diff options
author | Andreas Müller <andreas.mueller@othello.ch> | 2021-04-04 22:48:42 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@othello.ch> | 2021-04-04 22:48:42 +0200 |
commit | 6fd28b0754e453e3f843b6fbe6493022a846f618 (patch) | |
tree | 949c66310fdac48b31c71f4cb0702afbd744678c /buch/chapters/60-gruppen | |
parent | fix typos (diff) | |
download | SeminarMatrizen-6fd28b0754e453e3f843b6fbe6493022a846f618.tar.gz SeminarMatrizen-6fd28b0754e453e3f843b6fbe6493022a846f618.zip |
Lie-Algebra stuff
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/60-gruppen/chapter.tex | 2 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/lie-algebren.tex | 718 |
2 files changed, 552 insertions, 168 deletions
diff --git a/buch/chapters/60-gruppen/chapter.tex b/buch/chapters/60-gruppen/chapter.tex index c2aa68d..8472b58 100644 --- a/buch/chapters/60-gruppen/chapter.tex +++ b/buch/chapters/60-gruppen/chapter.tex @@ -35,7 +35,7 @@ Zusammenhangs darzustellen. \input{chapters/60-gruppen/symmetrien.tex} \input{chapters/60-gruppen/lie-gruppen.tex} \input{chapters/60-gruppen/lie-algebren.tex} -\input{chapters/60-gruppen/homogen.tex} +%\input{chapters/60-gruppen/homogen.tex} diff --git a/buch/chapters/60-gruppen/lie-algebren.tex b/buch/chapters/60-gruppen/lie-algebren.tex index 366d280..cee8510 100644 --- a/buch/chapters/60-gruppen/lie-algebren.tex +++ b/buch/chapters/60-gruppen/lie-algebren.tex @@ -29,234 +29,618 @@ Lie-Algebra von $\operatorname{SO}(3)$ mit dem Vektorprodukt in $\mathbb{R}^3$ übereinstimmt. % -% Tangentialvektoren und SO(2) +% Die Lie-Algebra einer Matrizengruppe +% +\subsection{Lie-Algebra einer Matrizengruppe +\label{buch:section:lie-algebra-einer-matrizengruppe}} +Zu jedem Tangentialvektor $A$ im Punkt $I$ einer Matrizengruppe gibt es +eine Einparameteruntergruppe, die mit Hilfe der Exponentialfunktion +$e^{At}$ konstruiert werden kann. +Für die folgende Konstruktion arbeiten wir in der Gruppe +$\operatorname{GL}_n(\mathbb{R})$, in der jede Matrix auch ein +Tangentialvektor ist. +Wir werden daraus die Lie-Klammer ableiten und später verifizieren, +dass diese auch für die Tangentialvektoren der Gruppen +$\operatorname{SO}(n)$ oder $\operatorname{SL}_n(\mathbb{R})$ funktioniert. + +\subsubsection{Lie-Klammer} +Zu zwei verschiedenen Tagentialvektoren $A\in M_n(\mathbb{R})$ und +$B\in M_n(\mathbb{R})$ gibt es zwei verschiedene Einparameteruntergruppen +$e^{At}$ und $e^{Bt}$. +Wenn die Matrizen $A$ und $B$ oder die Einparameteruntergruppen +$e^{At}$ und $e^{Bt}$ vertauschbar sind, dann stimmen +$e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ nicht überein. +Die zugehörigen Potenzreihen sind: +\begin{align*} +e^{At} +&= +I+At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots +\\ +e^{Bt} +&= +I+Bt + \frac{B^2t^2}{2!} + \frac{B^3t^3}{3!