aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/95-homologie
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-08-03 07:37:42 +0200
committerGitHub <noreply@github.com>2021-08-03 07:37:42 +0200
commitf31aca6129f3c84f1ed4f59378fd31cbdc58ec3b (patch)
tree97c32dbdcbcc888a9030d149f5a765f006fcd631 /buch/chapters/95-homologie
parent1. Version Kapitel Rotation und Spiegelung (diff)
parentMerge pull request #60 from Kuehnee/master (diff)
downloadSeminarMatrizen-f31aca6129f3c84f1ed4f59378fd31cbdc58ec3b.tar.gz
SeminarMatrizen-f31aca6129f3c84f1ed4f59378fd31cbdc58ec3b.zip
Merge branch 'master' into master
Diffstat (limited to 'buch/chapters/95-homologie')
-rw-r--r--buch/chapters/95-homologie/Makefile.inc1
-rw-r--r--buch/chapters/95-homologie/chapter.tex2
-rw-r--r--buch/chapters/95-homologie/fixpunkte.tex87
-rw-r--r--buch/chapters/95-homologie/homologie.tex340
-rw-r--r--buch/chapters/95-homologie/images/Makefile5
-rw-r--r--buch/chapters/95-homologie/images/polyeder.pdfbin0 -> 3270 bytes
-rw-r--r--buch/chapters/95-homologie/images/polyeder.tex109
-rw-r--r--buch/chapters/95-homologie/komplex.tex104
-rw-r--r--buch/chapters/95-homologie/mayervietoris.tex28
-rw-r--r--buch/chapters/95-homologie/simplex.tex131
10 files changed, 752 insertions, 55 deletions
diff --git a/buch/chapters/95-homologie/Makefile.inc b/buch/chapters/95-homologie/Makefile.inc
index 7e6f1e7..41b1569 100644
--- a/buch/chapters/95-homologie/Makefile.inc
+++ b/buch/chapters/95-homologie/Makefile.inc
@@ -8,7 +8,6 @@ CHAPTERFILES = $(CHAPTERFILES) \
chapters/95-homologie/simplex.tex \
chapters/95-homologie/komplex.tex \
chapters/95-homologie/homologie.tex \
- chapters/95-homologie/mayervietoris.tex \
chapters/95-homologie/fixpunkte.tex \
chapters/95-homologie/chapter.tex
diff --git a/buch/chapters/95-homologie/chapter.tex b/buch/chapters/95-homologie/chapter.tex
index eaa56c4..994c400 100644
--- a/buch/chapters/95-homologie/chapter.tex
+++ b/buch/chapters/95-homologie/chapter.tex
@@ -38,7 +38,7 @@ Damit wird es möglich, das Dreieck vom Rand des Dreiecks zu unterschieden.
\input{chapters/95-homologie/simplex.tex}
\input{chapters/95-homologie/komplex.tex}
\input{chapters/95-homologie/homologie.tex}
-\input{chapters/95-homologie/mayervietoris.tex}
+%\input{chapters/95-homologie/mayervietoris.tex}
\input{chapters/95-homologie/fixpunkte.tex}
diff --git a/buch/chapters/95-homologie/fixpunkte.tex b/buch/chapters/95-homologie/fixpunkte.tex
index 1ed51ef..a03d4b5 100644
--- a/buch/chapters/95-homologie/fixpunkte.tex
+++ b/buch/chapters/95-homologie/fixpunkte.tex
@@ -11,15 +11,78 @@ selbst gehört die zugehörige lineare Abbildung $f_*\colon H_*(X)\to H_*(X)$
der Homologiegruppen.
Diese linearen Abbildungen sind im Allgemeinen viel einfacher zu
analysieren.
-Zum Beispiel soll in Abschnitt~\ref{buch:subsection:lefshetz}
-die Lefshetz-Spurformel abgeleitet werden, die eine Aussagen darüber
-ermöglicht, ob eine Abbildung einen Fixpunkt haben kann.
-In Abschnitt~\ref{buch:subsection:brower} wird gezeigt wie man damit
-den Browerschen Fixpunktsatz beweisen kann, der besagt, dass jede
-Abbildung eines Einheitsballs in sich selbst immer einen Fixpunkt hat.
-
-\subsection{Lefshetz-Spurformel
-\label{buch:subsection:lefshetz}}
-
-\subsection{Brower-Fixpunktsatz
-\label{buch:subsection:brower}}
+%Zum Beispiel soll in Abschnitt~\ref{buch:subsection:lefshetz}
+%die Lefshetz-Spurformel abgeleitet werden, die eine Aussagen darüber
+%ermöglicht, ob eine Abbildung einen Fixpunkt haben kann.
+%In Abschnitt~\ref{buch:subsection:brower} wird gezeigt wie man damit
+%den Browerschen Fixpunktsatz beweisen kann, der besagt, dass jede
+%Abbildung eines Einheitsballs in sich selbst immer einen Fixpunkt hat.
+
+%\subsection{Brower-Fixpunktsatz
+%\label{buch:subsection:brower}}
+%
+%\begin{satz}[Brower]
+%\end{satz}
+
+%\subsection{Lefshetz-Fixpunktsatz
+%\label{buch:subsection:lefshetz}}
+Eine Selbstabbildung $f_*\colon C_*\to C_*$ von Kettenkomplexen führt auf
+eine Selbstabbiludng der Homologiegruppen $H(f)\colon H(C)\to H(C)$.
