aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2021-05-25 00:47:51 +0200
committerNao Pross <np@0hm.ch>2021-05-25 00:47:51 +0200
commit40db89ca6efb1a6b962fe237c5641c939b18dde6 (patch)
tree8cd303c4986057509c646a0be18449b78da3f62e /buch/chapters
parentOn point groups and translational symmetry (diff)
downloadSeminarMatrizen-40db89ca6efb1a6b962fe237c5641c939b18dde6.tar.gz
SeminarMatrizen-40db89ca6efb1a6b962fe237c5641c939b18dde6.zip
Add book reference, fix typos
Diffstat (limited to '')
-rw-r--r--buch/chapters/10-vektorenmatrizen/gruppen.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex
index 9848469..7628942 100644
--- a/buch/chapters/10-vektorenmatrizen/gruppen.tex
+++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex
@@ -182,7 +182,7 @@ begegnet, wo wir nur gezeigt haben, dass $AA^{-1}=E$ ist.
Da aber die invertierbaren Matrizen eine Gruppe
bilden, folgt jetzt aus dem Satz automatisch, dass auch $A^{-1}A=E$.
-\subsubsection{Homomorphismen}
+\subsubsection{Homomorphismen} \label{buch:gruppen:subsection:homomorphismen}
Lineare Abbildung zwischen Vektorräumen zeichnen sich dadurch aus,
dass sie die algebraische Struktur des Vektorraumes respektieren.
Für eine Abbildung zwischen Gruppen heisst dies, dass die Verknüpfung,