aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/50-permutationen/transpositionen.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@othello.ch>2021-01-19 22:08:40 +0100
committerAndreas Müller <andreas.mueller@othello.ch>2021-01-19 22:08:40 +0100
commit45794fb198c8fac02b5c82b6ac3f1e17bac1075e (patch)
tree038f99ee46536f8f46e48358454c5868c429af09 /buch/chapters/50-permutationen/transpositionen.tex
parentrepurposing spectral radius section (diff)
downloadSeminarMatrizen-45794fb198c8fac02b5c82b6ac3f1e17bac1075e.tar.gz
SeminarMatrizen-45794fb198c8fac02b5c82b6ac3f1e17bac1075e.zip
Permutationen hinzugefügt
Diffstat (limited to 'buch/chapters/50-permutationen/transpositionen.tex')
-rw-r--r--buch/chapters/50-permutationen/transpositionen.tex219
1 files changed, 219 insertions, 0 deletions
diff --git a/buch/chapters/50-permutationen/transpositionen.tex b/buch/chapters/50-permutationen/transpositionen.tex
index f27b20a..426ece4 100644
--- a/buch/chapters/50-permutationen/transpositionen.tex
+++ b/buch/chapters/50-permutationen/transpositionen.tex
@@ -6,3 +6,222 @@
\section{Permutationen und Transpositionen
\label{buch:section:permutationen-und-transpositionen}}
\rhead{Transpositionen}
+Im vorangegangenen Abschnitt haben wir Permutationen durch die
+Zyklenzerlegung charakterisiert.
+Es zeigt sich aber, dass sich eine Permutation in noch elementarere
+Bausteine zerlegen lässt, die Transpositionen.
+
+\begin{definition}
+Einen Transposition $\tau\in S_n$ ist ein Permutation, die genau
+zwei Elemente vertauscht.
+Die Transposition $\tau_{ij}$ ist definiert durch
+\[
+\tau_{ij}(x)
+=
+\begin{cases}
+i&\qquad x=j\\
+j&\qquad x=i\\
+x&\qquad\text{sonst.}
+\end{cases}
+\]
+\end{definition}
+
+Eine Transposition hat genau einen Zyklus der Länge $2$, alle anderen
+Zyklen haben die Länge $1$.
+
+\subsection{Zyklus und Permutationen aus Transpositionen}
+Sei $\sigma$ die zyklische Vertauschung der Elemente $1,\dots,k\in [n]$,
+also die Permutation, die $1\to2\to3\to\dots\to k-2\to k-1\to k\to 1$
+abbildet.
+Dieser Zyklus lässt sich wie folgt aus Transpositionen zusammensetzen:
+\begin{center}
+\def\kreuz#1#2#3{
+ \draw[->] ({(#1)-1},#2) to[out=-90,in=90] ({#1},{#2-1});
+ \draw[->] ({#1},#2) to[out=-90,in=90] ({#1-1},{#2-1});
+ \node at ({(#1)-0.5+0.2},{#2-0.5}) [right] {$#3$};
+}
+\begin{tikzpicture}[>=latex,thick]
+\foreach \x in {1,2,3,6,7,8,9}{
+ \fill ({\x-1},0) circle[radius=0.05];
+}
+\foreach \x in {1,2,3}{
+ \node at ({\x-1},0) [above] {$\tiny \x$};
+}
+\node at (8,0) [above] {$\tiny k$};
+\node at (7,0) [above] {$\tiny k-1$};
+\node at (6,0) [above] {$\tiny k-2$};