+Da sowohl $H_k$ wie auch $C_k$ endlichdimensionale Vektorräume sind,
+ist die Spur von $H_k(f)$ wohldefiniert.
+
+\begin{definition}
+Die {\em Lefshetz-Zahl} einer Abbildung $f$ von Kettenkomplexen ist
+\[
+\lambda(f)
+=
+\sum_{k=0}^\infty
+(-1)^k \operatorname{Spur}f_k
+=
+\sum_{k=0}^\infty
+(-1)^k \operatorname{Spur}(H_k(f)).
+\]
+\end{definition}
+
+Die zweite Darstellung der Lefshetz-Zahl auf der rechten Seite ist
+meistens viel leichter zu berechnen als die erste.
+Die einzelnen Vektorräume eines Kettenkomplexes können haben typischerweise
+eine hohe Dimension, so hoch wie die Anzahl der Simplizes der Triangulation.
+Die Homologiegruppen dagegen haben typischerweise sehr viel kleinere
+Dimension, die Matrizen $H_k(F)$ sind also relativ klein.
+Es ist aber nicht klar, dass beide Berechnungsmethoden für die
+Lefshetz-Zahl auf das gleiche Resultat führen müssen.
+
+\begin{proof}[Beweis]
+\end{proof}
+
+Die Lefshetz-Zahl ist eine Invariante einer topologischen Abbildung,
+die Aussagen über Fixpunkte zu machen erlaubt.
+
+\begin{satz}
+Ist $f\colon X\to X$ eine Selbstabbildung eines kompakten Polyeders und
+ist $\lambda(f) \ne 0$, dann hat $f$ einen Fixpunkt.
+\end{satz}
+
+Im Folgenden soll nur ein heuristisches Argument gegeben werden, warum
+ein solcher Satz wahr sein könnte.
+
+Wenn eine Abbildung keinen Fixpunkt hat, dann ist $f(x) \ne x$ für alle
+Punkte von $X$.
+Da $X$ kompakt ist, gibt es einen minimalen Abstand $d$ zwischen $f(x)$ und $x$.
+Wenn man also für $X$ eine Triangulation wählt, die wesentlich feiner ist
+als dieser minimale Abstand, dann wird kein Simplex der Triangulation auf
+Punkte im selben Simplex oder in einem Nachbarsimplex abgebildet wird.
+Indem man nötigenfalls die Triangulation nochmals verfeinert, kann man auch
+genügend Platz schaffen, dass man die Abbildung $f$ etwas modifizieren kann,
+so dass auch die deformierte Abbildung immer noch diese Eigenschaft hat.
+
+Die zugehörige Abbildung des Kettenkomplexes der Triangulation hat damit
+die Eigenschaft, dass kein Basisvektor auf sich selbst abgebildet wird.
+Die Matrix der Abbildung hat daher keine Nullen auf der Diagonalen, und
+damit ist auch die Spur dieser Abbildung Null: $\operatorname{Spur}(H_k(f))=0$
+für alle $k$.
+Erst recht ist die Lefshetz-Zahl $\lambda(f)=0$.
+Wenn also die Lefshetz-Zahl verschieden ist von Null, dann muss $f$
+notwendigerweise einen Fixpunkt haben.
+
diff --git a/buch/chapters/95-homologie/homologie.tex b/buch/chapters/95-homologie/homologie.tex
index 2b80a17..905ecc3 100644
--- a/buch/chapters/95-homologie/homologie.tex
+++ b/buch/chapters/95-homologie/homologie.tex
@@ -6,13 +6,349 @@
\section{Homologie
\label{buch:section:homologie}}
\rhead{Homologie}
+Die Idee der Trangulation ermöglicht, komplizierte geometrische
+Objekte mit einem einfachen ``Gerüst'' auszustatten und so zu
+analysieren.
+Projiziert man ein mit einer Kugel konzentrisches Tetraeder auf die
+Kugel, entsteht eine Triangulation der Kugeloberfläche.
+Statt eine Kugel zu studieren, kann man also auch ein Tetraeder untersuchen.
+
+Das Gerüst kann natürlich nicht mehr alle Eigenschaften des ursprünglichen
+Objektes wiedergeben.
+Im Beispiel der Kugel geht die Information darüber, dass es sich um eine
+glatte Mannigfaltigkeit handelt, verloren.
+Was aber bleibt, sind Eigenschaften des Zusammenhangs.
+Wenn sich zwei Punkte mit Wegen verbinden lassen, dann gibt es auch eine
+Triangulation mit eindimensionalen Simplices, die diese Punkte als Ecken
+enthalten, die sich in der Triangulation mit einer Folge von Kanten
+verbinden lassen.
+Algebraisch bedeutet dies, dass die beiden Punkte der Rand eines
+Weges sind.
+Fragen der Verbindbarkeit von Punkten mit Wegen lassen sich also
+dadurch studieren, dass man das geometrische Objekt auf einen Graphen
+reduziert.
+
+In diesem Abschnitt soll gezeigt werden, wie diese Idee auf höhere
+Dimensionen ausgedehnt werden.
+Es soll möglich werden, kompliziertere Fragen des Zusammenhangs, zum
+Beispiel das Vorhandensein von Löchern mit algebraischen Mitteln
+zu analysieren.
\subsection{Homologie eines Kettenkomplexes
\label{buch:subsection:homologie-eines-kettenkomplexes}}
+Wegzusammenhang lässt sich untersuchen, indem man in der Triangulation
+nach Linearkombinationen von Kanten sucht, die als Rand die beiden Punkte
+haben.