} + \dots +\\ +e^{At}e^{Bt} +&= +\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr) +\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr) +\\ +&= +I+(A+B)t + \biggl(\frac{A^2}{2!}+AB+\frac{B^2}{2!}\biggr)t^2 +\dots +\\ +e^{Bt}e^{At} +&= +\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr) +\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr) +\\ +&= +I+(B+A)t + \biggl(\frac{B^2}{2!}+BA+\frac{A^2}{2!}\biggr)t^2 +\dots +\intertext{% +Die beiden Kurven $e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ haben zwar den gleichen +Tangentialvektor für $t=0$, sie unterscheiden +sich aber untereinander, und sie unterscheiden sich von der +Einparameteruntergruppe von $A+B$} +e^{(A+B)t} +&= +I + (A+B)t + \frac{t^2}{2}(A^2 + AB + BA + B^2) + \ldots +\intertext{Für die Unterschiede finden wir} +e^{At}e^{Bt} - e^{(A+B)t} +&= +\biggl(AB-\frac{AB+BA}2\biggr)t^2 ++\ldots += +(AB-BA) \frac{t^2}{2} + \ldots += +[A,B]\frac{t^2}{2}+\ldots +\\ +e^{Bt}e^{At} - e^{(A+B)t} +&= +\biggl(BA-\frac{AB+BA}2\biggr)t^2 ++\ldots += +(BA-AB) +\frac{t^2}{2} ++\ldots += +-[A,B]\frac{t^2}{2} +\\ +e^{At}e^{Bt}-e^{Bt}e^{At} +&= +(AB-BA)t^2+\ldots += +\phantom{-}[A,B]t^2+\ldots +\end{align*} +wobei mit $[A,B]=AB-BA$ abgekürzt wird. + +\begin{definition} +\label{buch:gruppen:def:kommutator} +Der Kommutator zweier Matrizen $A,B\in M_n(\mathbb{R})$ ist die Matrix +$[A,B]=AB-BA$. +\end{definition} + +Der Kommutator ist bilinear und antisymmetrisch, da +\begin{align*} +[\lambda A+\mu B,C] +&= +\lambda AC+\mu BC-\lambda CA -\mu CB += +\lambda[A,C]+\mu[B,C] +\\ +[A,\lambda B+\mu C] +&= +\lambda AB + \mu AC - \lambda BA - \mu CA += +\lambda[A,B]+\mu[A,C] +\\ +[A,B] +&= +AB-BA = -(BA-AB) = -[B,A]. +\end{align*} +Aus der letzten Bedingung folgt insbesodnere $[A,A]=0$ + +Der Kommutator $[A,B]$ misst in niedrigster Ordnung den Unterschied +zwischen den $e^{At}$ und $e^{Bt}$. +Der Kommutator der Tangentialvektoren $A$ und $B$ bildet also die +Nichtkommutativität der Matrizen $e^{At}$ und $e^{Bt}$ ab. + + +\subsubsection{Die Jacobi-Identität} +Der Kommutator hat die folgende zusätzliche algebraische Eigenschaft: +\begin{align*} +[A,[B,C]] ++ +[B,[C,A]] ++ +[C,[A,B]] +&= +[A,BC-CB] ++ +[B,CA-AC] ++ +[C,AB-BA] +\\ +&=\phantom{+} +ABC-ACB-BCA+CBA +\\ +&\phantom{=}+ +BCA-BAC-CAB+ACB +\\ +&\phantom{=}+ +CAB-CBA-ABC+BAC +\\ +&=0. +\end{align*} +Diese Eigenschaft findet man auch bei anderen Strukturen, zum Beispiel +bei Vektorfeldern, die man als Differentialoperatoren auf Funktionen +betrachten kann. +Man kann dann einen Kommutator $[X,Y]$ für zwei Vektorfelder +$X$ und $Y$ definieren. +Dieser Kommutator von Vektorfeldern erfüllt ebenfalls die gleiche +Identität. + +\begin{definition} +\label{buch:gruppen:def:jacobi} +Ein bilineares Produkt $[\;,\;]\colon V\times V\to V$ auf dem Vektorraum +erfüllt die {\em Jacobi-Identität}, wenn +\[ +[u,[v,w]] + [v,[w,u]] + [w,[u,v]]=0 +\] +ist für beliebige Vektoren $u,v,w\in V$. +\end{definition} + +\subsubsection{Lie-Algebra} +Die Tangentialvektoren einer Lie-Gruppe tragen also mit dem Kommutator +eine zusätzliche Struktur, nämlich die Struktur einer Lie-Algebra. + +\begin{definition} +Ein Vektorraum $V$ mit einem bilinearen, Produkt +\[ +[\;,\;]\colon V\times V \to V : (u,v) \mapsto [u,v], +\] +welches zusätzlich die Jacobi-Identität~\ref{buch:gruppen:def:jacobi} +erfüllt, heisst eine {\em Lie-Algebra}. +\end{definition} + +Die Lie-Algebra einer Lie-Gruppe $G$ wird mit $LG$ bezeichnet. +$LG$ besteht aus den Tangentialvektoren im Punkt $I$. +Die Exponentialabbildung $\exp\colon LG\to G:A\mapsto e^A$ +ist eine differenzierbare Abbildung von $LG$ in die Gruppe $G$. +Insbesondere kann die Inverse der Exponentialabbildung als eine +Karte in einer Umgebung von $I$ verwendet werden. + +Für die Lie-Algebren der Matrizengruppen, die früher definiert worden +sind, verwenden wir die als Notationskonvention, dass der Name der +Lie-Algebra der mit kleinen Buchstaben geschrieben Name der Lie-Gruppe ist. +Die Lie-Algebra von $\operatorname{SO}(n)$ ist also +$L\operatorname{SO}(n) = \operatorname{os}(n)$, +die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ ist +$L\operatorname{SL}_n(\mathbb{R})=\operatorname{sl}_n(\mathbb{R})$. + + % -\subsection{Tangentialvektoren und $\operatorname{SO}(2)$} -Die Drehungen in der Ebene können reell als Matrizen der Form +% Die Lie-Algebra von SO(3) +% +\subsection{Die Lie-Algebra von $\operatorname{SO}(3)$ +\label{buch:subsection:die-lie-algebra-von-so3}} +Zur Gruppe $\operatorname{SO}(3)$ der Drehmatrizen gehört die Lie-Algebra +$\operatorname{so}(3)$ der antisymmetrischen $3\times 3$-Matrizen. +Solche Matrizen haben die Form \[ -D_{\alpha} +\Omega = \begin{pmatrix} -\cos\alpha&-\sin\alpha\\ -\sin\alpha& \cos\alpha + 0 & \omega_3&-\omega_2\\ +-\omega_3& 0 & \omega_1\\ + \omega_2&-\omega_1& 0 \end{pmatrix} \] -als eidimensionale Kurve innerhalb von $M_2(\mathbb{R})$ beschrieben -werden. -Alternativ können Drehungen um den Winkel $\alpha$ als mit Hilfe von -der Abbildung -$ -\alpha\mapsto e^{i\alpha} -$ -als komplexe Zahlen vom Betrag $1$ beschrieben werden. -Dies sind zwei verschiedene Parametrisierungen der gleichen -geometrischen Transformation. - -Die Ableitung nach $\alpha$ ist $ie^{i\alpha}$, der Tangentialvektor -im Punkt $e^{i\alpha}$ ist also $ie^{i\alpha}$. -Die Multiplikation mit $i$ ist die Drehung um $90^\circ$, der Tangentialvektor -ist also der um $90^\circ$ gedrehte Ortsvektor zum Punkt auf der Kurve. +Der Vektorraum $\operatorname{so}(3)$ ist also dreidimensional. -In der Darstelllung als $2\times 2$-Matrix ist die Ableitung +Die Wirkung von $I+t\Omega$ auf einem Vektor $x$ ist \[ -\frac{d}{d\alpha}D_\alpha +(I+t\Omega) +\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} = -\frac{d}{d\alpha} \begin{pmatrix} -\cos\alpha& -\sin\alpha\\ -\sin\alpha& \cos\alpha + 1 & t\omega_3&-t\omega_2\\ +-t\omega_3& 1 & t\omega_1\\ + t\omega_2&-t\omega_1& 1 \end{pmatrix} +\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} = \begin{pmatrix} --\sin\alpha & -\cos\alpha \\ - \cos\alpha & -\sin\alpha +x_1-t(-\omega_3x_2+\omega_2x_3)\\ +x_2-t( \omega_3x_1-\omega_1x_3)\\ +x_3-t(-\omega_2x_1+\omega_1x_2) +\end{pmatrix} += +x- t\begin{pmatrix}\omega_1\\\omega_2\\\omega_3\end{pmatrix}\times x += +x+ tx\times \omega. +\] +Die Matrix $\Omega$ ist als die infinitesimale Version einer Drehung +um die Achse $\omega$. + +Wir können die Analogie zwischen Matrizen in $\operatorname{so}(3)$ und +Vektoren in $\mathbb R^3$ noch etwas weiter treiben. Zu jedem Vektor +in $\mathbb R^3$ konstruieren wir eine Matrix in $\operatorname{so}(3)$ +mit Hilfe der Abbildung +\[ +\mathbb R^3\to\operatorname{so}(3) +: +\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} +\mapsto +\begin{pmatrix} + 0 & v_3&-v_1\\ +-v_3& 0 & v_2\\ + v_1&-v_2& 0 \end{pmatrix}. \] -Die rechte Seite kann wieder mit der Drehmatrix $D_\alpha$ geschrieben -werden, es ist nämlich +Der Kommutator von zwei so aus Vektoren $\vec u$ und $\vec v$ +konstruierten Matrizen $U$ und $V$ ist: +\begin{align*} +[U,V] +&= +UV-VU +\\ +&= +\begin{pmatrix} + 0 & u_3&-u_1\\ +-u_3& 0 & u_2\\ + u_1&-u_2& 0 +\end{pmatrix} +\begin{pmatrix} + 0 & v_3&-v_1\\ +-v_3& 0 & v_2\\ + v_1&-v_2& 0 +\end{pmatrix} +- +\begin{pmatrix} + 0 & v_3&-v_1\\ +-v_3& 0 & v_2\\ + v_1&-v_2& 0 +\end{pmatrix} +\begin{pmatrix} + 0 & u_3&-u_1\\ +-u_3& 0 & u_2\\ + u_1&-u_2& 0 +\end{pmatrix} +\\ +&= +\begin{pmatrix} +u_3v_3+u_1v_1 - u_3v_3 - u_1v_1 + & u_1v_2 - u_2v_1 + & u_3v_2 - u_2v_3 +\\ +u_2v_1 - u_1v_2 + & -u_3v_3-u_2v_2 + u_3v_3+u_2v_2 + & u_3v_1 - u_1v_3 +\\ +u_2v_3 - u_3v_2 + & u_1v_3 - u_3v_1 + &-u_1v_1-u_2v_2 u_1v_1+u_2v_2 +\end{pmatrix} +\\ +&= +\begin{pmatrix} +0 + & u_1v_2 - u_2v_1 + &-(u_2v_3-u_3v_2) +\\ +-( u_1v_2 - u_2v_1) + & 0 + & u_3v_1 - u_1v_3 +\\ +u_2v_3 - u_3v_2 + &-( u_3v_1 - u_1v_3) + & 0 +\end{pmatrix} +\end{align*} +Die Matrix $[U,V]$ gehört zum Vektor $\vec u\times\vec v$. +Damit können wir aus der Jacobi-Identität jetzt folgern, dass +\[ +\vec u\times(\vec v\times w) ++ +\vec v\times(\vec w\times u) ++ +\vec w\times(\vec u\times v) +=0 +\] +für drei beliebige Vektoren $\vec u$, $\vec v$ und $\vec w$ ist. +Dies bedeutet, dass der dreidimensionale Vektorraum $\mathbb R^3$ +mit dem Vektorprodukt zu einer Lie-Algebra wird. +In der Tat verwenden einige Bücher statt der vertrauten Notation +$\vec u\times \vec v$ für das Vektorprodukt die aus der Theorie der +Lie-Algebren entlehnte Notation $[\vec u,\vec v]$, zum Beispiel +das Lehrbuch der Theoretischen Physik \cite{skript:landaulifschitz1} +von Landau und Lifschitz. + +Die Lie-Algebren sind