aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/90-crypto/uebungsaufgaben
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-06-14 07:26:10 +0200
committerGitHub <noreply@github.com>2021-06-14 07:26:10 +0200
commit114633b43a0f1ebedbc5dfd85f75ede9841f26fd (patch)
tree18e61c7d69883a1c9b69098b7d36856abaed5c1e /buch/chapters/90-crypto/uebungsaufgaben
parentDelete buch.pdf (diff)
parentFix references.bib (diff)
downloadSeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.tar.gz
SeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.zip
Merge branch 'master' into master
Diffstat (limited to 'buch/chapters/90-crypto/uebungsaufgaben')
-rw-r--r--buch/chapters/90-crypto/uebungsaufgaben/9001.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/buch/chapters/90-crypto/uebungsaufgaben/9001.tex b/buch/chapters/90-crypto/uebungsaufgaben/9001.tex
index 5bf4558..7ed1e57 100644
--- a/buch/chapters/90-crypto/uebungsaufgaben/9001.tex
+++ b/buch/chapters/90-crypto/uebungsaufgaben/9001.tex
@@ -6,7 +6,7 @@ Welchen gemeinsamen Schlüssel verwenden $A$ und $B$?
\begin{loesung}
Der zu verwendende gemeinsame Schlüssel ist
-$g^{ab}=(g^b)^a = y^a\in\mathbb{F}_2027$.
+$g^{ab}=(g^b)^a = y^a\in\mathbb{F}_{2027}$.
Diese Potenz kann man mit dem Divide-and-Conquer-Algorithmus effizient
berechnen.
Die Binärdarstellung des privaten Schlüssels von $A$ ist