aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/95-homologie/komplex.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-07-27 10:47:25 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-07-27 10:47:25 +0200
commit080d4d175478af1f5170d861f0b7c0dc50baefc0 (patch)
tree409fa8a6c4de244a8a7f5c638d8b322e494be44a /buch/chapters/95-homologie/komplex.tex
parentremove rs (separate paper) (diff)
downloadSeminarMatrizen-080d4d175478af1f5170d861f0b7c0dc50baefc0.tar.gz
SeminarMatrizen-080d4d175478af1f5170d861f0b7c0dc50baefc0.zip
add example on homology
Diffstat (limited to 'buch/chapters/95-homologie/komplex.tex')
-rw-r--r--buch/chapters/95-homologie/komplex.tex104
1 files changed, 100 insertions, 4 deletions
diff --git a/buch/chapters/95-homologie/komplex.tex b/buch/chapters/95-homologie/komplex.tex
index 6dd8efb..c1b5698 100644
--- a/buch/chapters/95-homologie/komplex.tex
+++ b/buch/chapters/95-homologie/komplex.tex
@@ -6,9 +6,105 @@
\section{Kettenkomplexe
\label{buch:section:komplex}}
\rhead{Kettenkomplexe}
+Die algebraische Struktur, die in Abschnitt~\ref{buch:subsection:triangulation}
+konstruiert wurde, kann noch etwas abstrakter konstruiert werden.
+Es ergibt sich das Konzept eines Kettenkomplexes.
+Die Triangulation gibt also Anlass zu einem Kettenkomplex.
+So lässt sich zu einem geometrischen Objekt ein algebraisches
+Vergleichsobjekt konstruieren.
+Im Idealfall lassens ich anschliessend geometrische Eigenschaften mit
+algebraischen Rechnungen zum Beispiel in Vektorräumen mit Matrizen
+beantworten.
-\subsection{Randoperator von Simplexen
-\label{buch:subsection:randoperator-von-simplexen}}
+\subsection{Definition
+\label{buch:subsection:kettenkomplex-definition}}
+Die Operation $\partial$, die für Simplizes konstruiert worden ist,
+war linear und hat die Eigenschaft $\partial^2$ gehabt.
+Diese Eigenschaften reichen bereits für Definition eines Kettenkomplexes.
+
+\begin{definition}
+Eine Folge $C_0,C_1,C_2,\dots$ von Vektorräumen über dem Körper $\Bbbk$
+mit einer Folge von linearen Abbildungen
+$\partial_k\colon C_k \to C_{k-1}$, dem {\em Randoperator},
+heisst ein Kettenkomplex, wenn $\partial_{k-1}\partial_k=0$ gilt
+für alle $k>0$.
+\end{definition}
+
+Die aus den Triangulationen konstruieren Vektorräme von
+Abschnitt~\ref{buch:subsection:triangulation} bilden einen
+Kettenkomplex.
+
+XXX nachrechnen: $\partial^2 = 0$ ?
+
+\subsection{Abbildungen
+\label{buch:subsection:abbildungen}}
+Wenn man verschiedene geometrische Objekte mit Hilfe von Triangulationen
+vergleichen will, dann muss man auch das Konzept der Abbildungen zwischen
+den geometrischen Objekten in die Kettenkomplexe transportieren.
+
+Eine Abbildung zwischen Kettenkomplexen muss einerseits eine lineare
+Abbildung der Vektorräume $C_k$ sein, andererseits muss sich eine
+solche Abbildung mit dem Randoperator vertragen.
+Wir definieren daher
+
+\begin{definition}
+Eine Abbildung $f_*$ zwischen zwei Kettenkomplexe $(C_*,\partial^C_*)$ und
+$(D_*,\partial^D_*)$ heisst eine Abbildung von Kettenkomplexen, wenn
+für jedes $k$
+\begin{equation}
+\partial^D_k
+\circ
+f_{k}
+=
+f_{k+1}
+\circ
+\partial^C_k
+\label{buch:komplex:abbildung}
+\end{equation}
+gilt.
+\end{definition}
+
+Die Beziehung~\eqref{buch:komplex:abbildung} kann übersichtlich als
+kommutatives Diagramm dargestellt werden.
+\begin{equation}
+\begin{tikzcd}
+0 \arrow[r]
+ & C_0 \arrow[r, "\partial_0^C"]
+ \arrow[d, "f_0"]
+ & C_1 \arrow[r,"\partial_1^C"]
+ \arrow[d, "f_1"]
+ & C_2 \arrow[r,"\partial_2^C"]
+ \arrow[d, "f_2"]
+ & \dots \arrow[r]
+ \arrow[r, "\partial_{k-1}^C"]
+ & C_k
+ \arrow[r, "\partial_k^C"]
+ \arrow[d, "f_k"]
+ & C_{k+1}\arrow[r, "\partial_{k+1}^C"]
+ \arrow[d, "f_{k+1}"]
+ & \dots
+\\
+0 \arrow[r]
+ & D_0 \arrow[r, "\partial_0^D"]
+ & D_1 \arrow[r,"\partial_1^D"]
+ & D_2 \arrow[r,"\partial_2^D"]
+ & \dots \arrow[r]
+ \arrow[r, "\partial_{k-1}^D"]
+ & D_k
+ \arrow[r, "\partial_k^D"]
+ & D_{k+1}\arrow[r, "\partial_{k+1}^D"]
+ & \dots
+\end{tikzcd}
+\label{buch:komplex:abbcd}
+\end{equation}
+Die Relation~\eqref{buch:komplex:abbildung} drückt aus, dass man jeden
+den Pfeilen im Diagram~\eqref{buch:komplex:abbcd} folgen kann und
+dabei zwischen zwei Vektorräumen unabhängig vom Weg die gleiche Abbildung
+resultiert.
+
+Die Verfeinerung einer Triangulation erzeugt eine solche Abbildung von
+Komplexen.
+
+
+% XXX simpliziale Approximation
-\subsection{Kettenkomplexe und Morphismen
-\label{buch:subsection:kettenkomplex}}