aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/95-homologie/induzierteabb.tex
diff options
context:
space:
mode:
authorReto <reto.fritsche@ost.ch>2021-08-31 23:42:02 +0200
committerReto <reto.fritsche@ost.ch>2021-08-31 23:42:02 +0200
commit2657b49e75509661039bd8b35fdf9a23d4807b1b (patch)
tree5cb374246353de7357435d9abc09efa9172ef63f /buch/chapters/95-homologie/induzierteabb.tex
parentadded syndrome table (diff)
parentKapitel 3 (diff)
downloadSeminarMatrizen-2657b49e75509661039bd8b35fdf9a23d4807b1b.tar.gz
SeminarMatrizen-2657b49e75509661039bd8b35fdf9a23d4807b1b.zip
Merge remote-tracking branch 'upstream/master' into mceliece
Diffstat (limited to '')
-rw-r--r--buch/chapters/95-homologie/induzierteabb.tex204
1 files changed, 204 insertions, 0 deletions
diff --git a/buch/chapters/95-homologie/induzierteabb.tex b/buch/chapters/95-homologie/induzierteabb.tex
new file mode 100644
index 0000000..13591d7
--- /dev/null
+++ b/buch/chapters/95-homologie/induzierteabb.tex
@@ -0,0 +1,204 @@
+\subsection{Induzierte Abbildung
+\label{buch:subsection:induzierte-abbildung}}
+Früher haben wurde eine Abbildung $f_*$ zwischen Kettenkomplexen $C_*$ und
+$D_*$ so definiert,
+dass sie mit den Randoperatoren verträglich sein muss.
+Diese Forderung bewirkt, dass sich auch eine lineare Abbildung
+\[
+H_k(f) \colon H_k(C) \to H_k(D)
+\]
+zwischen den Homologiegruppen ergibt, wie wir nun zeigen wollen.
+
+\subsubsection{Definition der induzierten Abbildung}
+Um eine Abbildung von $H_k(C)$ nach $H_k(D)$ zu definieren, müssen wir
+zu einem Element von $H_k(C)$ ein Bildelement konstruieren.
+Ein Element in $H_k(C)$ ist eine Menge von Zyklen in $Z^C_k$, die sich
+nur um einen Rand in $B_k$ unterscheiden.
+Wir wählen also einen Zyklus $z\in Z_k$ und bilden ihn auf $f_k(z)$ ab.
+Wegen $\partial^D_kf(z)=f\partial^C_kz = f(0) =0 $ ist auch $f_k(z)$
+ein Zyklus.
+Wir müssen jetzt aber noch zeigen, dass eine andere Wahl des Zyklus
+das gleiche Element in $H_k(D)$ ergibt.
+Dazu genügt es zu sehen, dass sich $f(z)$ höchstens um einen Rand
+ändert, wenn man $z$ um einen Rand ändert.
+Sei also $b\in B^C_k$ ein Rand, es gibt also ein $w\in C_{k+1}$ mit
+$\partial^C_{k+1}w=b$.
+Dann gilt aber auch
+\[
+f_k(z+b)
+=
+f_k(z) + f_k(b)
+=
+f_k(z) + f_k(\partial^C_{k+1}w)
+=
+f_k(z) + \partial^D_{k+1}(f_k(w)).
+\]
+Der letzte Term ist ein Rand in $D_k$, somit ändert sich $f_k(z)$ nur
+um diesen Rand, wenn man $z$ um einen Rand ändert.
+$f_k(z)$ und $f_k(z+b)$ führen auf die selbe Homologieklasse.
+
+\subsubsection{Matrixdarstellung}
+In Abschnitt~\ref{buch:subsection:basiswahl} wurde gezeigt, wie man
+für die Vektorräume der Zyklen eine Basis derart finden kann,
+dass die Ränder von einer Teilmenge der Basis aufgespannt werden.
+Eine solche Basis kann man immer erweitern zu einer Basis von $C_k$.
+Für das Folgende bezeichnen wir die Vektoren einer solche Basis von $C_k$
+mit
+\[
+\{
+b_1,\dots, b_r,
+z_1,\dots,z_l,
+c_1,\dots,c_s
+\}.
+\]
+wobei die Vektoren die folgende Bedeutung haben:
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline
+Vektoren&Bedeutung\\
+\hline
+$b_1,\dots,b_r$ & Basis für $B_k(C)$ \\
+$z_1,\dots,z_l$ & zusätzliche Vektoren für eine Basis von $Z_k(C)$ \\
+$c_1,\dots,c_s$ & zusätzliche Vektoren für eine Basis von $C_k$ \\
+\hline
+\end{tabular}
+\end{center}
+
+Wählt man eine Basis dieser Art sowohl in $C_*$ wie auch in $D_*$,
+dann kann man die induzierte Abbildung als $3\times 3$-Blockmatrix
+schreiben.