vollständig klassifiziert worden, es gibt +keine nicht trivialen zweidimensionalen Lie-Algebren. +Unser dreidimensionaler Raum ist also auch in dieser Hinsicht speziell: +es ist der kleinste Vektorraum, in dem eine nichttriviale Lie-Algebra-Struktur +möglich ist. + +Die antisymmetrischen Matrizen \[ -\frac{d}{d\alpha}D_\alpha +\omega_{23} += +\begin{pmatrix} 0&1&0\\-1&0&0\\0&0&0\end{pmatrix} +\quad +\omega_{31} = +\begin{pmatrix} 0&0&-1\\0&0&0\\1&0&0\end{pmatrix} +\quad +\omega_{12} += +\begin{pmatrix} 0&0&0\\0&0&1\\0&-1&0\end{pmatrix} +\] +haben die Kommutatoren +\begin{equation} +\begin{aligned} +[\omega_{23},\omega_{31}] +&= \begin{pmatrix} --\sin\alpha & -\cos\alpha \\ - \cos\alpha & -\sin\alpha +0&0&0\\ +0&0&1\\ +0&-1&0 \end{pmatrix} = +\omega_{12} +\\ +[\omega_{31},\omega_{12}] +&= \begin{pmatrix} -\cos\alpha & -\sin\alpha\\ -\sin\alpha & \cos\alpha +0&1&0\\ +-1&0&0\\ +0&0&0 \end{pmatrix} += +\omega_{23} +\\ +[\omega_{12},\omega_{23}] +&= \begin{pmatrix} -0&-1\\ -1& 0 +0&0&-1\\ +0&0&0\\ +1&0&0 \end{pmatrix} = -D_\alpha J. -\] -Der Tangentialvektor an die Kurve $\alpha\mapsto D_\alpha$ innerhalb -$M_2(\mathbb{R})$ im Punkt $D_\alpha$ ist also die Matrix -$JD_\alpha$. -Die Matrix $J$ ist die Drehung um $90^\circ$, denn $J=D_{\frac{\pi}2}$. -Der Zusammenhang zwischen dem Punkt $D_\alpha$ und dem Tangentialvektor -ist also analog zur Beschreibug mit komplexen Zahlen. +\omega_{31} +\end{aligned} +\label{buch:gruppen:eqn:so3-kommutatoren} +\end{equation} -Im Komplexen vermittelt die Exponentialfunktion den Zusammenhang zwischen -dem Winkel $\alpha$ und dre Drehung $e^{i\alpha}$. -Der Grund dafür ist natürlich die Differentialgleichung +\subsection{Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$} +Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ besteht aus den +spurlosen Matrizen in $M_n(\mathbb{R})$. +Der Kommutator solcher Matrizen erfüllt +\[ +\operatorname{Spur}([A,B]) += +\operatorname{Spur}(AB-BA) += +\operatorname{Spur}(AB)-\operatorname{Spur}(BA) += +0, +\] +somit ist \[ -\frac{d}{d\alpha} z(\alpha) = iz(\alpha). +\operatorname{sl}_n(\mathbb{R}) += +\{ +A\in M_n(\mathbb{R})\;|\; \operatorname{Spur}(A)=0 +\} \] -Die analoge Differentialgleichung +mit dem Kommutator eine Lie-Algebra. + +% +% Die Lie-Algebra von U(n) +% +\subsection{Die Lie-Algebra von $\operatorname{U}(n)$} +Die Lie-Gruppe \[ -\frac{d}{d\alpha} D_\alpha = J D_\alpha +U(n) += +\{ +A\in M_n(\mathbb{C} +\;|\; +AA^*=I +\} \] -führt auf die Matrix-Exponentialreihe +heisst die unitäre Gruppe, sie besteht aus den Matrizen, die +das sesquilineare Standardskalarprodukt auf dem komplexen +Vektorraum $\mathbb{C}^n$ invariant lassen. +Sei eine $\gamma(t)$ ein differenzierbare Kurve in $\operatorname{U}(n)$ +derart, dass $\gamma(0)=I$. +Die Ableitung der Identität $AA^*=I$ führt dann auf \begin{align*} -D_\alpha +0 = -\exp (J\alpha) -&= -\sum_{k=0}^\infty \frac{(J\alpha)^k}{k!