+\node at (5,0) [above] {$\tiny k-3$};
+\foreach \x in {1,2,3,4,7,8,9}{
+ \fill ({\x-1},-8) circle[radius=0.05];
+}
+\foreach \x in {1,2,3,4}{
+ \node at ({\x-1},-8) [below] {$\tiny \x$};
+}
+\node at (6,-8) [below] {$k-2$};
+\node at (7,-8) [below] {$k-1$};
+\node at (8,-8) [below] {$k$};
+
+\foreach \x in {3,3.2,...,5}{
+ \fill (\x,{-8+\x}) circle[radius=0.02];
+ \fill ({\x+0.5},-8) circle[radius=0.02];
+ \fill ({\x-0.5},0) circle[radius=0.02];
+}
+
+\kreuz{8}{0}{\tau_{k-1,k}}
+\kreuz{7}{-1}{\tau_{k-2,k-1}}
+\kreuz{6}{-2}{\tau_{k-3,k-2}}
+%\kreuz{5}{-3}{\tau_{56}}
+%\kreuz{4}{-4}{\tau_{45}}
+\kreuz{3}{-5}{\tau_{34}}
+\kreuz{2}{-6}{\tau_{23}}
+\kreuz{1}{-7}{\tau_{12}}
+
+\draw[->,color=gray] (0,0) -- (0,-7);
+\draw[->,color=gray] (1,0) -- (1,-6);
+\draw[->,color=gray] (2,0) -- (2,-5);
+%\draw[->,color=gray] (3,0) -- (3,-4);
+%\draw[->,color=gray] (4,0) -- (4,-3);
+\draw[->,color=gray] (5,0) -- (5,-2);
+\draw[->,color=gray] (6,0) -- (6,-1);
+
+\draw[->,color=gray] (8,-1) -- (8,-8);
+\draw[->,color=gray] (7,-2) -- (7,-8);
+\draw[->,color=gray] (6,-3) -- (6,-8);
+%\draw[->,color=gray] (5,-4) -- (5,-8);
+%\draw[->,color=gray] (4,-5) -- (4,-8);
+\draw[->,color=gray] (3,-6) -- (3,-8);
+\draw[->,color=gray] (2,-7) -- (2,-8);
+
+\fill (6,-1) circle[radius=0.05];
+\fill (7,-1) circle[radius=0.05];
+\fill (8,-1) circle[radius=0.05];
+
+\fill (5,-2) circle[radius=0.05];
+\fill (6,-2) circle[radius=0.05];
+\fill (7,-2) circle[radius=0.05];
+
+%\fill (4,-3) circle[radius=0.05];
+\fill (5,-3) circle[radius=0.05];
+\fill (6,-3) circle[radius=0.05];
+
+%\fill (3,-4) circle[radius=0.05];
+%\fill (4,-4) circle[radius=0.05];
+%\fill (5,-4) circle[radius=0.05];
+
+\fill (2,-5) circle[radius=0.05];
+\fill (3,-5) circle[radius=0.05];
+%\fill (4,-5) circle[radius=0.05];
+
+\fill (1,-6) circle[radius=0.05];
+\fill (2,-6) circle[radius=0.05];
+\fill (3,-6) circle[radius=0.05];
+
+\fill (0,-7) circle[radius=0.05];
+\fill (1,-7) circle[radius=0.05];
+\fill (2,-7) circle[radius=0.05];
+
+\end{tikzpicture}
+\end{center}
+Es ist also
+\[
+\sigma
+=
+\tau_{12} \tau_{23} \tau_{34} \dots \tau_{k-3,k-2} \tau_{k-2,k-1} \tau_{k-1,k}.
+\]
+\begin{satz}
+Jede Permutation $\sigma\in S_n$ lässt sich als ein Produkt von
+Transpositionen schreiben.
+Jeder Zyklus der Länge $k$ lässt sich aus $k-1$ Transpositionen
+zusammensetzen.
+Eine Permutation mit einer Zerlegung in Zyklen der Längen $l_1,\dots,l_p$
+kann als Produkt von $l_1+\dots+l_p-p$ Transpositionen geschrieben werden.
+\end{satz}
+
+\subsection{Signum einer Permutation}
+Die Anzahl Transpositionen, die benötigt werden, um eine Permutation
+zu beschreiben, ist nicht fest.
