aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/70-graphen
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-08-03 07:37:42 +0200
committerGitHub <noreply@github.com>2021-08-03 07:37:42 +0200
commitf31aca6129f3c84f1ed4f59378fd31cbdc58ec3b (patch)
tree97c32dbdcbcc888a9030d149f5a765f006fcd631 /buch/chapters/70-graphen
parent1. Version Kapitel Rotation und Spiegelung (diff)
parentMerge pull request #60 from Kuehnee/master (diff)
downloadSeminarMatrizen-f31aca6129f3c84f1ed4f59378fd31cbdc58ec3b.tar.gz
SeminarMatrizen-f31aca6129f3c84f1ed4f59378fd31cbdc58ec3b.zip
Merge branch 'master' into master
Diffstat (limited to 'buch/chapters/70-graphen')
-rw-r--r--buch/chapters/70-graphen/chapter.tex2
-rw-r--r--buch/chapters/70-graphen/wavelets.tex2
2 files changed, 2 insertions, 2 deletions
diff --git a/buch/chapters/70-graphen/chapter.tex b/buch/chapters/70-graphen/chapter.tex
index 6def393..530d96c 100644
--- a/buch/chapters/70-graphen/chapter.tex
+++ b/buch/chapters/70-graphen/chapter.tex
@@ -19,7 +19,7 @@ erste Approximation dreidimensionaler Objekte dienen.
Die Bedeutung des Graphenkozeptes wird unterstrichen von der Vielzahl
von Fragestellungen, die über Graphen gestellt, und der
-zugehöriten Lösungsalgorithmen, die zu ihrer Beantwortung gefunden
+zugehörigen Lösungsalgorithmen, die zu ihrer Beantwortung gefunden
worden sind.
Die Komplexitätstheorie hat sogar gezeigt, dass sich jedes diskrete
Problem in ein Graphenproblem umformulieren lässt.
diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex
index ef1520e..8baa88c 100644
--- a/buch/chapters/70-graphen/wavelets.tex
+++ b/buch/chapters/70-graphen/wavelets.tex
@@ -10,7 +10,7 @@ In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis} wurde
gezeigt dass die Standardbasis den Zusammenhang zwischen den einzelnen
Teilen des Graphen völlig ignoriert, während die Eigenbasis Wellen
beschreibt, die mit vergleichbarer Amplitude sich über den ganzen
-Graphen entsprechen.
+Graphen erstrecken.
Die Eigenbasis unterdrückt also die ``Individualität'' der einzelnen
Knoten fast vollständig.