} +\frac{d}{dt} +\gamma(t)\gamma(t)^* +\bigg|_{t=0} = -I\biggl( -1-\frac{\alpha^2}{2!} + \frac{\alpha^4}{4!} -\frac{\alpha^6}{6!}+\dots -\biggr) +\dot{\gamma}(0)\gamma(0)^* + -J\biggl( -\alpha - \frac{\alpha^3}{3!} -+ \frac{\alpha^5}{5!} -- \frac{\alpha^7}{7!}+\dots -\biggr) -\\ -&= -I\cos\alpha +\gamma(0)\dot{\gamma}(0)^* += +\dot{\gamma}(0) + -J\sin\alpha, +\dot{\gamma}(0)^* +\quad\Rightarrow\quad +\dot{\gamma}(0)&=-\dot{\gamma}(0)^*. +A&=-A^* \end{align*} -welche der Eulerschen Formel $e^{i\alpha} = \cos\alpha + i \sin\alpha$ -analog ist. - -In diesem Beispiel gibt es nur eine Tangentialrichtung und alle in Frage -kommenden Matrizen vertauschen miteinander. -Es ist daher nicht damit zu rechnen, dass sich eine interessante -Algebrastruktur für die Ableitungen konstruieren lässt. - -% -% Die Lie-Algebra einer Matrizengruppe -% -\subsection{Lie-Algebra einer Matrizengruppe} -Das eindimensionale Beispiel $\operatorname{SO}(2)$ hat gezeigt, dass -die Tangentialvektoren in einem beliebigen Punkt $D_\alpha$ aus dem -Tangentialvektor im Punkt $I$ durch Anwendung der Drehung hervorgehen, -die $I$ in $D_\alpha$ abbildet. -Die Drehungen einer eindimensionalen Untergruppe transportieren daher -den Tangentialvektor in $I$ entlang der Kurve auf jeden beliebigen -anderen Punkt. -Zu jedem Tangentialvektor im Punkt $I$ dürfte es daher genau eine -eindimensionale Untergruppe geben. +Die Lie-Algebra $\operatorname{u}(n)$ besteht daher aus den antihermiteschen +Matrizen. -Sei die Abbildung $\varrho\colon\mathbb{R}\to G$ eine Einparameter-Untergruppe -von $G\subset M_n(\mathbb{R})$. -Durch Ableitung der Gleichung $\varrho(t+x) = \varrho(t)\varrho(x)$ nach -$x$ folgt die Differentialgleichung -\[ -\varrho'(t) +Wir sollten noch verifizieren, dass der Kommutator zweier antihermiteschen +Matrizen wieder anithermitesch ist: +\begin{align*} +[A,B]^* +&= +(AB-BA)^* = -\frac{d}{dx}\varrho(t+x)\bigg|_{x=0} +B^*A^*-A^*B^* = -\varrho(t) \frac{d}{dx}\varrho(0)\bigg|_{x=0} +BA - AB = -\varrho(t) \varrho'(0). -\] -Der Tangentialvektor in $\varrho'(t)$ in $\varrho(t)$ ist daher -der Tangentialvektor $\varrho'(0)$ in $I$ transportiert in den Punkt -$\varrho(t)$ mit Hilfe der Matrix $\varrho(t)$. +-[B,A]. +\end{align*} -Aus der Differentialgleichung folgt auch, dass +Eine antihermitesche Matrix erfüllt $a_{ij}=-\overline{a}_{ji}$, +für die Diagonalelemente folgt daher $a_{ii} = -\overline{a}_{ii}$ +oder $\overline{a}_{ii}=-a_{ii}$. +Der Realteil von $a_{ii}$ ist \[ -\varrho(t) = \exp (t\varrho'(0)). +\Re a_{ii} += +\frac{a_{ii}+\overline{a}_{ii}}2 += +0, \] -Zu einem Tangentialvektor in $I$ kann man also immer die -Einparameter-Untergruppe mit Hilfe der Differentialgleichung -oder der expliziten Exponentialreihe rekonstruieren. +die Diagonalelemente einer antihermiteschen