+Wenn $\sigma$ mit $k$ Transpositionen geschrieben werden kann und
+$\gamma$ mit $l$, dann hat $\gamma\sigma\gamma^{-1}$ die gleiche
+Zyklenzerlegung, kann aber mit $k+2l$ Transpositionen geschrieben
+werden.
+Die Anzahl Transpositionen, die zur Darstellung einer Permutation
+nötig ist, ändert sich aber immer nur um eine gerade Zahl.
+Die Anzahl ist also keine Invariante einer Permutation, aber ob
+die Anzahl gerade ist oder nicht, ist sehr wohl eine charkterisierende
+Eigenschaft einer Permutation.
+
+\begin{definition}
+Das {\em Vorzeichen} oder {\em Signum} einer Permutation $\sigma$ ist
+die Zahl $\operatorname{sgn}(\sigma)=(-1)^k$, wenn $\sigma$ als Produkt
+von $k$ Transpositionen geschrieben werden kann.
+\end{definition}
+
+Die inverse Permutation $\sigma^{-1}$ hat das gleiche Signum wie $\sigma$.
+Wenn nämlich $\sigma= \tau_1\tau_2\dots\tau_k$ geschrieben werden kann,
+dann ist $\sigma^{-1}=\tau_k\dots\tau_2\tau_1$, sowohl $\sigma$ wie
+$\sigma^{-1}$ können also mit der gleichen Zahl von Transpositionen
+geschrieben werden, sie haben also auch das gleiche Vorzeichen.
+
+Die Abbildung $S_n\to\{\pm\}$, die einer Permutation das Signum zuordnet,
+ist ein Homomorphismus von Gruppen,
+d.~h.
+\[
+\operatorname{sgn}(\sigma_1\sigma_2)
+=
+\operatorname{sgn}(\sigma_1)
+\operatorname{sgn}(\sigma_2)
+\]
+da ganz offensichtlich $\sigma_1\sigma_2$ mit $k_1+k_2$ Transpositionen
+geschrieben kann, wenn $\sigma_i$ mit $k_i$ Transpositionen geschrieben
+werden kann.
+
+Das Signum definiert in der symmetrischen Gruppe eine Teilmenge bestehnd
+aus den Permutationen mit Signum $+1$.
+
+\begin{definition}
+Die Teilmenge
+\[
+A_n
+=
+\{
+\sigma\in S_n\;|\; \operatorname{sgn}(\sigma)=1
+\}
+\subset S_n.
+\]
+heisst die {\em alternierende Gruppe} der Ordnung $n$
+Die Elemente von $A_n$ heissen auch die {\em geraden} Permutationen,
+die
+Elemente von $S_n\setminus A_n$ heissen auch die {\em ungeraden}
+Permutationen.
+\end{definition}
+
+Die alternierende Gruppe $A_n$ ist tatsächlich eine Untergruppe.
+Zunächst ist $\operatorname{sign}(e)=(-1)^0=01$, also ist $e\in A_n$.
+Es wurde schon gezeigt, dass mit jedem Element $\sigma\in A_n$ auch
+das inverse Element $\sigma^{-1}\in A_n$ ist.
+Es muss aber noch sichergestellt sein, dass das Produkt von zwei
+geraden Transpositionen wieder gerade ist:
+\[
+\begin{aligned}
+\sigma_1,\sigma_2&\in A_n
+&\Rightarrow&&
+\operatorname{sign}(\sigma_1)
+&=
+\operatorname{sign}(\sigma_2)
+=
+1
+\\
+&&\Rightarrow&&
+\operatorname{sign}(\sigma_1\sigma_2)
+&=
+\operatorname{sign}(\sigma_1)
+\operatorname{sign}(\sigma_2)
+=
+1\cdot 1=1
+&&\Rightarrow&
+\sigma_1\sigma_2&\in A_n.
+\end{aligned}
+\]
+Damit ist gezeigt, dass die alternierende Gruppe $A_n$ ein Untergruppe von
+$S_n$ ist.
+