aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/70-graphen/spektral.tex
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2021-05-26 22:02:15 +0200
committerNao Pross <np@0hm.ch>2021-05-26 22:02:15 +0200
commit31fa08ffa722b2f0fba35393f661f7346d41af4e (patch)
tree318a90e21c4b130bacbb477f64addc3da2a6a2ce /buch/chapters/70-graphen/spektral.tex
parentStart working on feedback (diff)
parentMerge pull request #17 from NaoPross/book-typos (diff)
downloadSeminarMatrizen-31fa08ffa722b2f0fba35393f661f7346d41af4e.tar.gz
SeminarMatrizen-31fa08ffa722b2f0fba35393f661f7346d41af4e.zip
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'buch/chapters/70-graphen/spektral.tex')
-rw-r--r--buch/chapters/70-graphen/spektral.tex571
1 files changed, 419 insertions, 152 deletions
diff --git a/buch/chapters/70-graphen/spektral.tex b/buch/chapters/70-graphen/spektral.tex
index f68c814..5fb3056 100644
--- a/buch/chapters/70-graphen/spektral.tex
+++ b/buch/chapters/70-graphen/spektral.tex
@@ -1,198 +1,465 @@
%
-% spektral.tex
+% spektral.tex -- spektrale Graphentheorie
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
\section{Spektrale Graphentheorie
\label{buch:section:spektrale-graphentheorie}}
\rhead{Spektrale Graphentheorie}
-Die Laplace-Matrix codiert alle wesentliche Information eines
+Die Adjazenz-Matrix, die Grad-Matrix und damit natürlich auch
+die Laplace-Matrix codieren alle wesentliche Information eines
ungerichteten Graphen.
Sie operiert auf Vektoren, die für jeden Knoten des Graphen eine
Komponente haben.
Dies eröffnet die Möglichkeit, den Graphen über die linearalgebraischen
-Eigenschaften der Laplace-Matrix zu studieren.
-
-\subsection{Grapheigenschaften und Spektrum von $L$
-\label{buch:subsection:grapheigenschaften-und-spektrum-von-l}}
-TODO XXX
-
-\subsection{Wärmeleitung auf einem Graphen
-\label{buch:subsection:waermeleitung-auf-einem-graphen}}
-Die Vektoren, auf denen die Laplace-Matrix operiert, können betrachtet
-werden als Funktionen, die jedem Knoten einen Wert zuordnen.
-Eine mögliche physikalische Interpretation davon ist die Temperaturverteilung
-auf dem Graphen.
-Die Kanten zwischen den Knoten erlauben der Wärmeenergie, von einem Knoten
-zu einem anderen zu fliessen.
-Je grösser die Temperaturdifferenz zwischen zwei Knoten ist, desto
-grösser ist der Wärmefluss und desto schneller ändert sich die Temperatur
-der beteiligten Knoten.
-Die zeitliche Änderung der Temperatur $T_i$ im Knoten $i$ ist proportional
-\[
-\frac{dT_i}{dt}
-=
-\sum_{\text{$j$ Nachbar von $i$}} \kappa (T_j-T_i)
-=
--
-\kappa
-\biggl(
-d_iT_i
--
-\sum_{\text{$j$ Nachbar von $i$}} T_j
-\biggr)
-\]
-Der Term auf der rechten Seite ist genau die Wirkung der
-Laplace-Matrix auf dem Vektor $T$ der Temperaturen:
-\begin{equation}
-\frac{dT}{dt}
-=
--\kappa L T.
-\label{buch:graphen:eqn:waermeleitung}
-\end{equation}
-Der Wärmefluss, der durch die
-Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} beschrieben
-wird, codiert ebenfalls wesentliche Informationen über den Graphen.
-Je mehr Kanten es zwischen verschiedenen Teilen eines Graphen gibt,
-desto schneller findet der Wärmeaustausch zwischen diesen Teilen
-statt.
