diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-01-08 13:36:54 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-01-08 13:36:54 +0100 |
commit | e5dec2d8164c7c8d53e5db824b50a481edf71ede (patch) | |
tree | 9d4661e338b16eec0d2a3521f219fd3c0b486ca1 /buch/chapters/40-eigenwerte | |
parent | Abschnitt über den euklidischen Algorithmus hinzugefügt (diff) | |
download | SeminarMatrizen-e5dec2d8164c7c8d53e5db824b50a481edf71ede.tar.gz SeminarMatrizen-e5dec2d8164c7c8d53e5db824b50a481edf71ede.zip |
zwei Aufgaben hinzugefüegt
Diffstat (limited to 'buch/chapters/40-eigenwerte')
-rw-r--r-- | buch/chapters/40-eigenwerte/chapter.tex | 7 | ||||
-rw-r--r-- | buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex | 76 | ||||
-rw-r--r-- | buch/chapters/40-eigenwerte/uebungsaufgaben/4002.tex | 23 |
3 files changed, 106 insertions, 0 deletions
diff --git a/buch/chapters/40-eigenwerte/chapter.tex b/buch/chapters/40-eigenwerte/chapter.tex index 95665f7..2913ca5 100644 --- a/buch/chapters/40-eigenwerte/chapter.tex +++ b/buch/chapters/40-eigenwerte/chapter.tex @@ -13,3 +13,10 @@ \input{chapters/40-eigenwerte/spektralradius.tex} \input{chapters/40-eigenwerte/spektraltheorie.tex} +\section*{Übungsaufgaben} +\aufgabetoplevel{chapters/40-eigenwerte/uebungsaufgaben} +\begin{uebungsaufgaben} +\uebungsaufgabe{4001} +\uebungsaufgabe{4002} +\end{uebungsaufgaben} + diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex new file mode 100644 index 0000000..2fab61a --- /dev/null +++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex @@ -0,0 +1,76 @@ +Verwenden Sie die Matrixdarstellung komplexer Zahlen, um $i^i$ zu +berechnen. + +\begin{hinweis} +Verwenden Sie die eulersche Formel um $\log J$ zu bestimmen. +\end{hinweis} + +\begin{loesung} +Wir berechnen $J^J$ mit Hilfe des Logarithmus als +$J^J = \exp(J\log J)$. +Zunächst erinnern wir an die Eulersche Formel +\[ +\exp tJ += +\sum_{k=0}^\infty \frac{t^k J^k}{k!} += +\sum_{i=0}^\infty \frac{t^{2i}(-1)^i}{(2i)!}\cdot E ++ +\sum_{i=0}^\infty \frac{t^{2i+1}(-1)^i}{(2i+1)!}\cdot J += +\cos t\cdot E ++ +\sin t\cdot J. +\] +Daraus liest man ab, dass +\[ +\log \begin{pmatrix} +\cos t&-\sin t\\ +\sin t& \cos t +\end{pmatrix} += +tJ +\] +gilt. +Für die Matrix $J$ heisst das +\begin{equation} +J = \begin{pmatrix} +0&-1\\1&0 +\end{pmatrix} += +\begin{pmatrix} +\cos\frac{\pi}2&-\sin\frac{\pi}2\\ +\sin\frac{\pi}2& \cos\frac{\pi}2 +\end{pmatrix} +\qquad\Rightarrow\qquad +\log J = \frac{\pi}2 J. +\label{4001:logvalue} +\end{equation} +Als nächstes müssen wir $J\log J$ berechnen. +Aus \eqref{4001:logvalue} folgt +\[ +J\log J = J\cdot \frac{\pi}2J = - \frac{\pi}2 \cdot E. +\] +Darauf ist die Exponentialreihe auszuwerten, also +\[ +J^J += +\exp (J\log J) += +\exp(-\frac{\pi}2 E) += +\exp +\begin{pmatrix} +-\frac{\pi}2&0\\ +0&-\frac{\pi}2 +\end{pmatrix} += +\begin{pmatrix} +e^{-\frac{\pi}2}&0\\ +0&e^{-\frac{\pi}2} +\end{pmatrix} += +e^{-\frac{\pi}2} E. +\] +Als komplexe Zahlen ausgedrückt folgt also $i^i = e^{-\frac{\pi}2}$. +\end{loesung} diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4002.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4002.tex new file mode 100644 index 0000000..6c0223e --- /dev/null +++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4002.tex @@ -0,0 +1,23 @@ +Seien $z$ und $w$ komplexe Zahlen derart, dass $z=e^w$, d.~h.~$w$ ist +ein Wert des Logarithmus von $z$. +Zeigen Sie, dass die Zahlen $w+2\pi ik$ für $k\in\mathbb Z$ ebenfalls +Logarithmen von $z$ sind. +Dies zeigt, dass eine komlexe Zahl unendlich viele verschiedene +Logarithmen haben kann, die Logarithmusfunktion ist im Komplexen +nicht eindeutig. + +\begin{loesung} +Aus der Eulerschen Formel folgt +\begin{align*} +e^{w+2\pi ik} +&= +e^w\cdot e^{2\pi ik} += +e^w (\underbrace{\cos 2\pi k}_{\displaystyle=1} + i \underbrace{\sin 2\pi k}_{\displaystyle = 0}) += +e^w += +z. +\qedhere +\end{align*} +\end{loesung} |