diff options
author | Pascal Schmid <81317360+paschost@users.noreply.github.com> | 2021-05-24 21:17:59 +0200 |
---|---|---|
committer | Pascal Schmid <81317360+paschost@users.noreply.github.com> | 2021-05-24 21:17:59 +0200 |
commit | dab16fe994a13728b9ce9f279c4f90463f3474e7 (patch) | |
tree | 31624324a879c9944c9035b25407bc6ea839763f /buch/chapters/70-graphen | |
parent | Merge branch 'part_verkehr' of https://github.com/paschost/SeminarMatrizen in... (diff) | |
parent | Wavelets auf einem Graphen (diff) | |
download | SeminarMatrizen-dab16fe994a13728b9ce9f279c4f90463f3474e7.tar.gz SeminarMatrizen-dab16fe994a13728b9ce9f279c4f90463f3474e7.zip |
Merge branch 'AndreasFMueller:master' into part_verkehr
Diffstat (limited to 'buch/chapters/70-graphen')
-rw-r--r-- | buch/chapters/70-graphen/beschreibung.tex | 2 | ||||
-rw-r--r-- | buch/chapters/70-graphen/images/Makefile | 5 | ||||
-rw-r--r-- | buch/chapters/70-graphen/images/gh.pdf | bin | 0 -> 26177 bytes | |||
-rw-r--r-- | buch/chapters/70-graphen/images/gh.tex | 55 | ||||
-rw-r--r-- | buch/chapters/70-graphen/spektral.tex | 25 | ||||
-rw-r--r-- | buch/chapters/70-graphen/wavelets.tex | 228 |
6 files changed, 292 insertions, 23 deletions
diff --git a/buch/chapters/70-graphen/beschreibung.tex b/buch/chapters/70-graphen/beschreibung.tex index 25cfcc0..a0f46da 100644 --- a/buch/chapters/70-graphen/beschreibung.tex +++ b/buch/chapters/70-graphen/beschreibung.tex @@ -401,7 +401,7 @@ Sie hat für $i\ne j$ die Einträge \\ &=\text{Anzahl der Kanten, die $i$ mit $j$ verbinden} \\ -&=a_{ij} +&=a_{ij}. \end{align*} Die Adjazenzmatrix eines Graphen lässt sich also aus der Inzidenzmatrix berechnen. diff --git a/buch/chapters/70-graphen/images/Makefile b/buch/chapters/70-graphen/images/Makefile index d34247b..5db54c8 100644 --- a/buch/chapters/70-graphen/images/Makefile +++ b/buch/chapters/70-graphen/images/Makefile @@ -4,7 +4,7 @@ # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # all: peterson.pdf adjazenzu.pdf adjazenzd.pdf kreis.pdf fundamental.pdf \ - petersonchrind.pdf nine.pdf + petersonchrind.pdf nine.pdf gh.pdf peterson.pdf: peterson.tex pdflatex peterson.tex @@ -26,3 +26,6 @@ fundamental.pdf: fundamental.tex nine.pdf: nine.tex pdflatex nine.tex +gh.pdf: gh.tex + pdflatex gh.tex + diff --git a/buch/chapters/70-graphen/images/gh.pdf b/buch/chapters/70-graphen/images/gh.pdf Binary files differnew file mode 100644 index 0000000..c6e48d7 --- /dev/null +++ b/buch/chapters/70-graphen/images/gh.pdf diff --git a/buch/chapters/70-graphen/images/gh.tex b/buch/chapters/70-graphen/images/gh.tex new file mode 100644 index 0000000..fcceb5f --- /dev/null +++ b/buch/chapters/70-graphen/images/gh.tex @@ -0,0 +1,55 @@ +% +% gh.tex -- Lokalsierungsfunktionen für Wavelets auf einem Graphen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\kurve#1#2{ + \draw[color=#2,line width=1.4pt] + plot[domain=0:6.3,samples=400] + ({\x},{7*\x*exp(-(\x/#1)*(\x/#1))/#1}); +} + +\begin{scope} + +\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}]; + +\kurve{1}{red} +\foreach \k in {0,...,4}{ + \pgfmathparse{0.30*exp(ln(2)*\k)} + \xdef\l{\pgfmathresult} + \kurve{\l}{blue} +} + +\node[color=red] at ({0.7*1},3) [above] {$g(\lambda)$}; +\node[color=blue] at ({0.7*0.3*16},3) [above] {$g_i(\lambda)$}; + +\draw[->] (0,-0.1) -- (0,3.3); +\end{scope} + +\begin{scope}[xshift=7cm] + +\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}]; + +\draw[color=darkgreen,line width=1.4pt] + plot[domain=0:6.3,samples=100] + ({\x},{3*exp(-(\x/0.5)*(\x/0.5)}); + +\draw[->] (0,-0.1) -- (0,3.3) coordinate[label={right:$\color{darkgreen}h(\lambda)$}]; + +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/70-graphen/spektral.tex b/buch/chapters/70-graphen/spektral.tex index 571b7e1..5fb3056 100644 --- a/buch/chapters/70-graphen/spektral.tex +++ b/buch/chapters/70-graphen/spektral.tex @@ -56,8 +56,10 @@ Eine minimale Färbung des Graphen mit $\operatorname{chr}G$ Farben teilt die Knoten in $\operatorname{chr}G$ Mengen $V_f$ von Knoten mit gleicher Farbe $f$ ein. Da diese Mengen einfarbig sind, sind sie unabhängig, enthalten also -höchstens so viele Knoten, wie die Unabhängigkeitszahl erlaubt. -Die Gesamtzahl der Knoten ist also +höchstens so viele Knoten, wie die Unabhängigkeitszahl erlaubt, +also $|V_f|\le \operatorname{ind}G$. +Da die Menge aller Knoten die Vereinigung der Mengen $V_f$ ist, +ist die Gesamtzahl der Knoten \begin{align*} V &= @@ -66,15 +68,15 @@ V n &= \sum_{\text{$f$ eine Farbe}} |V_f| -\le -\sum_{\text{$f$ eine Farbe}} \operatorname{ind}G -= -(\text{Anzahl Farben})\cdot \operatorname{ind}G \\ & &&& -&= -\operatorname{chr}G \cdot \operatorname{ind}G +&\le +\sum_{\text{$f$ eine Farbe}} \operatorname{ind}G += +(\text{Anzahl Farben})\cdot \operatorname{ind}G += +\operatorname{chr}G \cdot \operatorname{ind}G. \end{align*} Damit ist $n\le \operatorname{chr}G\cdot\operatorname{ind}G$ gezeigt. \qedhere @@ -117,7 +119,7 @@ Nach Definition ist Unabhängigkeitszahl ein Mass für die Grösse einer unabhängigen Menge von Punkten. Der Beweis von Satz~\ref{buch:satz:chrind} zeigt, dass man sich die chromatische Zahl als ein Mass dafür, wieviele solche anabhängige -Mengen in einem Grapehn untergebracht werden können. +Mengen in einem Graphen untergebracht werden können. % % Chromatische Zahl und maximaler Grad @@ -131,7 +133,7 @@ Einfärbung des ganzen Graphen reichen. Genau dies garantiert jedoch der folgende Satz. \begin{definition} -Der {\em maximale Grad} +Der maximale Grad \( \max_{v\in V} \deg(v) \) @@ -455,7 +457,8 @@ Satz~\ref{buch:graphen:satz:chrmaxgrad} die Schranke $\operatorname{chr}G\le 4+1=5$ für die chromatische Zahl. -Der Satz von Wilf ist also eine wesentliche Verbesserung. +Der Satz von Wilf ist also eine wesentliche Verbesserung, er liefert in +diesem Fall den exakten Wert der chromatischen Zahl. \end{beispiel} diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex index 9c88c08..ae065bc 100644 --- a/buch/chapters/70-graphen/wavelets.tex +++ b/buch/chapters/70-graphen/wavelets.tex @@ -103,22 +103,230 @@ aus der sich alle Vektoren linear kombinieren lassen, in der aber auch auf die für die Anwendung interessante Längenskala angepasste Funktionen gefunden