-Die Lösungen der Wärmeleitungsgleichung liefern also Informationen
-über den Graphen.
-
-\subsection{Eigenwerte und Eigenvektoren
-\label{buch:subsection:ein-zyklischer-graph}}
-Die Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung}
-ist eine lineare Differentialgleichung mit konstanten Koeffizienten,
-die mit der Matrixexponentialfunktion gelöst werden.
-Die Lösung ist
-\[
-f(t) = e^{-\kappa Lt}f(0).
-\]
+Eigenschaften dieser Matrizen zu studieren.
+Dieser Abschnitt soll diese Idee an dem ziemlich übersichtlichen Beispiel
+der chromatischen Zahl eines Graphen illustrieren.
+
+\subsection{Chromatische Zahl und Unabhängigkeitszahl
+\label{buch:subsection:chromatische-zahl}}
+Der Grad eines Knotens ist ein mass dafür, wie stark ein Graph
+``vernetzt'' ist.
+Je höher der Grad, desto mehr direkte Verbindungen zwischen Knoten gibt es.
+Noch etwas präziser können diese Idee die beiden mit Hilfe der
+chromatischen zahl und der Unabhängigkeitszahl erfasst werden.
+
+\begin{definition}
+Die {\em chromatische Zahl} $\operatorname{chr}G$ eines Graphen $G$ ist
+die minimale Anzahl von Farben, die Einfärben der Knoten eines Graphen
+nötig sind, sodass benachbarte Knoten verschiedene Farben haben.
+\index{chromatische Zahl}
+\end{definition}
+
+\begin{definition}
+Eine Menge von Knoten eines Graphen heisst {\em unabhängig}, wenn
+keine zwei Knoten im Graphen verbunden sind.
+Die {\em Unabhängigkeitszahl} $\operatorname{ind}G$ eines Graphen $G$
+ist die maximale Anzahl Knoten einer unabhängigen Menge.
+\index{Unabhängigkeitszahl}
+\end{definition}
-Die Berechnung der Lösung mit der Matrixexponentialreihe ist ziemlich
-ineffizient, da grosse Matrizenprodukte berechnet werden müssen.
-Da die Matrix $L$ symmetrisch ist, gibt es eine Basis aus
-orthonormierten Eigenvektoren und die Eigenwerte sind reell.
-Wir bezeichnen die Eigenvektoren mit $f_1,\dots,f_n$ und die
-zugehörigen Eigenwerte mit $\lambda_i$.
-Die Funktion $f_i(t)= e^{-\kappa\lambda_it}f_i$ ist dann eine Lösung
-der Wärmeleitungsgleichung, denn die beiden Seiten
+Zwischen der chromatischen Zahl und der Unabhängigkeitszahl eines Graphen
+muss es einen Zusammenhang geben.
+Je mehr Verbingungen es im Graphen gibt, desto grösser wird die chromatische
+Zahl.
+Gleichzeitig wird es schwieriger für Mengen von Knoten, unabhängig zu sein.
+
+\begin{satz}
+\label{buch:satz:chrind}
+Ist $G$ ein Graph mit $n$ Knoten, dann gilt
+$\operatorname{chr}G\cdot\operatorname{ind}G\ge n$.
+\end{satz}
+
+\begin{proof}[Beweis]
+Eine minimale Färbung des Graphen mit $\operatorname{chr}G$ Farben
+teilt die Knoten in $\operatorname{chr}G$ Mengen $V_f$ von Knoten mit
+gleicher Farbe $f$ ein.
+Da diese Mengen einfarbig sind, sind sie unabhängig, enthalten also
+höchstens so viele Knoten, wie die Unabhängigkeitszahl erlaubt,
+also $|V_f|\le \operatorname{ind}G$.
