diff options
author | Nao Pross <np@0hm.ch> | 2021-05-07 00:14:48 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2021-05-07 00:14:48 +0200 |
commit | 20f68f26c0f82496e63b422b65a849a607325ef1 (patch) | |
tree | 1403426884f2b1caeabfa36a0e2dd3ddf07c0689 /buch/chapters/50-permutationen | |
parent | Create slide to show all point groups (diff) | |
parent | neue folie (diff) | |
download | SeminarMatrizen-20f68f26c0f82496e63b422b65a849a607325ef1.tar.gz SeminarMatrizen-20f68f26c0f82496e63b422b65a849a607325ef1.zip |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'buch/chapters/50-permutationen')
-rw-r--r-- | buch/chapters/50-permutationen/transpositionen.tex | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/buch/chapters/50-permutationen/transpositionen.tex b/buch/chapters/50-permutationen/transpositionen.tex index 604e010..748b2e9 100644 --- a/buch/chapters/50-permutationen/transpositionen.tex +++ b/buch/chapters/50-permutationen/transpositionen.tex @@ -111,7 +111,7 @@ Permutationen. \end{definition} Die alternierende Gruppe $A_n$ ist tatsächlich eine Untergruppe. -Zunächst ist $\operatorname{sign}(e)=(-1)^0=1$, also ist $e\in A_n$. +Zunächst ist $\operatorname{sgn}(e)=(-1)^0=1$, also ist $e\in A_n$. Es wurde schon gezeigt, dass mit jedem Element $\sigma\in A_n$ auch das inverse Element $\sigma^{-1}\in A_n$ ist. Es muss aber noch sichergestellt werden, dass das Produkt von zwei @@ -120,17 +120,17 @@ geraden Transpositionen wieder gerade ist: \begin{aligned} \sigma_1,\sigma_2&\in A_n &\Rightarrow&& -\operatorname{sign}(\sigma_1) +\operatorname{sgn}(\sigma_1) &= -\operatorname{sign}(\sigma_2) +\operatorname{sgn}(\sigma_2) = 1 \\ &&\Rightarrow&& -\operatorname{sign}(\sigma_1\sigma_2) +\operatorname{sgn}(\sigma_1\sigma_2) &= -\operatorname{sign}(\sigma_1) -\operatorname{sign}(\sigma_2) +\operatorname{sgn}(\sigma_1) +\operatorname{sgn}(\sigma_2) = 1\cdot 1=1 &&\Rightarrow& |