Matrix sind daher rein +imaginär. -Die eindimensionale Gruppe $\operatorname{SO}(2)$ ist abelsch und -hat einen eindimensionalen Tangentialraum, man kann also nicht mit -einer interessanten Algebrastruktur rechnen. -Für eine höherdimensionale, nichtabelsche Gruppe sollte sich aus -der Tatsache, dass es verschiedene eindimensionale Untergruppen gibt, -deren Elemente nicht mit den Elemente einer anderen solchen Gruppe -vertauschen, eine interessante Algebra konstruieren lassen, deren -Struktur die Nichtvertauschbarkeit wiederspiegelt. -Seien also $A$ und $B$ Tangentialvektoren einer Matrizengruppe $G$, -die zu den Einparameter-Untergruppen $\varphi(t)=\exp At$ und -$\varrho(t)=\exp Bt$ gehören. -Insbesondere gilt $\varphi'(0)=A$ und $\varrho'(0)=B$. -Das Produkt $\pi(t)=\varphi(t)\varrho(t)$ ist allerdings nicht notwendigerweise -eine Einparametergruppe, denn dazu müsste gelten +% +% Die Lie-Algebra SU(2) +% +\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$} +Die Lie-Algebra $\operatorname{su}(n)$ besteht aus den +spurlosen antihermiteschen Matrizen. +Sie erfüllen daher die folgenden Bedingungen: +\[ +A=\begin{pmatrix}a&b\\c&d\end{pmatrix} +\qquad +\text{mit} +\qquad +\left\{ +\begin{aligned} +a+d&=0&&\Rightarrow& a=is = -d +\\ +b^*&=-c +\end{aligned} +\right. +\] +Damit hat $A$ die Form +\begin{align*} +A=\begin{pmatrix} +is&u+iv\\ +-u+iv&-is +\end{pmatrix} +&= +s +\begin{pmatrix} +i&0\\ +0&-i +\end{pmatrix} ++ +u +\begin{pmatrix} + 0&1\\ +-1&0 +\end{pmatrix} ++ +v +\begin{pmatrix} +0&i\\ +i&0 +\end{pmatrix} +\\ +&= +iv\underbrace{\begin{pmatrix}0&1\\1&0\end{pmatrix}}_{\displaystyle=\sigma_1} ++ +iu\underbrace{\begin{pmatrix}0&-i\\i&0\end{pmatrix}}_{\displaystyle=\sigma_2} ++ +is\underbrace{\begin{pmatrix}1&0\\0&-1\end{pmatrix}}_{\displaystyle=\sigma_3} +\end{align*} +Diese Matrizen heissen die {\em Pauli-Matrizen}, sie haben die Kommutatoren \begin{align*} -\pi(t+s) +[\sigma_1,\sigma_2] &= -\varphi(t+s)\varrho(t+s) +\begin{pmatrix}0&1\\1&0\end{pmatrix} +\begin{pmatrix}0&-i\\i&0\end{pmatrix} +- +\begin{pmatrix}0&-i\\i&0\end{pmatrix} +\begin{pmatrix}0&1\\1&0\end{pmatrix} += +2\begin{pmatrix}i&0\\0&-i \end{pmatrix} = -\varphi(t)\varphi(s)\varrho(t)\varrho(s) +2i\sigma_3, \\ +[\sigma_2,\sigma_3] +&= +\begin{pmatrix}0&-i\\i&0\end{pmatrix} +\begin{pmatrix}1&0\\0&-1\end{pmatrix} +- +\begin{pmatrix}1&0\\0&-1\end{pmatrix} +\begin{pmatrix}0&-i\\i&0\end{pmatrix} += +2 +\begin{pmatrix}0&i\\i&0\end{pmatrix} = -\pi(t)\pi(s) +2i\sigma_1. +\\ +[\sigma_1,\sigma_3] &= -\varphi(t)\varrho(t)\varphi(s)\varrho(s) +\begin{pmatrix}0&1\\1&0\end{pmatrix} +\begin{pmatrix}1&0\\0&-1\end{pmatrix} +- +\begin{pmatrix}1&0\\0&-1\end{pmatrix} +\begin{pmatrix}0&1\\1&0\end{pmatrix} += +2i +\begin{pmatrix}0&-1\\1&0\end{pmatrix} += +2i\sigma_2, \end{align*} -Durch Multiplikation von links mit $\varphi(t)^{-1}$ und -mit $\varrho(s)^{-1}$ von rechts folgt, dass dies genau dann gilt, -wenn -\[ -\varphi(s)\varrho(t)=\varrho(t)\varphi(s). -\] -Die beiden Seiten dieser Gleichung sind erneut verschiedene Punkte -in $G$. -Durch Multiplikation mit $\varrho(t)^{-1}$ von links und mit -$\varphi(s)^{-1}$ von rechts erhält man die äquivaliente -Bedingung -\begin{equation} -\varrho(-t)\varphi(s)\varrho(t)\varphi(-s)=I. -\label{buch:lie:konjugation} -\end{equation} -Ist die Gruppe $G$ nicht kommutativ, kann man nicht -annehmen, dass diese Bedingung erfüllt ist. - -Aus \eqref{buch:lie:konjugation} erhält man jetzt eine Kurve -\[ -t \mapsto \gamma(t,s) = \varrho(-t)\varphi(s)\varrho(t)\varphi(-s) \in G -\] -in der Gruppe, die für $t=0$ durch $I$ geht. -Ihren Tangentialvektor kann man durch Ableitung bekommen: +Bis auf eine Skalierung stimmt dies überein mit den Kommutatorprodukten +der Matrizen $\omega_{23}$, $\omega_{31}$ und $\omega_{12}$ +in \eqref{buch:gruppen:eqn:so3-kommutatoren}. +Die Matrizen $-\frac12i\sigma_j$ haben die Kommutatorprodukte \begin{align*} -\frac{d}{dt}\gamma(t,s) +\bigl[-{\textstyle\frac12}i\sigma_1,-{\textstyle\frac12}i\sigma_2\bigr] +&= +-{\textstyle\frac14}[\sigma_1,\sigma_2] += +-{\textstyle\frac14}\cdot 2i\sigma_3 += +-{\textstyle\frac12}i\sigma_3 +\\ +\bigl[-{\textstyle\frac12}i\sigma_2,-{\textstyle\frac12}i\sigma_3\bigr] &= --\varrho'(-t)\varphi(s)\varrho(t)\varphi(-s) -+\varrho(-t)\varphi(s)\varrho'(t)\varphi(-t) +-{\textstyle\frac14}[\sigma_2,\sigma_3] += +-{\textstyle\frac14}\cdot 2i\sigma_1 += +-{\textstyle\frac12}i\sigma_1 \\ -\frac{d}{dt}\gamma(t)\bigg|_{t=0} +\bigl[-{\textstyle\frac12}i\sigma_3,-{\textstyle\frac12}i\sigma_1\bigr] &= --B\varphi(s) + \varphi(-s)B +-{\textstyle\frac14}[\sigma_3,\sigma_1] += +-{\textstyle\frac14}\cdot 2i\sigma_2 += +-{\textstyle\frac12}i\sigma_2 \end{align*} -Durch erneute Ableitung nach $s$ erhält man dann +Die lineare Abbildung, die \begin{align*} -\frac{d}{ds} \frac{d}{dt}\gamma(t,s)\bigg|_{t=0} -&= --B\varphi'(s) - \varphi(-s)B +\omega_{23}&\mapsto -{\textstyle\frac12}i\sigma_1\\ +\omega_{31}&\mapsto -{\textstyle\frac12}i\sigma_2\\ +\omega_{12}&\mapsto -{\textstyle\frac12}i\sigma_3 \end{align*} +abbildet ist daher ein Isomorphismus der Lie-Algebra $\operatorname{so}(3)$ +auf die Lie-Algebra $\operatorname{su}(2)$. +Die Lie-Gruppen $\operatorname{SO}(3)$ und $\operatorname{SU}(2)$ +haben also die gleiche Lie-Algebra. -% -% Die Lie-Algebra von SO(3) -% -\subsection{Die Lie-Algebra von $\operatorname{SO}(3)$} +Tatsächlich kann man Hilfe von Quaternionen die Matrix $\operatorname{SU}(2)$ +als Einheitsquaternionen beschreiben und damit eine Darstellung der +Drehmatrizen in $\operatorname{SO}(3)$ finden. +Dies wird in Kapitel~\ref{chapter:clifford} dargestellt. -% -% Die Lie-Algebra von SU(2) -% -\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$} |