+Da die Menge aller Knoten die Vereinigung der Mengen $V_f$ ist,
+ist die Gesamtzahl der Knoten
\begin{align*}
-\frac{d}{dt}f_i(t)
+V
&=
--\kappa\lambda_ie^{-\kappa\lambda_it}f_i
-=
--\kappa\lambda_i f_i(t)
-\\
--\kappa Lf_i(t)
+\bigcup_{\text{$f$ eine Farbe}} V_f
+&&\Rightarrow&
+n
&=
--\kappa e^{-\kappa\lambda_it} Lf_i
+\sum_{\text{$f$ eine Farbe}} |V_f|
+\\
+&
+&&&
+&\le
+\sum_{\text{$f$ eine Farbe}} \operatorname{ind}G
=
--\kappa e^{-\kappa\lambda_it} \lambda_i f_i
+(\text{Anzahl Farben})\cdot \operatorname{ind}G
=
--\kappa \lambda_i f_i(t)
+\operatorname{chr}G \cdot \operatorname{ind}G.
\end{align*}
-von \eqref{buch:graphen:eqn:waermeleitung} stimmen überein.
-
-Eine Lösung der Wärmeleitungsgleichung zu einer beliebigen
-Anfangstemperaturverteilung $f$ kann durch Linearkombination aus
-den Lösungen $f_i(t)$ zusammengesetzt werden.
-Dazu ist nötig, $f$ aus den Vektoren $f_i$ linear zu kombinieren.
-Da aber die $f_i$ orthonormiert sind, ist dies besonders einfach,
-die Koeffizienten sind die Skalarprodukte mit den Eigenvektoren:
-\[
-f=\sum_{i=1}^n \langle f_i,f\rangle f_i.
-\]
-Daraus kann man die allgmeine Lösungsformel
+Damit ist $n\le \operatorname{chr}G\cdot\operatorname{ind}G$ gezeigt.
+\qedhere
+\end{proof}
+
+\begin{beispiel}
+In einem vollständigen Graphen ist jeder Knoten mit jedem anderen verbunden.
+Jede Menge mit zwei oder mehr Knoten kann daher nicht unabhängig sein, die
+Unabhängigkeitszahl ist daher $\operatorname{ind}G=1$.
+Andererseits ist für jeden Knoten eine eigene Farbe nötig, daher ist die
+chromatische Zahl $\operatorname{chr}G=n$.
+Die Ungleichung von Satz~\ref{buch:satz:chrind} ist erfüllt, sogar mit
+Gleichheit.
+Das Beispiel zeigt, dass die Ungleichung nicht ohne zusätzliche Annahmen
+verbessert werden kann.
+\end{beispiel}
+
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/petersonchrind.pdf}
+\caption{Chromatische Zahl und Unabhängigkeitszahl des Peterson-Graphen.
+Die chromatische Zahl ist $3$, da der Graph sich mit drei Farben einfärben
+lässt (links).
+Die Unabhängigkeitszahl ist $4$, die vier grösseren Knoten im rechten
+Graphen sind unabhängig.
+Die Farben der kleinen Knoten sind die additive Mischung der Farben
+der grossen Knoten, mit denen sie verbunden sind.
+\label{buch:graphen:fig:chrindpeterson}}
+\end{figure}
+
+\begin{beispiel}
+Der Peterson-Graph $P$ von Abbildung~\ref{buch:graphen:fig:chrindpeterson}
+hat chromatische Zahl $\operatorname{chr}P=3$ und unabhängigkeitszahl
+$\operatorname{ind}P=4$.
+Die Ungleichung von Satz~\ref{buch:satz:chrind} ist erfüllt, sogar als
+Ungleichung: $\operatorname{chr}P\cdot\operatorname{ind}P=3\cdot 4=12>10=n$.
+\end{beispiel}
+
+Nach Definition ist Unabhängigkeitszahl ein Mass für die Grösse einer
+unabhängigen Menge von Punkten.
+Der Beweis von Satz~\ref{buch:satz:chrind} zeigt, dass man sich die
+chromatische Zahl als ein Mass dafür, wieviele solche anabhängige
+Mengen in einem Graphen untergebracht werden können.
