aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/95-homologie/fixpunkte.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-08-24 17:21:53 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-08-24 17:21:53 +0200
commit13304c02851094180b714d71451f279966fb582f (patch)
tree13950212fb6623bf948c2fcabb6ee88ca6e459ee /buch/chapters/95-homologie/fixpunkte.tex
parentsymmetry fix (diff)
downloadSeminarMatrizen-13304c02851094180b714d71451f279966fb582f.tar.gz
SeminarMatrizen-13304c02851094180b714d71451f279966fb582f.zip
simpliziale Approximation
Diffstat (limited to '')
-rw-r--r--buch/chapters/95-homologie/fixpunkte.tex18
1 files changed, 17 insertions, 1 deletions
diff --git a/buch/chapters/95-homologie/fixpunkte.tex b/buch/chapters/95-homologie/fixpunkte.tex
index 80daaee..b3b184e 100644
--- a/buch/chapters/95-homologie/fixpunkte.tex
+++ b/buch/chapters/95-homologie/fixpunkte.tex
@@ -54,6 +54,18 @@ Dimension, die Matrizen $H_k(f)$ sind also relativ klein.
Es ist aber nicht klar, dass beide Berechnungsmethoden für die
Lefshetz-Zahl auf das gleiche Resultat führen müssen.
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/95-homologie/images/approximation.pdf}
+\caption{Stückweise lineare Approximation einer Abbildung derart,
+dass die Bildpunkt von Knoten auf Gitterpunkte fallen.
+Die Abbildung wird damit zu einer Abbildung von Polyedern und
+die induzierte Abbildung der Kettenkomplexe lässt sich direkt berechnen.
+Wenn die Auflösung des Gitters klein genug ist, hat die Approximation
+einer Abbildung ohne Fixpunkte immer noch keine Fixpunkte.
+\label{buch:homologie:fig:simplapprox}}
+\end{figure}%
+
\begin{proof}[Beweis]
Im Abschnitt~\ref{buch:subsection:induzierte-abbildung} wurde gezeigt,
dass die Basis des Komplexes immer so gewählt werden kann, dass für
@@ -78,7 +90,7 @@ werden:
\sum_{k=0}^\infty (-1)^k\operatorname{Spur}(f_{k,B})
\\
&=
-\sum_{k=0} (-1)^k\operatorname{Spur}(f_{k,Z}).
+\sum_{k=0}^\infty (-1)^k\operatorname{Spur}(f_{k,Z}).
\intertext{Die Abbildung $H_k(f)$ hat $f_{k,Z}$ als Matrix, also ist
die letzte Form gleichbedeutend mit}
&=
@@ -100,6 +112,7 @@ ist $\lambda(f) \ne 0$, dann hat $f$ einen Fixpunkt.
Im Folgenden soll nur ein heuristisches Argument gegeben werden, warum
ein solcher Satz wahr sein könnte.
+
Wenn eine Abbildung keinen Fixpunkt hat, dann ist $f(x) \ne x$ für alle
Punkte von $X$.
Da $X$ kompakt ist, gibt es einen minimalen Abstand $d$ zwischen $f(x)$ und $x$.
@@ -109,6 +122,9 @@ Punkte im selben Simplex oder in einem Nachbarsimplex abgebildet wird.
Indem man nötigenfalls die Triangulation nochmals verfeinert, kann man auch
genügend Platz schaffen, dass man die Abbildung $f$ etwas modifizieren kann,
so dass auch die deformierte Abbildung immer noch diese Eigenschaft hat.
+Die Abbildung~\ref{buch:homologie:fig:simplapprox} illustriert, wie eine
+Abbildung durch eine andere approximiert werden kann, die die Triangulation
+im Bildraum respektiert.
Die zugehörige Abbildung des Kettenkomplexes der Triangulation hat damit
die Eigenschaft, dass kein Basisvektor auf sich selbst abgebildet wird.