+Man verwendet dabei, dass $f_k$ die Unterräume $B_k(C)$ und
+$Z_k(C)$ in die entsprechenden Unterräume $B_k(D)$ und $Z_k(D)$
+abbildet, also
+\[
+f_k(B_k(C)) \subset B_k(D)
+\qquad\text{und}\qquad
+f_k(Z_k(C)) \subset Z_k(D).
+\]
+In der Matrixdarstellung äussert sich das darin, dass die Blöcke
+links unten zu Null werden.
+Die Matrixdarstellung von $f_k$ hat daher die Form
+\[
+f_k
+=
+\begin{pmatrix}
+f_{k,B} & * & * \\
+ 0 & f_{k,Z} & * \\
+ 0 & 0 & f_{k,*}
+\end{pmatrix}.
+\]
+Genauso kann man natürlich auch die Randoperatoren in dieser Basis
+ausdrücken.
+Sie bilden die Zyklen auf $0$ ab und aus den Vektoren $c_1,\dots,c_s$
+werden Ränder.
+Die Matrix hat daher die Form
+\[
+\partial_k
+=
+\begin{pmatrix}
+0& 0 & \Delta_k \\
+0& 0 & 0 \\
+0& 0 & 0
+\end{pmatrix}
+\]
+\begin{figure}
+\centering
+\includegraphics{chapters/95-homologie/images/complexbasis.pdf}
+\caption{Basiswahl für den Kettenkomplex $C_k$.
+Der Randoperator $\partial_k$ bildet $Z_k$ auf $0$ ab, der blaue
+Unterraum, aufgespannt von den Vektoren $c_i$, wird bijektiv auf $B_{k-1}$
+abgebildet.
+Eine Basis kann immer so gefunden werden, dass die Vektoren $c_i$
+von $\partial_k$ auf die Basisvektoren von $B_{k-1}$ abgebildet werden.
+In dieser Basis ist $\Delta_k$ eine Einheitsmatrix.
+\label{buch:homologie:fig:komplexbasis}}
+\end{figure}%
+Die Bedingung \eqref{buch:komplex:abbildung} für die Komplexabbildung
+bekommt jetzt die Matrixform
+\begin{equation}
+\left.
+\begin{aligned}
+\partial_k^{D}\circ f_k
+&=
+\begin{pmatrix}
+0&0&\Delta_k^{(D)}\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+\begin{pmatrix}
+f_{k,B} & * & * \\
+ 0 & f_{k,Z} & * \\
+ 0 & 0 & f_{k,*}
+\end{pmatrix}
+=
+\begin{pmatrix}
+0&0&\Delta_k^{(D)}f_{k,*}\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+\\
+f_{k-1}\circ \partial_k^C
+&=
+\begin{pmatrix}
+f_{k-1,B}& * & * \\
+ 0 &f_{k-1,Z}& * \\
+ 0 & 0 &f_{k-1,*}
+\end{pmatrix}
+\begin{pmatrix}
+0&0&\Delta_k^{(C)}\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+=
+\begin{pmatrix}
+0&0&f_{k-1,B}\Delta_k^{(C)}\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+\end{aligned}
+\right\}
+\Rightarrow
+\Delta_k^{(D)}f_{k,*}
+=
+f_{k-1,B}\Delta_k^{(C)}.
+\label{buch:homologie:matrixform}
+\end{equation}
+Für die induzierte Abbildung in Homologie ist ausschliesslich der
+Block $f_{k,Z}$ notwendig, die Matrix von $H_k(f)$ in der gewählten
+Basis von $H_k(C)$ bzw.~$H_k(D)$ ist also genau die Matrix $f_{k,Z}$.
+
+
+Wie Abbildung~\ref{buch:homologie:fig:komplexbasis} können die
+Basisvektoren $c_*$ in $C_k$ so gewählt werden, dass sie vom Randoperator
+$\partial_k$ auf die Basisvektoren von $Z_{k-1}$ abgebildet werden.
+Bei dieser Wahl wird die Matrix $\Delta_k$ eine Einheitsmatrix.
+
+\subsubsection{Spur}
+Wir betrachten jetzt den Fall einer Selbstabbildung $f_*\colon C_*\to C_*$.
+Die Basis soll so gewählt werden, dass $\Delta_k$ eine Einheitsmatrix ist.
+Aus~\eqref{buch:homologie:matrixform} kann man ablesen, dass für diese
+Basiswahl $f_{k,*}=f_{k-1,B}$ gilt.
+Die Matrizen von $f_k$ haben daher die Form
+\[
+f_k
+=
+\begin{pmatrix}
+f_{k,B} & * & * \\
+ 0 & f_{k,Z} & * \\
+ 0 & 0 & f_{k-1,B}
+\end{pmatrix}.
+\]
+Entsprechend ist die Spur
+\begin{equation}
+\operatorname{Spur} f_k
+=
+\operatorname{Spur} f_{k,B}
++
+\operatorname{Spur} f_{k,Z}
++
+\operatorname{Spur} f_{k-1,B}.
+\label{buch:homologie:eqn:spur}
+\end{equation}
+
+
+