+
+%
+% Chromatische Zahl und maximaler Grad
+%
+\subsection{Chromatische Zahl und maximaler Grad
+\label{buch:subsection:chr-und-maximaler-grad}}
+Wenn kein Knoten mehr als $d$ Nachbarn hat, dann reichen
+$d+1$ Farben immer, um diesen Knoten und seine Nachbarn einzufärben.
+Das heisst aber noch nicht, dass dann auch $d+1$ Farben zur
+Einfärbung des ganzen Graphen reichen.
+Genau dies garantiert jedoch der folgende Satz.
+
+\begin{definition}
+Der maximale Grad
+\(
+\max_{v\in V} \deg(v)
+\)
+wird mit $d$ bezeichnet.
+\end{definition}
+
+\begin{satz}
+\label{buch:graphen:satz:chrmaxgrad}
+Ist $G$ ein Graph mit maximalem Grad $d$, dann gilt
+$\operatorname{chr}G \le d+1$.
+\end{satz}
+
+\begin{proof}[Beweis]
+Wir führen den Beweis mit Hilfe von vollständiger Induktion nach der
+Anzahl Knoten eines Graphen.
+Ein Graph mit nur einem Knoten hat keine Kanten, der maximale Grad ist
+daher $0$ und $d+1=1$ Farbe reicht auch tatsächlich zur Einfärbung des
+einen Knotens.
+
+Wir nehmen jetzt an, die Behaupt sei für Graphen mit $n-1$ Knoten bereits
+bewiesen, ein Graph $G'$ mit $n-1$ Knoten und maximalem Grad $d'$ erfüllt
+also die Ungleichung $\operatorname{chr}G'\le d'+1$.
+
+Wir wählen jetzt einen beleibigen Knoten $v$ des Graphen $G$ und bilden
+den Graphen $G'$, der aus $G$ entsteht, indem man den Knoten $v$
+entfernt: $G'=G\setminus\{v\}$.
+Der maximale Grad $d'$ von $G'$ kann dabei nicht grösser werden, es ist
+also $d'\le d$.
+Da $G'$ genau $n-1$ Knoten hat, lässt er sich mit höchstens $d'+1\le d+1$
+Farben einfärben.
+Es muss jetzt also nur noch eine Farbe für den Knoten $v$ gefunden werden.
+Da $d$ der maximale Grad ist, hat $v$ höchstens $d$ Nachbarn, die höchstens
+$d$ verschiedene Farben haben können.
+Von den $d+1$ zur Verfügung stehenden Farben bleibt also mindestens eine
+übrig, mit der man den Knoten $v$ einfärben kann.
+Damit ist der Induktionsschritt gelungen und somit der Satz bewiesen.
+\end{proof}
+
+Das Argument im Beweis von Satz~\ref{buch:graphen:satz:chrmaxgrad}
+ist für alle Begriffe anwendbar, die sich bei der Bildung eines
+Untergraphen auf ``monotone'' Art ändern.
+Die chromatische Zahl eines Untergraphen ist höchstens so gross wie die
+des ganzen Graphen.
+Dann kann man eine Ungleichung für grosse Graphen schrittweise aus
+entsprechenden Ungleichungen für die kleineren Teilgraphen gewinnen.
+Ziel der folgenden Abschnitte ist zu zeigen, dass sich eine Grösse
+mit ähnlichen Eigenschaften aus dem Eigenwertspektrum der Adjazenzmatrix
+ablesen lässt.
+Daraus ergibt sich dann eine bessere Abschätzung der chromatischen Zahl
+eines Graphen.
+
+%
+% maximaler Eigenwert und maximaler Grad
+%
+\subsection{Maximaler Eigenwert von $A(G)$ und maximaler Grad
+\label{buch:subsection:maximaler-eigenwert}}
+Die Adjazenzmatrix $A(G)$ eines Graphen $G$ mit $n$ Knoten enthält unter
+anderem auch die Information über den Grad eines Knotens.
