diff options
author | Andreas Müller <andreas.mueller@othello.ch> | 2021-04-05 09:53:30 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@othello.ch> | 2021-04-05 09:53:30 +0200 |
commit | 150b2c4844fb8866cb13218874f0b205187a2157 (patch) | |
tree | ec61a8cc66e3de421fd1d043573a6afc1cc7d5f1 /buch/chapters/60-gruppen | |
parent | Lie-Algebra stuff (diff) | |
download | SeminarMatrizen-150b2c4844fb8866cb13218874f0b205187a2157.tar.gz SeminarMatrizen-150b2c4844fb8866cb13218874f0b205187a2157.zip |
add two Lie-Group-Problems
Diffstat (limited to 'buch/chapters/60-gruppen')
-rw-r--r-- | buch/chapters/60-gruppen/chapter.tex | 8 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/uebungsaufgaben/6001.tex | 233 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/uebungsaufgaben/6002.tex | 162 |
3 files changed, 402 insertions, 1 deletions
diff --git a/buch/chapters/60-gruppen/chapter.tex b/buch/chapters/60-gruppen/chapter.tex index 8472b58..3b1abc1 100644 --- a/buch/chapters/60-gruppen/chapter.tex +++ b/buch/chapters/60-gruppen/chapter.tex @@ -37,5 +37,11 @@ Zusammenhangs darzustellen. \input{chapters/60-gruppen/lie-algebren.tex} %\input{chapters/60-gruppen/homogen.tex} - +\section*{Übungsaufgaben} +\rhead{Übungsaufgaben} +\aufgabetoplevel{chapters/60-gruppen/uebungsaufgaben} +\begin{uebungsaufgaben} +\uebungsaufgabe{6002} +\uebungsaufgabe{6001} +\end{uebungsaufgaben} diff --git a/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex b/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex new file mode 100644 index 0000000..2acf6f6 --- /dev/null +++ b/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex @@ -0,0 +1,233 @@ +Eine Drehung eines Vektors $\vec{x}$ der Ebene $\mathbb{R}^2$ +um den Winkel $\alpha$ gefolgt von einer Translation um $\vec{t}$ +ist gegeben durch $D_\alpha\vec{x}+\vec{t}$. +Darauf lässt sich jedoch die Theorie der Matrizengruppen nicht +darauf anwenden, weil die Operation nicht die Form einer Matrixmultiplikation +schreiben. +Die Drehung und Translation kann in eine Matrix zusammengefasst werden, +indem zunächst die Ebene mit +\[ +\mathbb{R}^2\to\mathbb{R}^3 +: +\begin{pmatrix}x\\y\end{pmatrix} +\mapsto +\begin{pmatrix}x\\y\\1\end{pmatrix} +\qquad\text{oder in Vektorschreibweise }\qquad +\vec{x}\mapsto\begin{pmatrix}\vec{x}\\1\end{pmatrix} +\] +in den dreidimensionalen Raum eingebettet wird. +Die Drehung und Verschiebung kann damit in der Form +\[ +\begin{pmatrix}D_\alpha\vec{x}+\vec{t}\\1 +\end{pmatrix} += +\begin{pmatrix}D_\alpha&\vec{t}\\0&1\end{pmatrix} +\begin{pmatrix}\vec{x}\\1\end{pmatrix} +\] +als Matrizenoperation geschrieben werden. +Die Gruppe der Drehungen und Verschiebungen der Ebene ist daher +die Gruppe +\[ +G += +\left\{ +\left. +A += +\begin{pmatrix} +D_\alpha&\vec{t}\\ +0&1 +\end{pmatrix} += +\begin{pmatrix} +\cos\alpha & -\sin\alpha & t_x \\ +\sin\alpha & \cos\alpha & t_y \\ + 0 & 0 & 1 +\end{pmatrix} +\; +\right| +\; +\alpha\in\mathbb{R},\vec{t}\in\mathbb{R}^2 +\right\} +\] +Wir kürzen die Elemente von $G$ auch als $(\alpha,\vec{t})$ ab. +\begin{teilaufgaben} +\item +Verifizieren Sie, dass das Produkt zweier solcher Matrizen +$(\alpha_1,\vec{t}_1)$ und $(\alpha_2,\vec{t}_2)$ +wieder die selbe Form $(\alpha,\vec{t})$ hat und berechnen Sie +$\alpha$ und $\vec{t}_j$. +\item +Bestimmen Sie das inverse Element zu $(\alpha,\vec{t}) \in G$. +\item +Die Elemente der Gruppe $G$ sind parametrisiert durch den Winkel $\alpha$ +und die Translationskomponenten $t_x$ und $t_y$. +Rechnen Sie nach, dass +\[ +\alpha\mapsto \begin{pmatrix} D_{\alpha}&0\\0&1\end{pmatrix}, +\quad +t_x\mapsto +\begin{pmatrix} I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix}, +\qquad +t_y\mapsto +\begin{pmatrix} I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix} +\] +Einparameteruntergruppen von $G$ sind. +\item +Berechnen Sie die Tangentialvektoren $D$, $X$ und $Y$, +die zu den Einparameteruntergruppen von c) gehören. +\item +Berechnen Sie die Lie-Klammer für alle Paare von Tangentialvektoren. +\end{teilaufgaben} + +\begin{loesung} +\begin{teilaufgaben} +\item +Die Wirkung beider Gruppenelemente auf dem Vektor $\vec{x}$ ist +\begin{align*} +\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix} +\begin{pmatrix}D_{\alpha_2}&\vec{t}_2\\0&1\end{pmatrix} +\begin{pmatrix}\vec{x}\\1\end{pmatrix} +&= +\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix} +\begin{pmatrix}D_{\alpha_2}\vec{x}+\vec{t}_2\\1\end{pmatrix} += +\begin{pmatrix} +D_{\alpha_1}(D_{\alpha_2}\vec{x}+\vec{t}_2)+\vec{t}_1\\1 +\end{pmatrix} +\\ +&= +\begin{pmatrix} +D_{\alpha_1}D_{\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1\\1 +\end{pmatrix} += +\begin{pmatrix} +D_{\alpha_1+\alpha_2}&D_{\alpha_1}\vec{t}_2+\vec{t}_1\\ +0&1 +\end{pmatrix} +\begin{pmatrix}\vec{x}\\1\end{pmatrix}. +\end{align*} +Das Produkt in der Gruppe $G$ kann daher +\[ +(\alpha_1,\vec{t}_1) (\alpha_2,\vec{t}_2) += +(\alpha_1+\alpha_2,\vec{t}_1+D_{\alpha_1}\vec{t}_2) +\] +geschrieben werden. +\item +Die Inverse der Abbildung $\vec{x}\mapsto \vec{y}=D_\alpha\vec{x}+\vec{t}$ +kann gefunden werden, indem man auf der rechten Seite nach $\vec{x}$ +auflöst: +\begin{align*} +\vec{y}&=D_\alpha\vec{x}+\vec{t} +&&\Rightarrow& +D_{\alpha}^{-1}( \vec{y}-\vec{t}) &= \vec{x} +\\ +&&&& \vec{x} &= D_{-\alpha}\vec{y} + (-D_{-\alpha}\vec{t}) +\end{align*} +Die Inverse von $(\alpha,\vec{t})$ ist also $(-\alpha,-D_{-\alpha}\vec{t})$. +\item +Da $D_\alpha$ eine Einparameteruntergruppe von $\operatorname{SO}(2)$ ist, +ist $\alpha\mapsto (D_\alpha,0)$ ebenfalls eine Einparameteruntergruppe. +Für die beiden anderen gilt +\[ +\biggl(I,\begin{pmatrix}t_{x1}\\0\end{pmatrix}\biggr) +\biggl(I,\begin{pmatrix}t_{x2}\\0\end{pmatrix}\biggr) += +\biggl(I,\begin{pmatrix}t_{x1}+t_{x2}\\0\end{pmatrix}\biggr) +\quad\text{und}\quad +\biggl(I,\begin{pmatrix}0\\t_{y1}\end{pmatrix}\biggr) +\biggl(I,\begin{pmatrix}0\\t_{y2}\end{pmatrix}\biggr) += +\biggl(I,\begin{pmatrix}0\\t_{y1}+t_{y2}\end{pmatrix}\biggr), +\] +also sind dies auch Einparameteruntergruppen. +\item +Die Ableitungen sind +\begin{align*} +D +&= +\frac{d}{d\alpha}\begin{pmatrix}D_\alpha&0\\0&1\end{pmatrix}\bigg|_{\alpha=0} += +\begin{pmatrix}J&0\\0&0\end{pmatrix} += +\begin{pmatrix} +0&-1&0\\ +1& 0&0\\ +0& 0&0 +\end{pmatrix} +\\ +X +&= +\frac{d}{dt_x} +\left. +\begin{pmatrix}I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix} +\right|_{t_x=0} += +\begin{pmatrix} +0&0&1\\ +0&0&0\\ +0&0&0 +\end{pmatrix} +& +Y +&= +\frac{d}{dt_y} +\left. +\begin{pmatrix}I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix} +\right|_{t_y=0} += +\begin{pmatrix} +0&0&0\\ +0&0&1\\ +0&0&0 +\end{pmatrix} +\end{align*} +\item +Die Vertauschungsrelationen sind +\begin{align*} +[D,X] +&= +DX-XD += +\begin{pmatrix} +0&0&0\\ +0&0&1\\ +0&0&0 +\end{pmatrix} +- +\begin{pmatrix} +0&0&0\\ +0&0&0\\ +0&0&0 +\end{pmatrix} += +Y +\\ +[D,Y] +&= +DY-YD += +\begin{pmatrix} +0&0&-1\\ +0&0&0\\ +0&0&0 +\end{pmatrix} +- +\begin{pmatrix} +0&0&0\\ +0&0&0\\ +0&0&0 +\end{pmatrix} += +-X +\\ +[X,Y] +&= +XY-YX += +0-0=0 +\qedhere +\end{align*} +\end{teilaufgaben} +\end{loesung} diff --git a/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex new file mode 100644 index 0000000..43464d7 --- /dev/null +++ b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex @@ -0,0 +1,162 @@ +Die Elemente der Gruppe $G$ der Translationen und Streckungen von +$\mathbb{R}$ kann durch Paare $(\lambda,t)\in\mathbb{R}^+\times\mathbb{R}$ +beschrieben werden, +wobei $\lambda$ durch Streckung und $t$ durch Translation wirkt: +\[ +(\lambda,t)\colon \mathbb{R}\to\mathbb{R}: x\mapsto \lambda x+t. +\] +Dies ist allerdings noch keine Untergruppe einer Matrizengruppe. +Dazu bettet man $\mathbb{R}$ mit Hilfe der Abbildung +\[ +\mathbb{R}\to\mathbb{R}^2 : x\mapsto \begin{pmatrix}x\\1\end{pmatrix} +\] +in $\mathbb{R}^2$ ein. +Die Wirkung von $(\lambda,t)$ ist dann +\[ +\begin{pmatrix}(\lambda,t)\cdot x\\1\end{pmatrix} += +\begin{pmatrix} \lambda x + t\\1\end{pmatrix} += +\begin{pmatrix}\lambda&1\\0&1\end{pmatrix}\begin{pmatrix}x\\1\end{pmatrix}. +\] +Die Wirkung des Paares $(\lambda,t)$ kann also mit Hilfe einer +$2\times 2$-Matrix beschrieben werden. +Die Abbildung +\[ +G\to \operatorname{GL}_2(\mathbb{R}) +: +(\lambda,t) +\mapsto +\begin{pmatrix}\lambda&t\\0&1\end{pmatrix} +\] +bettet die Gruppe $G$ in $\operatorname{GL}_2(\mathbb{R})$ ein. +\begin{teilaufgaben} +\item +Berechnen Sie das Produkt $g_1g_2$ zweier Elemente +$g_j=(\lambda_j,t_j)$. +\item +Bestimmen Sie das inverse Elemente von $(\lambda,t)$ in $G$. +\item +Der sogenannte Kommutator zweier Elemente ist $g_1g_2g_1^{-1}g_2^{-1}$, +berechnen Sie den Kommutator für die Gruppenelemente von