+Zwei Punkte sind also nicht verbindbar und liegen damit in verschiedenen
+Komponenten, wenn die beiden Punkte nicht Rand irgend einer
+Linearkombination von Kanten sind.
+Komponenten können also identifiziert werden, indem man unter allen
+Linearkombinationen von Punkten, also $C_0$ all diejenigen ignoriert,
+die Rand einer Linearkombinationv on Kanten sind, also $\partial_1C_1$.
+Der Quotientenraum $H_0=C_0/\partial_1C_1$ enthält also für jede Komponente
+eine Dimension.
+
+Eine Dimension höher könnten wir danach fragen, ob sich ein geschlossener
+Weg zusammenziehen lässt.
+In der Triangulation zeichnet sich ein geschlossener Weg dadurch aus,
+dass jedes Ende einer Kante auch Anfang einer Folgekante ist, dass also
+der Rand der Linearkombination von Kanten 0 ist.
+Algebraisch bedeutet dies, dass wir uns für diejenigen Linearkombinationen
+$z\in C_1$ interessieren, die keinen Rand haben, für die also $\partial_1z=0$
+gilt.
+
+\begin{definition}
+Die Elemente von
+\[
+Z_k
+=
+Z_k^C
+=
+\{z\in C_k\;|\; \partial_k z = 0\}
+=
+\ker \partial_k
+\]
+heissen die {\em ($k$-dimensionalen) Zyklen} von $C_*$.
+\end{definition}
+
+In einem Dreieck ist der Rand ein geschlossener Weg, der sich zusammenziehen
+lässt, indem man ihn durch die Dreiecksfläche deformiert.
+Entfernt man aber die Dreiecksfläche, ist diese Deformation nicht mehr
+möglich.
+Einen zusammenziehbaren Weg kann man sich also als den Rand eines Dreiecks
+einer vorstellen.
+``Löcher'' sind durch geschlossene Wege erkennbar, die nicht Rand eines
+Dreiecks sein können.
+Wir müssen also ``Ränder'' ignorieren.
+
+\begin{definition}
+Die Elemente von
+\[
+B_k
+=
+B_k^C
+=
+\{\partial_{k+1}z\;|\; C_{k+1}\}
+=
+\operatorname{im} \partial_{k+1}
+\]
+heissen die {\em ($k$-dimensionalen) Ränder} von $C_*$.
+\end{definition}
+
+Algebraisch ausgedrückt interessieren uns also nur Zyklen, die selbst
+keine Ränder sind.
+Der Quotientenraum $Z_1/B_1$ ignoriert unter den Zyklen diejenigen, die
+Ränder sind, drückt also algebraisch die Idee des eindimensionalen
+Zusammenhangs aus.
+Wir definieren daher
+
+\begin{definition}
+Die $k$-dimensionale Homologiegruppe des Kettenkomplexes $C_*$ ist
+\[
+H_k(C) = Z_k/B_k = \ker \partial_k / \operatorname{im} \partial_{k+1}.
+\]
+Wenn nur von einem Kettenkomplex die Rede ist, kann auch $H_k(C)=H_k$
+abgekürzt werden.
+\end{definition}
+
+Die folgenden zwei ausführlichen Beispiele sollen zeigen, wie die
+Homologiegruppe $H_2$ die Anwesenheit eines Hohlraumes detektieren kann,
+der entsteht, wenn man aus einem Tetraeder das innere entfernt.
+
+\begin{beispiel}
+\begin{figure}
+\centering
+XXX Bild eines Tetraeders mit Bezeichnung der Ecken und Kanten
+\caption{Triangulation eines Tetraeders, die Orientierung von Kanten
+und Seitenflächen ist immer so gewählt, dass die Nummern der Ecken
+aufsteigend sind.
+\label{buch:homologie:tetraeder:fig}}
+\end{figure}
+Ein Tetraeder ist ein zweidmensionales Simplex, wir untersuchen seinen
+Kettenkomplex und bestimmen die zugehörigen Homologiegruppen.
+Zunächst müssen wir die einzelnen Mengen $C_k$ beschreiben und verwenden
+dazu die Bezeichnungen gemäss Abbildung~\ref{buch:homologie:tetraeder:fig}.
+$C_0$ ist der vierdimensionale Raum aufgespannt von den vier Ecken
+$0$, $1$, $2$ und $3$ des Tetraeders.
+$C_1$ ist der sechsdimensionale Vektorraum der Kanten
+\[
+k_0 = [0,1],\quad
+k_1 = [0,2],\quad
+k_2 = [0,3],\quad
+k_3 = [1,2],\quad
+k_4 = [1,3],\quad
+k_5 = [2,3]
+\]
+Der Randoperator $\partial_1$ hat die Matrix
+\[
+\partial_1
+=
+\begin{pmatrix*}[r]
+-1&-1&-1& 0& 0& 0\\
+ 1& 0& 0&-1&-1& 0\\
+ 0& 1& 0& 1& 0&-1\\
+ 0& 0& 1& 0& 1& 1
+\end{pmatrix*}.
+\]
+
+Wir erwarten natürlich, dass sich zwei beliebige Ecken verbinden lassen,
+dass es also nur eine Komponente gibt und dass damit $H_1=\Bbbk$ ist.
+Dazu beachten wir, dass das Bild von $\partial_1$ genau aus den Vektoren
+besteht, deren Komponentensumme $0$ ist.
