diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-06-14 07:26:10 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-06-14 07:26:10 +0200 |
commit | 114633b43a0f1ebedbc5dfd85f75ede9841f26fd (patch) | |
tree | 18e61c7d69883a1c9b69098b7d36856abaed5c1e /buch/chapters/90-crypto/uebungsaufgaben | |
parent | Delete buch.pdf (diff) | |
parent | Fix references.bib (diff) | |
download | SeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.tar.gz SeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.zip |
Merge branch 'master' into master
Diffstat (limited to 'buch/chapters/90-crypto/uebungsaufgaben')
-rw-r--r-- | buch/chapters/90-crypto/uebungsaufgaben/9001.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/buch/chapters/90-crypto/uebungsaufgaben/9001.tex b/buch/chapters/90-crypto/uebungsaufgaben/9001.tex index 5bf4558..7ed1e57 100644 --- a/buch/chapters/90-crypto/uebungsaufgaben/9001.tex +++ b/buch/chapters/90-crypto/uebungsaufgaben/9001.tex @@ -6,7 +6,7 @@ Welchen gemeinsamen Schlüssel verwenden $A$ und $B$? \begin{loesung} Der zu verwendende gemeinsame Schlüssel ist -$g^{ab}=(g^b)^a = y^a\in\mathbb{F}_2027$. +$g^{ab}=(g^b)^a = y^a\in\mathbb{F}_{2027}$. Diese Potenz kann man mit dem Divide-and-Conquer-Algorithmus effizient berechnen. Die Binärdarstellung des privaten Schlüssels von $A$ ist |