+Die Summe der Elemente einer Zeile oder einer Spalte ergibt einen Vektor,
+der die Grade der Knoten als Komponenten enthält.
+Ist $U$ ein $n$-dimensionaler Vektor aus lauter Einsen, dann ist
+ist $A(G)U$ ein Spaltenvektor bestehend aus den Zeilensummen der Matrix
+$A(G)$ und
+$U^tA(G)$ ein Zeilenvektor bestehend aus den Spaltensummen.
+$A(G)U$ ist also der Vektor der Grade der Knoten.
+
+Das Skalarprodukt von $A(G)U$ mit $U$ ist die Summe der Grade.
+Somit ist
\begin{equation}
-f(t)
+\frac{\langle A(G)U,U\rangle}{\langle U,U\rangle}
=
-\sum_{i=1}^n \langle f_i,f\rangle f_i(t)
+\frac{1}{\langle U,U\rangle}\sum_{v\in V}\deg(v)
=
-\sum_{i=1}^n \langle f_i,f\rangle e^{-\kappa\lambda_i t}f_i
-\label{buch:graphen:eqn:eigloesung}
+\frac{1}{n}(d_1+\dots+d_n)
+\label{buch:graphen:eqn:AUdavg}
\end{equation}
-ableiten.
+der mittlere Grad, der mit $\overline{d}$ bezeichnet werden soll.
-\subsection{Beispiel: Ein zyklischer Graph}
-\begin{figure}
-\centering
-\includegraphics{chapters/70-graphen/images/kreis.pdf}
-\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem
-Graphen.
-\label{buch:graphen:fig:kreis}}
-\end{figure}
-Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen
-von Abbildung~\ref{buch:graphen:fig:kreis}.
-Besonders interessant sind die folgenden Funktionen:
+Da $A(G)$ eine symmetrische Matrix ist, ist $A(G)$ diagonalisierbar,
+die Eigenwerte sind also alle reell.
+Es ist ausserdem bekannt, dass der Eigenvektor $f$ zum grössten Eigenwert
+$\alpha_{\text{max}}$ von $A(G)$
+den Bruch
\[
-\left.
+\frac{\langle A(G)f,f\rangle}{\langle f,f\rangle}
+\]
+für Vektoren $f\ne 0$ maximiert.
+Aus~\eqref{buch:graphen:eqn:AUdavg} folgt damit, dass
+\begin{equation}
+\overline{d}
+\le
+\alpha_{\text{max}}
+\label{buch:graphen:eqn:dqueramax}
+\end{equation}
+ist.
+
+In Abschnitt~\ref{buch:section:positive-vektoren-und-matrizen}
+des nächsten Kapitels wird die Perron-Frobenius-Theorie positiver
+Matrizen vorgestellt, welche einer Reihe interessanter Aussagen
+über den betragsgrössten Eigenwert und den zugehörigen Eigenvektor
+macht.
+Die Adjazenz-Matrix ist eine nichtnegative Matrix und $\alpha_{\text{max}}$
+ist der grösste Eigenwert, also genau die Grösse, auf die die
+Sätze~\ref{buch:wahrscheinlichkeit:satz:perron-frobenius}
+und \label{buch:wahrscheinlichkeit:satz:perron-frobenius2}
+anwendbar sind.
+Dazu muss die Matrix allerdings primitiv sein, was gleichbedeutend
+ist damit, dass der Graph zusammenhängend ist.
+Im folgenden soll dies daher jeweils angenommen werden.
+
+\begin{satz}
+Ist $G$ ein zusammenhänger Graph mit $n$ Knoten und maximalem Grad $d$,
+dann gilt
+\[
+\frac1n\sum_{v\in V} \deg(v)
+=
+\overline{d}
+\le \alpha_{\text{max}} \le d.