+Das Bild $B_0$ von $\partial_1$ ist daher die Lösungsmenge der einen
+Gleichung
+\(
+x_0+x_1+x_2+x_3=0.
+\)
+Der Quotientenraum $H_0=Z_0/B_0 = C_0/\operatorname{im}\partial_1$
+ist daher wie erwartet eindimensional.
+
+Wir bestimmen jetzt die Homologiegruppe $H_1$.
+Da sich im Tetraeder jeder geschlossene Weg zusammenziehen lässt,
+erwarten wir $H_1=0$.
+
+Die Menge der Zyklen $Z_1$ wird bestimmt, indem man die Lösungsmenge
+des Gleichungssystems $\partial_1z=0$ bestimmt.
+Der Gauss-Algorithmus für die Matrix $\partial_1$ liefert das
+Schlusstableau
+\[
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+k_0&k_1&k_2&k_3&k_4&k_5\\
+\hline
+ 1& 0& 0& -1& -1& 0\\
+ 0& 1& 0& 1& 0& -1\\
+ 0& 0& 1& 0& 1& 1\\
+ 0& 0& 0& 0& 0& 0\\
+\hline
+\end{tabular}
+\]
+Daraus lassen sich drei linear unabhängig eindimensionale Zyklen ablesen,
+die zu den Lösungsvektoren
+\[
+z_1
+=
+\begin{pmatrix*}[r]
+1\\
+-1\\
+0\\
+1\\
+0\\
+0
+\end{pmatrix*},
+\qquad
+z_2
+=
+\begin{pmatrix*}[r]
+1\\
+0\\
+-1\\
+0\\
+1\\
+0
+\end{pmatrix*},
+\qquad
+z_3
+=
+\begin{pmatrix*}[r]
+0\\
+1\\
+-1\\
+0\\
+0\\
+1
+\end{pmatrix*}
+\]
+gehören.
+
+$C_2$ hat die vier Seitenflächen
+\[
+f_0=[0,1,2],\quad
+f_1=[0,1,3],\quad
+f_2=[0,2,3],\quad
+f_3=[1,2,3]
+\]
+als Basis.
+Der zweidimensionale Randoperator ist die $6\times 4$-Matrix
+\[
+\partial_2
+=
+\begin{pmatrix*}[r]
+ 1& 1& 0& 0\\
+-1& 0& 1& 0\\
+ 0&-1&-1& 0\\
+ 1& 0& 0& 1\\
+ 0& 1& 0&-1\\
+ 0& 0& 1& 1
+\end{pmatrix*}.
+\]
+Man kann leicht nachrechnen, dass $\partial_1\partial_2=0$ ist, wie es
+für einen Kettenkomplex sein muss.
+
+Um nachzurechnen, dass die Homologiegruppe $H_1=0$ ist, müssen wir jetzt
+nachprüfen, ob jeder Zyklus in $Z_1$ auch Bild der Randabbildung $\partial_2$
+ist.
+Die ersten drei Spalten von $\partial_2$ sind genau die drei Zyklen
+$z_1$, $z_2$ und $z_3$.
+Insbesondere lassen sich alle Zyklen als Ränder darstellen, die
+Homologiegruppe $H_1=0$ verschwindet.
+
+Die Zyklen in $C_2$ sind die Lösungen von $\partial_2z=0$.
+Der Gauss-Algorithmus für $\partial_2$ liefert das -Tableau
+\[
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+f_0&f_1&f_2&f_3\\
+\hline
+1&0&0& 1\\
+0&1&0&-1\\
+0&0&1& 1\\
+0&0&0& 0\\
+0&0&0& 0\\
+0&0&0& 0\\
+\hline
+\end{tabular}
+\]
+Daraus liest man ab, dass es genau einen Zyklus nämlich
+\[
+z
+=
+\begin{pmatrix}
+-1\\1\\-1\\1
+\end{pmatrix}
+\]
+$Z_2$ besteht also aus Vielfachen des Vektors $z$.
+
+Da es nur ein zweidimensionales Simplex gibt, ist $C_3$ eindimensional.
+Die Randabbildung $\partial_3$ hat die Matrix
+\[
+\partial_3
+=
+\begin{pmatrix}
+1\\
+-1\\
+1\\
+-1
+\end{pmatrix}.
+\]
+Die Zyklen $Z_2$ und die Ränder $B_2$ bilden also dieselbe Menge, auch
+die Homologie-Gruppe $H_2$ ist $0$.
+
+Da es keine vierdimensionalen Simplizes gibt, ist $B_3=0$.
+Die Zyklen $Z_3$ bestehen aus den Lösungen von $\partial_3w=0$, da
+aber $\partial_3$ injektiv ist, ist $Z_3=0$.
+Daher ist auch $H_3=0$.
+\end{beispiel}
+
+\begin{beispiel}
+Für dieses Beispiel entfernen wir das Innere des Tetraeders, es entsteht
+ein Hohlraum.
+Am Kettenkomplex der Triangulation ändert sich nur, dass $C_3$ jetzt
+nur noch den $0$-Vektor enthält.
+Das Bild $B_2=\operatorname{im}\partial_3$ wird damit auch $0$-dimensional,
+während es im vorigen Beispiel eindimensional war.
+Die einzige Änderung ist also in der Homologiegruppe
+$H_2 = Z_2/B_2 = Z_2 / \{0\} \simeq \Bbbk$.
+Die Homologiegruppe $H_2$ hat jetzt Dimension $1$ und zeigt damit den
+Hohlraum an.
