ + -7& 0& 9& 4\\ + 0& 5& -7& -8 +\end{pmatrix*} +\] +die relle Normalform bekommt. + +\begin{loesung} +Das charakteristische Polynom der Matrix ist +\[ +\chi_{A}(\lambda) += +\lambda^4-8\lambda^3+42\lambda^2-104\lambda+169 += +(\lambda^2-4\lambda+13)^2. +\] +Es hat die doppelten Nullstellen +\[ +\lambda_\pm += +2\pm \sqrt{4-13} += +2\pm \sqrt{-9} += +2\pm 3i. +\] +Zur Bestimmung der Basis muss man jetzt zunächst den Kern von +$A_+=A-\lambda_+I$ bestimmen, zum Beispiel mit Hilfe des Gauss-Algorithmus, +man findet +\[ +b_1 += +\begin{pmatrix} +1+i\\ +2+2i\\ +i\\ +1 +\end{pmatrix}. +\] +Als nächstes braucht man einen Vektor $b_1\in \ker A_+^2$, der +$b_1$ auf $b_1+\lambda_+b_2$ abbildet. +Durch Lösen des Gleichungssystems $Ab_2-\lambda_+ b_2=b_1$ findet man +\[ +b_2 += +\begin{pmatrix} +2-i\\3\\2\\0 +\end{pmatrix} +\qquad\text{und damit weiter}\qquad +\overline{b}_1 += +\begin{pmatrix} +1-i\\ +2-2i\\ +-i\\ +1 +\end{pmatrix},\quad +\overline{b}_2 += +\begin{pmatrix} +2+i\\3\\2\\0 +\end{pmatrix}. +\] +Als Basis für die reelle Normalform von $A$ kann man jetzt die Vektoren +\begin{align*} +c_1 +&= +b_1+\overline{b}_1 = \begin{pmatrix}2\\4\\0\\2\end{pmatrix},& +d_1 +&= +\frac{1}{i}(b_1-\overline{b}_1) = \begin{pmatrix}2\\4\\2\\0\end{pmatrix},& +c_2 +&= +b_2+\overline{b}_2 = \begin{pmatrix}4\\6\\4\\0\end{pmatrix},& +d_2 +&= +\frac{1}{i}(b_2-\overline{b}_2) = \begin{pmatrix}-2\\0\\0\\0\end{pmatrix} +\end{align*} +verwenden. +In dieser Basis hat $A$ die Matrix +\[ +A' += +\begin{pmatrix*}[r] + 2& 3& 1& 0\\ +-3& 2& 0& 1\\ + 0& 0& 2& 3\\ + 0& 0&-3& 2 +\end{pmatrix*}, +\] +wie man einfach nachrechnen kann. +\end{loesung} + |