+\]
+\end{satz}
+
+\begin{proof}[Beweis]
+Wir wissen aus \eqref{buch:graphen:eqn:dqueramax} bereits, dass
+$\overline{d}\le\alpha_{\text{max}}$ gilt, es bleibt also nur noch
+$\alpha_{\text{max}}\le d$ zu beweisen.
+
+Sei $f$ der Eigenvektor zum Eigenwert $\alpha_{\text{max}}$.
+Nach Satz~\label{buch:wahrscheinlichkeit:satz:perron-frobenius2}
+ist $f$ ein positiver Vektor mit der Eigenschaft $A(G)f=\alpha_{\text{max}}f$.
+Der Eigenvektor $f$ ist eine Funktion auf den Knoten des Graphen,
+die $v$-Komponente des Vektors $f$ für einen Vertex $v\in V$ ist $f(v)$.
+Die Eigenvektoreigenschaft bedeutet $(A(G)f)(v)=\alpha_{\text{max}} f(v)$.
+Die Adjazenzmatrix $A(G)$ enthält in Zeile $v$ Einsen genau für diejenigen
+Knoten $u\in V$, die zu $v$ benachbart sind.
+Schreiben wir $u\sim v$ für die Nachbarschaftsrelation, dann ist
+\[
+(A(G)f)(v)
+=
+\sum_{u\sim v} f(u).
+\]
+Die Summe der Komponenten $A(G)f$ kann man erhalten durch Multiplikation
+von $A(G)f$ mit einem Zeilenvektor $U^t$ aus lauter Einsen, also
+\begin{equation}
\begin{aligned}
-s_m(k)
+\sum_{v\in V}\sum_{u\sim v}f(v)
&=
-\sin\frac{2\pi mk}{n}
+U^tA(G)f
+=
+(U^tA(G))f
+=
+\begin{pmatrix}d_1&d_2&\dots&d_n\end{pmatrix} f
\\
-c_m(k)
&=
-\cos\frac{2\pi mk}{n}
+\sum_{v\in V}\deg (v) f(v)
+\le
+\sum_{v\in V}df(v)
+=
+d
+\sum_{v\in V}f(v).
\end{aligned}
-\;
-\right\}
-\quad
-\Rightarrow
-\quad
-e_m(k)
+\label{buch:graphen:eqn:sumkomp}
+\end{equation}
+Andererseits ist $A(G)f=\alpha_{\text{max}}f$, die linke Seite
+von~\eqref{buch:graphen:eqn:sumkomp} ist daher
+\begin{equation}
+\sum_{v\in V}\sum_{u\sim v}f(v)
=
-e^{2\pi imk/n}
+U^tA(G)f
=
-c_m(k) + is_m(k).
+\alpha_{\text{max}}
+U^tf
+=
+\alpha_{\text{max}} \sum_{v\in V}f(v).
+\label{buch:graphen:eqn:sumkomp2}
+\end{equation}
+Die Ungleichung~\eqref{buch:graphen:eqn:sumkomp}
+und die Gleichung~\eqref{buch:graphen:eqn:sumkomp2} ergeben zusammen
+die Ungleichung
+\[
+\alpha_{\text{max}} \sum_{v\in V}f(v)
+\le d\sum_{v\in V}f(v)
+\qquad\Rightarrow\qquad
+\alpha_{\text{max}} \le d,
\]
-Das Skalarprodukt dieser Funktionen ist
+da die Summe der Komponenten des positiven Vektors $f$ nicht verschwinden
+kann.
+Damit ist die Ungleichung bewiesen.
+\end{proof}
+
+%
+% alpha_max eines Untergraphen
+%
+\subsection{$\alpha_{\text{max}}$ eines Untergraphen
+\label{buch:subsection:alphamax-eines-untergraphen}}
+Der grösste Eigenwert $\alpha_{\text{max}}$ ist ein potentieller
+Anwärter für eine bessere Abschätzung der chromatischen Zahl.