+\end{beispiel}
\subsection{Induzierte Abbildung
\label{buch:subsection:induzierte-abbildung}}
+Früher haben wurde eine Abbildung $f_*$ zwischen Kettenkomplexen $C_*$ und
+$D_*$ so definiert,
+dass sie mit den Randoperatoren verträglich sein muss.
+Diese Forderung bewirkt, dass sich auch eine lineare Abbildung
+\[
+H_k(f) \colon H_k(C) \to H_k(D)
+\]
+zwischen den Homologiegruppen ergibt, wie wir nun zeigen wollen.
+
+Um eine Abbildung von $H_k(C)$ nach $H_k(D)$ zu definieren, müssen wir
+zu einem Element von $H_k(C)$ ein Bildelement konstruieren.
+Ein Element in $H_k(C)$ ist eine Menge von Zyklen in $Z^C_k$, die sich
+nur um einen Rand in $B_k$ unterscheiden.
+Wir wählen also einen Zyklus $z\in Z_k$ und bilden ihn auf $f_k(z)$ ab.
+Wegen $\partial^D_kf(z)=f\partial^C_kz = f(0) =0 $ ist auch $f_k(z)$
+ein Zyklus.
+Wir müssen jetzt aber noch zeigen, dass eine andere Wahl des Zyklus
+das gleiche Element in $H_k(D)$ ergibt.
+Dazu genügt es zu sehen, dass sich $f(z)$ höchstens um einen Rand
+ändert, wenn man $z$ um einen Rand ändert.
+Sei also $b\in B^C_k$ ein Rand, es gibt also ein $w\in C_{k+1}$ mit
+$\partial^C_{k+1}w=b$.
+Dann gilt aber auch
+\[
+f_k(z+b)
+=
+f_k(z) + f_k(b)
+=
+f_k(z) + f_k(\partial^C_{k+1}w)
+=
+f_k(z) + \partial^D_{k+1}(f_k(w)).
+\]
+Der letzte Term ist ein Rand in $D_k$, somit ändert sich $f_k(z)$ nur
+um diesen Rand, wenn man $z$ um einen Rand ändert.
+$f_k(z)$ und $f_k(z+b)$ führen auf die selbe Homologieklasse.
-\subsection{Homologie eines simplizialen Komplexes
-\label{buch:subsection:simplizialekomplexe}}
diff --git a/buch/chapters/95-homologie/images/Makefile b/buch/chapters/95-homologie/images/Makefile
index 82f1285..ac964ff 100644
--- a/buch/chapters/95-homologie/images/Makefile
+++ b/buch/chapters/95-homologie/images/Makefile
@@ -3,8 +3,11 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-all: dreieck.pdf
+all: dreieck.pdf polyeder.pdf
dreieck.pdf: dreieck.tex
pdflatex dreieck.tex
+polyeder.pdf: polyeder.tex
+ pdflatex polyeder.tex
+
diff --git a/buch/chapters/95-homologie/images/polyeder.pdf b/buch/chapters/95-homologie/images/polyeder.pdf
new file mode 100644
index 0000000..3a8ba60
--- /dev/null
+++ b/buch/chapters/95-homologie/images/polyeder.pdf
Binary files differ
diff --git a/buch/chapters/95-homologie/images/polyeder.tex b/buch/chapters/95-homologie/images/polyeder.tex
new file mode 100644
index 0000000..9a900cc
--- /dev/null
+++ b/buch/chapters/95-homologie/images/polyeder.tex
@@ -0,0 +1,109 @@
+%
+% tikztemplate.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math,calc}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+% add image content here
+\begin{scope}[xshift=-3.5cm,scale=0.5]
+\coordinate (A) at (0,0);
+\coordinate (B) at (4,0);
+\coordinate (C) at (5,-2);
+\coordinate (D) at (8,-1);
+\coordinate (E) at (7,1);
+\coordinate (F) at (7,3);
+\coordinate (G) at (1,3);
+\coordinate (H) at (5,4);
+\coordinate (I) at (9,5);
+\coordinate (J) at (4,7);
+\coordinate (K) at (-1,9);
+\coordinate (L) at (7,11);
+\coordinate (M) at (6,-0.5);
+
+\fill[color=gray,opacity=0.5] (A)--(B)--(H)--(G)--cycle;
+\fill[color=gray,opacity=0.5] (G)--(I)--(K)--cycle;
+\fill[color=gray,opacity=0.5] (G)--(L)--(K)--cycle;
+
+\draw (K)--(G)--(A)--(B)--(D);
+\draw (C)--(E);
+\draw (G)--(I)--(K);
+\draw (G)--(L)--(K);
+\draw (B)--(H);
+\draw (B)--(F);
+
+\fill (A) circle[radius=0.1];
+\fill (B) circle[radius=0.1];
+\fill (C) circle[radius=0.1];
+\fill (D) circle[radius=0.1];
+\fill (E) circle[radius=0.1];
+\fill (F) circle[radius=0.1];
+\fill (G) circle[radius=0.1];
+\fill (H) circle[radius=0.1];
+\fill (I) circle[radius=0.1];
+%\fill (J) circle[radius=0.1];
+\fill (K) circle[radius=0.1];
+\fill (L) circle[radius=0.1];
+%\fill (M) circle[radius=0.1];
+
+\draw[color=red] (H) circle[radius=0.5];
+\draw[color=red] (J) circle[radius=0.5];