a). +\item +Rechnen Sie nach, dass +\[ +s\mapsto \begin{pmatrix}e^s&0\\0&1\end{pmatrix} +,\qquad +t\mapsto \begin{pmatrix}1&t\\0&1\end{pmatrix} +\] +Einparameteruntergruppen von $\operatorname{GL}_2(\mathbb{R})$ sind. +\item +Berechnen Sie die Tangentialvektoren $S$ und $T$ dieser beiden +Einparameteruntergruppen. +\item +Berechnen Sie den Kommutator $[S,T]$ +\end{teilaufgaben} + +\begin{loesung} +\begin{teilaufgaben} +\item +Die beiden Gruppenelemente wirken auf $x$ nach +\[ +(\lambda_1,t_1) +(\lambda_2,t_2) +\cdot +x += +(\lambda_1,t_1)(\lambda_2x+t_2) += +\lambda_1(\lambda_2x+t_2)+t_1) += +\lambda_1\lambda_2 x + (\lambda_1t_2+t_1), +\] +also ist $g_1g_2=(\lambda_1\lambda_2,\lambda_1t_2+t_1)$. +\item +Die Inverse von $(\lambda,t)$ kann erhalten werden, indem man die +Abbildung $x\mapsto y=\lambda x +t$ nach $x$ auflöst: +\[ +y=\lambda x+t +\qquad\Rightarrow\qquad +\lambda^{-1}(y-t) += +\lambda^{-1}y - \lambda^{-1}t. +\] +Daraus liest man ab, dass $(\lambda,t)^{-1}=(\lambda^{-1},-\lambda^{-1}t)$ +ist. +\item +Mit Hilfe der Identität $g_1g_2g_1^{-1}g_2^{-1}=g_1g_2(g_2g_1)^{-1}$ +kann man den Kommutator leichter berechnen +\begin{align*} +g_1g_2&=(\lambda_1\lambda_2,t_1+\lambda_1t_2) +\\ +g_2g_1&= (\lambda_2\lambda_1,t_2+\lambda_2t_1) +\\ +(g_2g_1)^{-1} +&= +(\lambda_1^{-1}\lambda_2^{-1}, + -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1)) +\\ +g_1g_2g_1^{-1}g_2^{-1} +&= +(\lambda_1\lambda_2,t_1+\lambda_1t_2) +(\lambda_1^{-1}\lambda_2^{-1}, + -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1)) +\\ +&=(1,t_1+\lambda_1t_2 + \lambda_1\lambda_2( + -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1)) +) +\\ +&=(1, t_1+\lambda_1t_2 - t_2 -\lambda_2t_1) += +(1,(1-\lambda_2)(t_1-t_2)) +\end{align*} +Der Kommutator ist also das neutrale Element, wenn $\lambda_2=1$ ist. +\item +Dies ist am einfachsten in der Matrixform nachzurechnen: +\begin{align*} +\begin{pmatrix} e^{s_1}&0\\0&1\end{pmatrix} +\begin{pmatrix} e^{s_2}&0\\0&1\end{pmatrix} +&= +\begin{pmatrix}e^{s_1+s_2}&0\\0&1\end{pmatrix} +& +\begin{pmatrix} 1&t_1\\0&1\end{pmatrix} +\begin{pmatrix} 1&t_2\\0&1\end{pmatrix} +&= +\begin{pmatrix} 1&t_1+t_2\\0&1\end{pmatrix} +\end{align*} +\item +Die Tangentialvektoren werden erhalten durch ableiten der +Matrixdarstellung nach dem Parameter +\begin{align*} +S +&= +\frac{d}{ds} \begin{pmatrix}e^s&0\\0&1\end{pmatrix}\bigg|_{s=0} += +\begin{pmatrix}1&0\\0&0\end{pmatrix} +\\ +T +&= +\frac{d}{dt} \begin{pmatrix}1&t\\0&1\end{pmatrix}\bigg|_{t=0} += +\begin{pmatrix}0&1\\0&0\end{pmatrix} +\end{align*} +\item Der Kommutator ist +\[ +[S,T] += +\begin{pmatrix}1&0\\0&0\end{pmatrix} +\begin{pmatrix}0&1\\0&0\end{pmatrix} +- +\begin{pmatrix}0&1\\0&0\end{pmatrix} +\begin{pmatrix}1&0\\0&0\end{pmatrix} += +\begin{pmatrix}0&1\\0&0\end{pmatrix} +- +\begin{pmatrix}0&0\\0&0\end{pmatrix} += +T. +\qedhere +\] +\end{teilaufgaben} +\end{loesung} + |