+Bereits früher wurde bemerkt, dass dies auch bedeutet, dass man
+das Verhalten des grössten Eigenwerts bei einem Übergang zu einem
+Untergraphen verstehen muss.
+
+\begin{satz}
+\label{buch:graphen:satz:amaxuntergraph}
+Sei $G'$ ein echter Untergraph von $G$ mit Adjazenzmatrix $A(G')$ und
+grösstem Eigenwert $\alpha_{\text{max}}'=\varrho(A(G'))$, dann ist
+$\alpha_{\text{max}}' \le \alpha_{\text{max}}$.
+\end{satz}
+
+\begin{proof}[Beweis]
+Sei $f'$ der positive Eigenvektor zum Eigenwert $\alpha_{\text{max}}'$
+der Matrix $A(G')$.
+$f'$ ist definiert auf der Menge $V'$ der Knoten von $G'$.
+Aus $f'$ lässt sich ein Vektor $g$ mit den Werten
\[
-\langle e_m, e_{m'}\rangle
+g(v)
=
-\frac1n
-\sum_{k=1}^n
-\overline{e^{2\pi i km/n}}
-e^{2\pi ikm'/n}
-=
-\frac1n
-\sum_{k=1}^n
-e^{\frac{2\pi i}{n}(m'-m)k}
-=
-\delta_{mm'}
+\begin{cases}
+f'(v)&\qquad v\in V'\\
+ 0&\qquad\text{sonst}
+\end{cases}
\]
-Die Funktionen bilden daher eine Orthonormalbasis des Raums der
-Funktionen auf $G$.
-Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$
-die Funktionen
+konstruieren, der auf ganz $V$ definiert ist.
+
+Die Vektoren $f'$ und $g$ haben die gleichen Komponenten, also ist auch
+$\langle f',f'\rangle = \langle g,g\rangle$.
+Die Matrixelemente von $A(G')$ und $A(G)$ auf gemeinsamen Knoten $u,v\in V'$
+erfüllen $A(G')_{uv}\le A(G)_{uv}$, da jede Kante von $G'$ auch in $G$ ist.
+Daher gilt
\[
-c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2}
+\langle A(G')f',f'\rangle
+\le
+\langle A(G)g,g\rangle,
\]
-eine orthonormierte Basis.
+woraus sich die Ungleichung
+\[
+\alpha_{\text{max}}'
+=
+\frac{\langle A(G')f',f'\rangle}{\langle f',f'\rangle}
+=
+\frac{\langle A(G)g,g\rangle}{\langle g,g\rangle}
+\le
+\alpha_{\text{max}}
+\]
+ergibt, da $\alpha_{\text{max}}$ das Maximum von
+$\langle A(G)h,h\rangle/\langle h,h\rangle$ für alle Vektoren $h\ne 0$ ist.
+\end{proof}
+%
+% Der Satz von Wilf
+%
+\subsection{Chromatische Zahl und $\alpha_{\text{max}}$: Der Satz von Wilf
+\label{buch:subsection:chr-und-alpha-max}}
+Die in Satz~\ref{buch:graphen:satz:amaxuntergraph} beschriebene
+Eigenschaft von $\alpha_{\text{max}}$ beim Übergang zu einem Untergraphen
+ermöglich jetzt, eine besser Abschätzung für die chromatische Zahl
+zu finden.
-Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen
-Abbildung auf Funktionen auf dem Graphen gemacht werden.
-Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit
-Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist.
-Dann definieren wir die Funktion $Lf$ durch
+\begin{satz}[Wilf]
+\label{buch:graphen:satz:wilf}
+Sie $G$ ein zusammenhängder Graph und $\alpha_{\text{max}}$ der grösste
+Eigenwert seiner Adjazenzmatrix. Dann gilt
\[
-(Lf)(v)
-=
-\sum_{v'\in V} l_{vv'}f(v').
+\operatorname{chr}G\le \alpha_{\text{max}}+1.