+\draw[color=red] (M) circle[radius=0.5];
+\draw[color=red] ($0.25*(A)+0.25*(B)+0.25*(G)+0.25*(H)$) circle[radius=0.5];
+
+\end{scope}
+
+\begin{scope}[xshift=3.5cm,scale=0.5]
+\coordinate (A) at (0,0);
+\coordinate (B) at (4,0);
+\coordinate (C) at (5,-2);
+\coordinate (D) at (8,-1);
+\coordinate (E) at (7,1);
+\coordinate (F) at (7,3);
+\coordinate (G) at (1,3);
+\coordinate (H) at (5,4);
+\coordinate (I) at (9,5);
+\coordinate (J) at (4,7);
+\coordinate (K) at (-1,9);
+\coordinate (L) at (7,11);
+\coordinate (M) at (6,-0.5);
+
+\fill[color=gray!50] (A)--(B)--(H)--(I)--(J)--(L)--(K)--(G)--cycle;
+
+\draw (K)--(G)--(A)--(B)--(D);
+\draw (C)--(E);
+\draw (G)--(I)--(K);
+\draw (G)--(L)--(K);
+\draw (B)--(H);
+\draw (B)--(F);
+\draw (H)--(J);
+\draw (A)--(H);
+
+\fill (A) circle[radius=0.1];
+\fill (B) circle[radius=0.1];
+\fill (C) circle[radius=0.1];
+\fill (D) circle[radius=0.1];
+\fill (E) circle[radius=0.1];
+\fill (F) circle[radius=0.1];
+\fill (G) circle[radius=0.1];
+\fill (H) circle[radius=0.1];
+\fill (I) circle[radius=0.1];
+\fill (J) circle[radius=0.1];
+\fill (K) circle[radius=0.1];
+\fill (L) circle[radius=0.1];
+\fill (M) circle[radius=0.1];
+
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/95-homologie/komplex.tex b/buch/chapters/95-homologie/komplex.tex
index 6dd8efb..fa2d8e1 100644
--- a/buch/chapters/95-homologie/komplex.tex
+++ b/buch/chapters/95-homologie/komplex.tex
@@ -6,9 +6,105 @@
\section{Kettenkomplexe
\label{buch:section:komplex}}
\rhead{Kettenkomplexe}
+Die algebraische Struktur, die in Abschnitt~\ref{buch:subsection:triangulation}
+konstruiert wurde, kann noch etwas abstrakter konstruiert werden.
+Es ergibt sich das Konzept eines Kettenkomplexes.
+Die Triangulation gibt also Anlass zu einem Kettenkomplex.
+So lässt sich zu einem geometrischen Objekt ein algebraisches
+Vergleichsobjekt konstruieren.
+Im Idealfall lassens ich anschliessend geometrische Eigenschaften mit
+algebraischen Rechnungen zum Beispiel in Vektorräumen mit Matrizen
+beantworten.
-\subsection{Randoperator von Simplexen
-\label{buch:subsection:randoperator-von-simplexen}}
+\subsection{Definition
+\label{buch:subsection:kettenkomplex-definition}}
+Die Operation $\partial$, die für Simplizes konstruiert worden ist,
+war linear und hat die Eigenschaft $\partial^2$ gehabt.
+Diese Eigenschaften reichen bereits für Definition eines Kettenkomplexes.
+
+\begin{definition}
+Eine Folge $C_0,C_1,C_2,\dots$ von Vektorräumen über dem Körper $\Bbbk$
+mit einer Folge von linearen Abbildungen
+$\partial_k\colon C_k \to C_{k-1}$, dem {\em Randoperator},
+heisst ein Kettenkomplex, wenn $\partial_{k-1}\partial_k=0$ gilt
+für alle $k>0$.
+\end{definition}
+
+Die aus den Triangulationen konstruieren Vektorräme von
+Abschnitt~\ref{buch:subsection:triangulation} bilden einen
+Kettenkomplex.
+
+XXX nachrechnen: $\partial^2 = 0$ ?
+
+\subsection{Abbildungen
+\label{buch:subsection:abbildungen}}
+Wenn man verschiedene geometrische Objekte mit Hilfe von Triangulationen
+vergleichen will, dann muss man auch das Konzept der Abbildungen zwischen
+den geometrischen Objekten in die Kettenkomplexe transportieren.
+
+Eine Abbildung zwischen Kettenkomplexen muss einerseits eine lineare
+Abbildung der Vektorräume $C_k$ sein, andererseits muss sich eine
+solche Abbildung mit dem Randoperator vertragen.
+Wir definieren daher
+
+\begin{definition}
+Eine Abbildung $f_*$ zwischen zwei Kettenkomplexe $(C_*,\partial^C_*)$ und
+$(D_*,\partial^D_*)$ heisst eine Abbildung von Kettenkomplexen, wenn
+für jedes $k$
+\begin{equation}
+\partial^D_k
+\circ
+f_{k}
+=
+f_{k+1}
+\circ
+\partial^C_k
+\label{buch:komplex:abbildung}
+\end{equation}
+gilt.
+\end{definition}
+
+Die Beziehung~\eqref{buch:komplex:abbildung} kann übersichtlich als
+kommutatives Diagramm dargestellt werden.