werden können. -\subsection{Wavelets und Frequenzspektrum} -Eine Wavelet-Basis der Funktionen auf $\mathbb{R}$ zerlegt +\subsection{Wavelets auf einem Graphen} +Die Fourier-Theorie analysiert Funktionen nach Frequenzen, wobei die +zeitliche Position von interessanten Stellen der Funktion in der Phase +der einzelnen Komponenten verschwindet. +Die Lokalisierung geht also für viele praktische Zwecke verloren. +Umgekehrt haben einzelne Ereignisse wie eine $\delta$-Funktion keine +charakteristische Frequenz, sie sind daher im Frequenzraum überhaupt +nicht lokalisierbar. +Die Darstellung im Frequenzraum und in der Zeit sind also extreme +Darstellungen, entweder Frequenzlokalisierung oder zeitliche Lokalisierung +ermöglichen, sich aber gegenseitig ausschliessen. +\subsubsection{Dilatation} +Eine Wavelet-Basis für die $L^2$-Funktionen auf $\mathbb{R}$ erlaubt +eine Funktion auf $\mathbb{R}$ auf eine Art zu analysieren, die eine +ungenaue zeitliche Lokalisierung bei entsprechend ungenauer +Frequenzbestimmung ermöglicht. +Ausserdem entstehen die Wavelet-Funktionen aus einer einzigen Funktion +$\psi(t)$ durch Translation um $b$ und Dilatation mit dem Faktor $a$: +\[ +\psi_{a,b}(t) += +\frac{1}{\sqrt{|a|}} \psi\biggl(\frac{t-b}a\biggr) += +T_bD_a\psi(t) +\] +in der Notation von \cite{buch:mathsem-wavelets}. +Auf einem Graphen ist so eine Konstruktion grundsätzlich nicht möglich, +da es darauf weder eine Translations- noch eine Streckungsoperation gibt. + +In der Theorie der diskreten Wavelet-Transformation ist es üblich, sich +auf Zweierpotenzen als Streckungsfaktoren zu beschränken. +Ein Gitter wird dadurch auf sich selbst abgebildet, aber auf einem +Graphen gibt es keine Rechtfertigung für diese spezielle Wahl von +Streckungsfaktoren mehr. +Es stellt sich daher die Frage, ob man für eine beliebige Menge +\( +T= \{ t_1,t_2,\dots\} \} +\) +von Streckungsfaktoren eine Familie von Funktionen $\chi_j$ zu finden +derart, dass man sich die $\chi_j$ in einem gewissen Sinn als aus +$\chi_0$ durch Dilatation entstanden vorstellen kann. -\subsection{Frequenzspektrum -\label{buch:subsection:frequenzspektrum}} -Die Fundamentallösung der Wärmeleitunsgleichung haben ein Spektrum, welches -wie $e^{-k^2}$ gegen $0$ geht. +Die Dilatation kann natürlich nicht von einer echten +Dilatation im Ortsraum herstammen, aber man kann wenigstens versuchen, die +Dilatation im Frequenzraum nachzubilden. +Für Funktionen in $L^2(\mathbb{R})$ entspricht die Dilatation mit dem +Faktor $a$ im Ortsraum der Dilatation mit dem Faktor $1/a$ im Frequenzraum: +\[ +\widehat{D_af}(\omega) = D_{1/a}\hat{f}(\omega). +\] +\cite[Satz~3.14]{buch:mathsem-wavelets}. +Es bleibt aber das Problem, dass sich auch die Skalierung im Frequenzraum +nicht durchführen lässt, da auch das Frequenzspektrum des Graphen nur eine +Menge von reellen Zahlen ohne innere algebraische Struktur ist. + +\subsubsection{Mutterwavelets} +\begin{figure} +\centering +\includegraphics{chapters/70-graphen/images/gh.pdf} +\caption{Lokalisierungsfunktion $g(\lambda)$ für die Dilatation (links). +Die Dilatierten Funktionen $g_i=\tilde{D}_{1/a_i}g$ lokalisieren +die Frequenzen jeweils um die Frequenzen $a_i$ im Frequenzraum. +Der Konstante Vektor ist vollständig delokalisiert, die Funktion $h$ +in der rechten Abbildung entfernt die hohen Frequenzen und liefert Funktionen, +die in der Umgebung eines Knotens wie die Konstante Funktion aussehen. +\label{buch:graphs:fig:lokalisierung}} +\end{figure} +Das Mutter-Wavelet einer Wavelet-Analyse zeichnet definiert, in welchem Mass +sich Funktionen im Orts- und im Frequenzraum lokalisieren lassen. +Die Standardbasis der Funktionen auf einem Graphen repräsentieren die +perfekte örtliche Lokalisierung, Eigenbasis der Laplace-Matrix repräsentiert +die perfekte Lokalisierung im Frequenzraum. +Sei $g(\lambda)\ge 0$ eine Funktion im Frequenzraum, die für $\lambda\to0$ und +$\lambda\to\infty$ rasch abfällt mit einem Maximum irgendwo dazwischen +(Abbildung~\ref{buch:graphs:fig:lokalisierung}). +Sie kann als eine Lokalisierungsfunktion im Frequenzraum betrachtet werden. -Die Fundamentallösung entsteht dadurch, dass die hohen Frequenzen -schneller dämpft als die tiefen Frequenzen. +Die Matrix $g(I)$ bildet entfernt aus einer Funktion die ganz hohen und +die ganz tiefen Frequenz, lokalisiert also die Funktionen im Frequenzraum. +Die Standardbasisvektoren werden dabei zu Funktionen, die nicht mehr nur +auf einem Knoten von $0$ verschieden sind, aber immer noch einigermassen +auf dem Graphen lokalisiert sind. +Natürlich sind vor allem die Werte auf den Eigenwerten +$\lambda_0 < \lambda_1\le \dots\le \lambda_n$ der Laplace-Matrix +von Interesse. +Die Matrix $g(I)$ kann mit Hilfe der Spektraltheorie berechnet werden, +was im vorliegenden Fall naheliegend ist, weil ja die Eigenvektoren von +der Laplace-Matrix bereits bekannt sind. +Die Matrix $\chi^t$ bildet die Standardbasisvektoren in die +Eigenbasis-Vektoren ab, also in eine Zerlegung im Frequenzraum ab, +$\chi$ vermittelt die Umkehrabbildung. +Mit der Spektraltheorie findet man für die Abbildung $g(I)$ die Matrix +\begin{equation} +g(I) += +\chi +\begin{pmatrix} +g(\lambda_0)&0&\dots&0\\ +0&g(\lambda_1)&\dots&0\\ +\vdots&\vdots&\ddots&\vdots\\ +0&0&\dots&g(\lambda_n) +\end{pmatrix} +\chi^t. +\label{buch:graphen:eqn:mutterwavelet} +\end{equation} -\subsection{Wavelet-Basen -\label{buch:subsection:}} +\subsubsection{Dilatation} +Die Dilatation um $a$ im Ortsraum wird zu einer Dilatation um $1/a$ im +Frequenzraum. +Statt also nach einer echten Dilatation der Spaltenvektoren in $g(I)$ +zu suchen, kann man sich darauf verlegen, Funktionen zu finden, deren +Spektrum von einer Funktionen lokalisiert worden ist, die eine Dilatation +von $g$ ist. +Man wählt daher eine ansteigende Folge $A=(a_1,\dots)$ von Streckungsfaktoren +und betrachtet anstelle von $g$ die dilatierten Funktionen +$g_i=\tilde{D}_{1/a_i}g$. +Die zugehörigen Wavelet-Funktionen auf dem Graphen können wieder mit +der Formel~\eqref{buch:graphen:eqn:mutterwavelet} berechnet werden, +man erhält +\begin{equation} +\tilde{D}_{1/a_i}g(I) += +g_i(I) += +\chi +\begin{pmatrix} +g(a_i\lambda_0)&0&\dots&0\\ +0&g(a_i\lambda_1)&\dots&0\\ +\vdots&\vdots&\ddots&\vdots\\ +0&0&\dots&g(a_i\lambda_n) +\end{pmatrix} +\chi^t . +\end{equation} +Die Spalten von $g_i(I)$ bilden wieder eine Menge von Funktionen, die +eine gemäss $g_i$ lokalisiertes Spektrum haben. +\subsubsection{Vater-Wavelet} +Wegen $g(0)=0$ wird die konstante Funktion, die Eigenvektor zum Eigenwert +$\lambda_0=0$ ist, von den Abbildungen $g_i(I)$ auf $0$ abgebildet. +Andererseits ist diese Funktion nicht lokalisiert, man möchte Sie also +für die Analyse nicht unbedingt verwenden. +Man wählt daher eine Funktion $h(\lambda)$ mit $h(0)=1$ so, dass +für $\lambda\to \infty$ der Wert $h(\lambda)$ genügend rasch gegen $0$ +geht. +Die Matrix $h(I)$ bildet daher den konstanten Vektor nicht auf $0$ ab, +sondern lokalisiert ihn im Ortsraum. +Wir erhalten daher in den Spalten von $h(I)$ Vektoren, die um die +einzelnen Knoten lokalisiert sind. + +\subsubsection{Rekonstruktion} +Die Operatoren $h(I)$ und $g_i(I)$ erzeugen analysieren eine Funktion +nach den verschiedenen Frequenzen mit den Skalierungsfaktoren $a_i$, +aber die Rekonstruktion ist noch nicht klar. +Diese wäre einfacher, wenn die Operatoren zusammen die identische +Abbildung ergäben, wenn also +\[ +h(I) + \sum_{i}g_i(I)=I +\] +gelten würde. +Nach der Spektraltheorie gilt das nur, wenn für alle Eigenwerte +$\lambda_k$, $k=1,\dots,n$ +\[ +h(\lambda_k) + \sum_ig(a_i\lambda_k)=1 +\] +gilt. +Für beleibige Funktionen $g$ und $h$ kann man nicht davon ausgehen, +aber man kann erwarten. +Man muss daher zusätzlich verlangen, dass +\[ +h(\lambda_k) + \sum_{i} g(a_i\lambda_k) > 0 +\] +ist für alle Eigenwerte $\lambda_k$. + +\subsubsection{Frame} +Die Menge von Vektoren, die in der vorangegangenen Konstruktion gefunden +wurden, ist zu gross, um eine Basis zu sein. +Vektoren lassen sich darin auf verschiedene Art darstellen. +Wir verlangen aber auch keine eindeutige Darstellung, nur eine +Darstellung, in der wir die ``dominierenden'' Komponenten in jeder +Frequenzskala identifizieren können. + +\begin{definition} +\label{buch:graphen:def:frame} +Ein Frame des Vektorraumes $\mathbb{R}^n$ ist eine Menge +$F=\{e_k\;|\; k=1,\dots,N\}$ von Vektoren mit der Eigenschaft +\begin{equation} +A\|v\|^2 +\le +\sum_{k=1}^N |\langle v,e_k\rangle|^2 +\le +B\|v\|^2 +\label{buch:graphen:eqn:frame} +\end{equation} +Die Zahlen $A$ und $B$ heissen die {\em Frame-Konstanten} des Frames. +\end{definition} + +Die oben gefundenen Vektoren, die Spalten Vektoren von $h(I)$ und $g_i(I)$ +bilden daher ein Frame. +Die Frame-Konstanten kann man unmittelbar ausrechnen. +Der mittlere Term von \eqref{buch:graphen:eqn:frame} ist +\[ +\|h(I) v\|^2 ++ +\sum_{i} \|g_i(I)v\|^2, +\] +die durch die Funktion +\[ +f(\lambda) += +h(\lambda)^2 + \sum_i g_i(\lambda)^2 +\] +abgeschätzt werden kann. +Die Frame-Konstanten sind daher +\begin{align*} +A&=\min_{k} f(\lambda_k) +& +&\text{und}& +B&=\max_{k} f(\lambda_k). +\end{align*} +Die Konstruktion hat also ein Frame für die Funktionen auf dem Graphen +etabliert, die viele Eigenschaften einer Multiskalenanalyse in diese +wesentlich weniger symmetrische Situation rettet. |