\]
+\end{satz}
-\subsection{Standardbasis und Eigenbasis
-\label{buch:subsection:standardbasis-und-eigenbasis}}
-Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear
-kombinieren lassen, ist die Standardbasis.
-Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten
+\begin{proof}[Beweis]
+Wie der Satz~\ref{buch:graphen:satz:chrmaxgrad} kann auch der Satz von Wilf
+mit Hilfe von vollständiger Induktion über die Anzahl $n$ der Knoten
+bewiesen werden.
+
+Ein Graph mit nur einem Knoten hat die $0$-Matrix als Adjazenzmatrix,
+der maximale Eigenwert ist $\alpha_{\text{max}}=0$, und tatsächlich reicht
+$\alpha_{\text{max}}+1=1$ Farbe, um den einen Knoten einzufärben.
+
+Wir nehmen jetzt an, der Satz sei für Graphen mit $n-1$ Knoten bereits
+beweisen.
+Wir müssen dann zeigen, dass der Satz dann auch für Graphen mit $n$ Knoten
+gilt.
+
+Sei $v\in V$ ein Knoten minimalen Grades und $G'=G\setminus{v}$ der
+Untergraph, der entsteht, wenn der Knoten $v$ entfernt wird.
+Da $G'$ genau $n-1$ Knoten hat, gilt der Satz von Wilf für $G'$
+und daher kann $G'$ mit höchstens
\[
-e_v\colon V\to\mathbb R:v'\mapsto \begin{cases}
-1\qquad&v=v'\\
-0\qquad&\text{sonst.}
-\end{cases}
+\operatorname{chr}G' \le 1 + \alpha_{\text{max}}'
\]
+Farben eingefärbt werden.
+Nach Satz~\ref{buch:graphen:satz:amaxuntergraph} ist
+$\alpha_{\text{max}}'\le \alpha_{\text{max}}$,
+Also kann $G'$ mit höchstens $\alpha_{\text{max}}+1$ Farben eingefärbt werden.
+
+Da $v$ ein Knoten minimalen Grades ist, ist sein Grad
+$d(v)\le \overline{d}\le \alpha_{\text{max}}$.
+Die Nachbarn von $v$ haben also hächstens $\alpha_{\text{max}}$ verschiedene
+Farben, mit einer weiteren Farbe lässt sich also auch $G$ einfärben.
+Daraus folgt $\operatorname{chr}G\le \alpha_{\text{max}}+1$.
+\end{proof}
+
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/nine.pdf}
+\caption{Beispiel für einen Graphen, für den der
+Satz~\ref{buch:graphen:satz:wilf} von Wilf die bessere
+Abschätzung für die chromatische Zahl eines Graphen gibt als der
+maximale Grad.
+\label{buch:graphen:fig:wilfexample}}
+\end{figure}
+
+\begin{beispiel}
+Der Graph in Abbildung~\ref{buch:graphen:fig:wilfexample} 12 Kanten und 9
+Knoten, daher ist $\overline{d}\le \frac{24}{9}$.
+Der maximale Grad ist $4$ und durch explizite Rechnung mit Hilfe zum Beispiel
+von Octave ergibt, dass $\alpha_{\text{max}}\approx 2.9565$.
+Aus dem Satz von Wilf folgt, dass
+$\operatorname{chr}G\le \alpha_{\text{max}}+1$, und daraus ergibt sich
+$\operatorname{chr}G\le 3$.
+Tatsächlich ist die chromatische Zahl $\operatorname{chr}G=3$, da
+der Graph mindestens ein Dreieck enthält.
+Der maximale Grad ist 4, somit gibt der
+Satz~\ref{buch:graphen:satz:chrmaxgrad}
+die Schranke
+$\operatorname{chr}G\le 4+1=5$
+für die chromatische Zahl.
+Der Satz von Wilf ist also eine wesentliche Verbesserung, er liefert in
+diesem Fall den exakten Wert der chromatischen Zahl.
+\end{beispiel}
+