+\begin{equation}
+\begin{tikzcd}
+0
+ & C_0 \arrow[l, "\partial_0^C"]
+ \arrow[d, "f_0"]
+ & C_1 \arrow[l,"\partial_1^C"]
+ \arrow[d, "f_1"]
+ & C_2 \arrow[l,"\partial_2^C"]
+ \arrow[d, "f_2"]
+ & \dots \arrow[l]
+ \arrow[l, "\partial_{k-1}^C"]
+ & C_k
+ \arrow[l, "\partial_k^C"]
+ \arrow[d, "f_k"]
+ & C_{k+1}\arrow[l, "\partial_{k+1}^C"]
+ \arrow[d, "f_{k+1}"]
+ & \dots
+\\
+0
+ & D_0 \arrow[l, "\partial_0^D"]
+ & D_1 \arrow[l,"\partial_1^D"]
+ & D_2 \arrow[l,"\partial_2^D"]
+ & \dots \arrow[l]
+ \arrow[l, "\partial_{k-1}^D"]
+ & D_k
+ \arrow[l, "\partial_k^D"]
+ & D_{k+1}\arrow[l, "\partial_{k+1}^D"]
+ & \dots
+\end{tikzcd}
+\label{buch:komplex:abbcd}
+\end{equation}
+Die Relation~\eqref{buch:komplex:abbildung} drückt aus, dass man jeden
+den Pfeilen im Diagram~\eqref{buch:komplex:abbcd} folgen kann und
+dabei zwischen zwei Vektorräumen unabhängig vom Weg die gleiche Abbildung
+resultiert.
+
+Die Verfeinerung einer Triangulation erzeugt eine solche Abbildung von
+Komplexen.
+
+
+% XXX simpliziale Approximation
-\subsection{Kettenkomplexe und Morphismen
-\label{buch:subsection:kettenkomplex}}
diff --git a/buch/chapters/95-homologie/mayervietoris.tex b/buch/chapters/95-homologie/mayervietoris.tex
deleted file mode 100644
index 57105f8..0000000
--- a/buch/chapters/95-homologie/mayervietoris.tex
+++ /dev/null
@@ -1,28 +0,0 @@
-%
-% mayervietoris.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\section{Exaktheit und die Mayer-Vietoris-Folge
-\label{buch:section:mayervietoris}}
-\rhead{Exaktheit und die Mayer-Vietoris-Folge}
-Die Berechnung der Homologie-Gruppen ist zwar im Wesentlichen ein
-kombinatorisches Problem, trotzdem ist eher aufwändig.
-Oft weiss man, wie sich toplogische Räume aus einfacheren Räumen
-zusammensetzen lassen.
-Eine Mannigkfaltigkeit zum Beispiel wird durch die Karten
-definiert, also zusammenziehbare Teilmengen von $\mathbb{R}^n$,
-die die Mannigkfaltigkeit überdecken.
-Das Ziel dieses Abschnittes ist, Regeln zusammenzustellen, mit denen
-man die Homologie eines solchen zusammengesetzten Raumes aus der
-Homologie der einzelnen Teile und aus den ``Verklebungsabbildungen'',
-die die Teile verbinden, zu berechnen.
-
-\subsection{Kurze exakte Folgen von Kettenkomplexen
-\label{buch:subsection:exaktefolgen}}
-
-\subsection{Schlangenlemma und lange exakte Folgen
-\label{buch:subsection:schlangenlemma}}
-
-\subsection{Mayer-Vietoris-Folge
-\label{buch:subsection:mayervietoris}}
diff --git a/buch/chapters/95-homologie/simplex.tex b/buch/chapters/95-homologie/simplex.tex
index 5ca2ca8..0cf4aa7 100644
--- a/buch/chapters/95-homologie/simplex.tex
+++ b/buch/chapters/95-homologie/simplex.tex
@@ -1,17 +1,17 @@
%
-% simplex.tex -- simplizes und simpliziale Komplexe
+% simplex.tex -- simplizes und Polyeder
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
-\section{Simplexe und simpliziale Komplexe
+\section{Simplices
\label{buch:section:simplexe}}
-\rhead{Simplexe und simpliziale Komplexe}
+\rhead{Simplices}
Die Idee, das Dreieck und seinen Rand zu unterscheiden verlangt,
dass wir zunächst Dreiecke und deren höherdimensionale Verallgemeinerungen,
die sogenannten Simplizes entwickeln müssen.
-\subsection{Simplexe und Rand
-\label{buch:subsection:simplexe}}
+\subsection{Simplices und Rand
+\label{buch:subsection:simplices}}
\subsubsection{Rand eines Dreiecks}
Die Inzidenz-Matrix eines Graphen hat einer Kante die beiden Endpunkte
@@ -231,8 +231,127 @@ Vorzeichen zu, die Matrix ist
\]
\end{definition}
+\subsection{Polyeder}
+\begin{figure}
+\centering
+\includegraphics{chapters/95-homologie/images/polyeder.pdf}
+\caption{Aufbau eines zweidimensionalen Polyeders aus
+verschiedenen Simplizes.
+Die Schnittmenge zweier Simplizes muss ein Untersimplex beider Simplizes
+sein.
+Die roten Kreise im linken Bild weisen auf verschiedene Situationen
+hin, wo das diese Bedingung nicht erfüllt ist.
+In rechten Bild sind zusätzliche Simlizes hinzugefügt worden, um
+die Bedingungen eines Polyeders zu erfüllen.
+\label{buch:homologie:figure:polyeder}}
+\end{figure}
+Aus einzelnen Simplizes können jetzt kompliziertere geometrische
+Objekte gebaut werden.
+Ein Graph ist ein Beispiel für ein geometrisches Objekt, welches
+als Vereinigung von 1-Simplizes entsteht.
+Die Vereinigung ist aber nicht beliebig, vielmehr ist die Schnittmenge
+zweier beliebiger 1-Simplizes immer entweder leer, eine Menge
+mit nur einem Vertex oder ein ganzes 1-Simplex.
+
+Dies reicht aber nicht, wie Abbildung~\ref{buch:homologie:polyeder}
+zeigt.
+In einem Graphen dürfen sich Kanten nicht in einem inneren Punkt treffen,
+sondern nur in Endpunkten.
+Verallgemeinert auf höherdimensionale Simplizes kann man dies als die
+Bedingung formulieren, dass die Schnittmenge zweier beliebiger
+Simplizes immer Untersimplizes beider Simplizes sein müssen.
+Wir fassen dies zusammen in der folgenden Definition.
+
+\begin{definition}
+\index{Polyeder}%
+\index{Dimension eines Polyeders}%
+\index{Polyeder, Dimension eines}%
+Ein {\em Polyeder} ist eine Vereingung von endlich vielen Simplizes derart,
+dass die Schnittmenge zweier beliebiger Simplizes immer ein Untersimplex
+beider Simplizes ist.
+Die {\em Dimension} des Polyeders ist die grösste Dimension der darin
+enthaltenen Simplizes.
+\end{definition}
+
+Ein Graph ist nach dieser Definition ein eindimensionales Polyeder.
+Die Mengen in der Abbildung~\ref{buch:homologie:figure:polyeder}
+ist kein Polyeder, kann aber leicht zu einem Polyeder gemacht werden,
+indem man einzelne Kanten mit zusätzlichen Punkten unterteilt.
+Auch müssen die zweidimensionalen Simplizes aufgeteilt werden.
+
+Die Abbildung~\ref{buch:homologie:figure:polyeder} zeigt auch, dass
+die Darstellung einer Punktmenge als Polyeder nicht eindeutig ist.
+Man kann die Kanten und Flächen jederzeit weiter unterteilen, ohne
+dass sich die Gestalt der gesamten Menge dadurch ändert.
\subsection{Triangulation
-\label{buch:subsection:}}
+\label{buch:subsection:triangulation}}
+Unser Ziel ist, geometrische Objekte besser verstehen zu können.
+Dabei sind uns Deformationen ja sogar Knicke egal, es interessiert uns
+nur die ``Gestalt'' des Objekts.
+Entfernungen zwischen Punkten sind ebenfalls von untergeordneter
+Bedeutung, da sie bei Deformation nicht erhalten bleiben.
+Der Begriff des ``topologischen Raumes'' fasst diese Ideen mathematisch
+präzise ein, eine genaue Definition würde aber an dieser Stelle zu weit
+führen.
+Stattdessen beschränken wir uns auf eine Klasse von Punktmengen, die man
+mit Simplizes beschreiben kann.
+
+Ein topologischer Raum zeichnet sich durch einen Nachbarschaftsbegriff
+von Punkte aus, der erlaubt zu definieren, was eine stetige Abbildung ist.
+Ein stetige Abbildungen bildet nahe beeinander liegende Punkte wieder
+auf nahe beeinander liegende Punkte ab.
+Dass nahe liegende Punkte nicht plötzlich auf weit auseinander liegende
+Punkte abgebildet werden gibt die Intuition wieder, dass Deformationen
+möglich sein sollen, dass der Raum dabei aber nicht ``reissen'' darf.
+Zwei topologische Räume $X$ und $Y$ können daher als ``gleichgestaltig''
+betrachtet werden, wenn es zwei stetige Abbildungen $f\colon X\to Y$
+und $g\colon Y\to X$ gibt, die zu einander invers sein.
+Oder wenn sich $X$ stetig auf $Y$ abbilden lässt, so dass auch die
+Umkehrabbildung stetig ist.
+Eine solche Abbildung heisst ein {\em Homöomorphismus}, die beiden Räume
+$X$ und $Y$ heissen {\em homomorph}.
+
+Eine Kugel ist natürlich kein Polyeder, aber sie kann leicht homöomorph
+auf ein dreidimensionales Simplex abgebildet werden.
+
+\begin{beispiel}
+Sei $T$ ein reguläres Tetraeder mit den Ecken auf der dreidimensionalen
+Einheitskugel $B^3$.
+Für jeden Richtungsvektor $x\ne 0$ sei $l(x)$ Entfernung vom Mittelpunkt des
+Tetraeders bis zum Durchstosspunkt einer Geraden durch den Mittelpunkt
+mit Richtungsvektor $x$ durch die Oberfläche des Tetraeders.
+Dann sind die Abbildungen
+\[
+f\colon
+T\to B^3
+:
+x \mapsto\begin{cases}
+\displaystyle
+\frac{x}{l(x)}&\quad\text{für $x\ne 0$}\\
+0&\quad\text{für $x=0$}
+\end{cases}
+\qquad\text{und}\qquad
+g\colon
+B^3\to T
+:
+x \mapsto\begin{cases}
+l(x) x&\quad\text{für $x\ne 0$}\\
+0&\quad\text{für $x=0$}
+\end{cases}
+\]
+zueinander inverse stetige Abbildungen oder Homöomorphismen.
+\end{beispiel}
+
+Im Folgenden sollen daher nur solche topologischen Räume untersucht werden,
+die homöomorph sind zu einem Polyeder.
+Man nennt die homöomorphe Abbildung eines Polyeders auf so einen Raum
+auch eine Triangulation.
+Durch Unterteilung der Simplizes in kleiner Simplizes kann eine solche
+Triangulation beliebig verfeinert werden.
+
+
+
+