diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-08-31 11:05:57 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-08-31 11:05:57 +0200 |
commit | 82abd76cd3df4c0a95534a6e6029fc523c5d1fee (patch) | |
tree | ed5a9372979baeab5a4c06478ecb5bde8d1b0052 /buch/chapters | |
parent | Skalarprodukt komplett (diff) | |
download | SeminarMatrizen-82abd76cd3df4c0a95534a6e6029fc523c5d1fee.tar.gz SeminarMatrizen-82abd76cd3df4c0a95534a6e6029fc523c5d1fee.zip |
Kapitel 2 überarbeitet
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/05-zahlen/rational.tex | 1 | ||||
-rw-r--r-- | buch/chapters/10-vektorenmatrizen/algebren.tex | 6 | ||||
-rw-r--r-- | buch/chapters/10-vektorenmatrizen/gruppen.tex | 60 | ||||
-rw-r--r-- | buch/chapters/10-vektorenmatrizen/hadamard.tex | 70 | ||||
-rw-r--r-- | buch/chapters/10-vektorenmatrizen/koerper.tex | 59 | ||||
-rwxr-xr-x | buch/chapters/10-vektorenmatrizen/linear.tex | 37 | ||||
-rw-r--r-- | buch/chapters/10-vektorenmatrizen/ringe.tex | 17 | ||||
-rw-r--r-- | buch/chapters/10-vektorenmatrizen/skalarprodukt.tex | 12 | ||||
-rw-r--r-- | buch/chapters/10-vektorenmatrizen/strukturen.tex | 7 |
9 files changed, 178 insertions, 91 deletions
diff --git a/buch/chapters/05-zahlen/rational.tex b/buch/chapters/05-zahlen/rational.tex index 4a2342e..440cc73 100644 --- a/buch/chapters/05-zahlen/rational.tex +++ b/buch/chapters/05-zahlen/rational.tex @@ -181,6 +181,7 @@ Ein Körper $\Bbbk$ zeichnet sich dadurch aus, dass alle ELemente ausser $0$ invertierbar sind. Diese wichtige Teilmenge wird mit $\Bbbk^* = \Bbbk \setminus\{0\}$ mit bezeichnet. +\label{buch:zahlen:def:bbbk*} In dieser Relation sind beliebige Multiplikationen ausführbar, das Element $1\in\Bbbk^*$ ist neutrales Element bezüglich der Multiplikation. Die Menge $\Bbbk^*$ trägt die Struktur einer Gruppe, siehe dazu auch diff --git a/buch/chapters/10-vektorenmatrizen/algebren.tex b/buch/chapters/10-vektorenmatrizen/algebren.tex index 9e1d3dc..594b94e 100644 --- a/buch/chapters/10-vektorenmatrizen/algebren.tex +++ b/buch/chapters/10-vektorenmatrizen/algebren.tex @@ -10,10 +10,13 @@ vorhanden. Die Menge der Matrizen $M_n(\Bbbk)$ ist sowohl ein Ring als auch ein Vektorraum. Man nennt eine {\em $\Bbbk$-Algebra} oder {\em Algebra über $\Bbbk$} +\index{k-Algebra@$\Bbbk$-Algebra}% +\index{Algebra}% ein Ring $A$, der auch eine $\Bbbk$-Vektorraum ist. Die Multiplikation des Ringes muss dazu mit der Skalarmultiplikation verträglich sein. Dazu müssen Assoziativgesetze +\index{Assoziativgesetz} \[ \lambda(\mu a) = (\lambda \mu) a \qquad\text{und}\qquad @@ -42,7 +45,8 @@ beinhaltet aber auch das Distributivgesetz. $M_n(\Bbbk)$ ist eine Algebra. \subsubsection{Die Algebra der Funktionen $\Bbbk^X$} -Sie $X$ eine Menge und $\Bbbk^X$ die Menge aller Funktionen $X\to \Bbbk$. +Sei $X$ eine Menge und $\Bbbk^X$ die Menge aller Funktionen $X\to \Bbbk$. +\index{kX@$\Bbbk^X$}% Auf $\Bbbk^X$ kann man Addition, Multiplikation mit Skalaren und Multiplikation von Funktionen punktweise definieren. Für zwei Funktion $f,g\in\Bbbk^X$ und $\lambda\in\Bbbk$ definiert man diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex index cb37d05..febf726 100644 --- a/buch/chapters/10-vektorenmatrizen/gruppen.tex +++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex @@ -8,20 +8,23 @@ Die kleinste sinnvolle Struktur ist die einer Gruppe. Eine solche besteht aus einer Menge $G$ mit einer Verknüpfung, die additiv +\index{additive Verknüpfung}% \begin{align*} -G\times G \to G&: (g,h) = gh -\intertext{oder multiplikativ } G\times G \to G&: (g,h) = g+h +\intertext{oder multiplikativ } +G\times G \to G&: (g,h) = gh \end{align*} +\index{multiplikative Verknüpfung}% geschrieben werden kann. Ein Element $0\in G$ heisst {\em neutrales Element} bezüglich der additiv +\index{neutrales Element}% geschriebenen Verknüpfung falls $0+x=x$ für alle $x\in G$. \index{neutrales Element}% Ein Element $e\in G$ heisst neutrales Element bezüglich der multiplikativ geschriebneen Verknüpfung, wenn $ex=x$ für alle $x\in G$. In den folgenden Definitionen werden wir immer die multiplikative -Schreibweise verwenden, für Fälle additiv geschriebener siehe auch die -Beispiele weiter unten. +Schreibweise verwenden, für Fälle additiv geschriebener Verknüpfungen +siehe auch die Beispiele weiter unten. \begin{definition} \index{Gruppe}% @@ -32,24 +35,28 @@ Eigenschaften: \begin{enumerate} \item Die Verknüpfung ist assoziativ: $(ab)c=a(bc)$ für alle $a,b,c\in G$. +\index{assoziativ}% \item Es gibt ein neutrales Element $e\in G$ \item Für jedes Element $g\in G$ gibt es ein Element $h\in G$ mit $hg=e$. \end{enumerate} -Das Element $h$ heisst auch das Inverse Element zu $g$. +Das Element $h$ heisst auch das inverse Element zu $g$. +\index{inverses Element}% \end{definition} Falls nicht jedes Element invertierbar ist, aber wenigstens ein neutrales Element vorhanden ist, spricht man von einem {\em Monoid}. \index{Monoid}% -Hat man nur eine Verknüpfung, spricht man oft von einer {\em Halbruppe}. +Hat man nur eine Verknüpfung, aber kein neutrales Element, +spricht man oft von einer {\em Halbruppe}. \index{Halbgruppe}% \begin{definition} Eine Gruppe $G$ heisst abelsch, wenn $ab=ba$ für alle $a,b\in G$. \end{definition} +\index{abelsch}% Additiv geschrieben Gruppen werden immer als abelsch angenommen, multiplikativ geschrieben Gruppen können abelsch oder nichtabelsch sein. @@ -63,7 +70,9 @@ Das additive Inverse eines Elementes $a$ ist $-a$. \end{beispiel} \begin{beispiel} -Die von Null verschiedenen Elemente $\Bbbk^*$ eines Zahlekörpers bilden +Die von Null verschiedenen Elemente $\Bbbk^*=\Bbbk\setminus\{0\}$ (definiert +auf Seite~\pageref{buch:zahlen:def:bbbk*}) +eines Zahlekörpers bilden bezüglich der Multiplikation eine Gruppe mit neutralem Element $1$. Das multiplikative Inverse eines Elementes $a\in \Bbbk$ mit $a\ne 0$ ist $a^{-1}=\frac1{a}$. @@ -75,7 +84,7 @@ dem Nullvektor als neutralem Element. Betrachtet man $\Bbbk^n$ als Gruppe, verliert man die Multiplikation mit Skalaren aus den Augen. $\Bbbk^n$ als Gruppe zu bezeichnen ist also nicht falsch, man -verliert dadurch aber +verliert dadurch aber den Blick auf die Multiplikation mit Skalaren. \end{beispiel} \begin{beispiel} @@ -115,6 +124,7 @@ Ist $G$ eine Gruppe mit neutralem Element $e$, dann gilt $xe=x$ für alle $x\in G$ \item Es gibt nur ein neutrales Element. +\index{neutrales Element}% Wenn also $f\in G$ mit $fx=x$ für alle $x\in G$, ist dann folgt $f=e$. \item Wenn $hg=e$ gilt, dann auch $gh=e$ und $h$ ist durch $g$ eindeutig bestimmt. @@ -171,16 +181,22 @@ f = fe = e \] aus der Eigenschaft~1. -Schliesslich sei $x$ ein beliebiges Inverses von $g$, dann ist -$xg=e$, dann folgt +Schliesslich sei $x$ ein beliebiges Inverses von $g$. +Dann ist $xg=e$ und es folgt $x=xe=x(gh)=(xg)h = eh = h$, es gibt also nur ein Inverses von $g$. \end{proof} -Diesem Problem sind wir zum Beispiel auch in +Der Frage, ob Linksinverse und Rechtsinverse übereinstimmen, +sind wir zum Beispiel bereits in Abschnitt~\ref{buch:grundlagen:subsection:gleichungssyteme} -begegnet, wo wir nur gezeigt haben, dass $AA^{-1}=E$ ist. -Da aber die invertierbaren Matrizen eine Gruppe -bilden, folgt jetzt aus dem Satz automatisch, dass auch $A^{-1}A=E$. +begegnet. +Dort haben wir bereits gezeigt, dass nicht nur $AA^{-1}=I$, +sondern auch $A^{-1}A=I$. +Die dabei verwendete Methode war identisch mit dem hier gezeigten +Beweis. +Da die invertierbaren Matrizen eine Gruppe bilden, stellt sich +dieses Resultat jetzt als Spezialfall des +Satzes~\ref{buch:vektorenmatrizen:satz:gruppenregeln} dar. \subsubsection{Homomorphismen} \label{buch:gruppen:subsection:homomorphismen} Lineare Abbildung zwischen Vektorräumen zeichnen sich dadurch aus, @@ -231,17 +247,20 @@ e ghg^{-1}\in\ker\varphi. \] Der Kern wird also von der Abbildung $h\mapsto ghg^{-1}$, -der {\em Konjugation} in sich abgebildet. +der {\em Konjugation}, in sich abgebildet. +\index{Konjugation in einer Gruppe} \begin{definition} Eine Untergruppe $H \subset G$ heisst ein {\em Normalteiler}, geschrieben $H \triangleleft G$ wenn $gHg^{-1}\subset H$ für jedes $g\in G$. -\index{Normalteiler} +\index{Normalteiler}% \end{definition} Die Konjugation selbst ist ebenfalls keine Unbekannte, sie ist uns -bei der Basistransformationsformel schon begegnet. +bei der Basistransformationsformel +\eqref{buch:vektoren-und-matrizen:eqn:basiswechselabb} +schon begegnet. Die Tatsache, dass $\ker\varphi$ unter Konjugation erhalten bleibt, kann man also interpretieren als eine Eigenschaft, die unter Basistransformation erhalten bleibt. @@ -312,7 +331,7 @@ auf einem geeigneten Vektorraum. \begin{definition} \label{buch:vektorenmatrizen:def:darstellung} -Eine Darstellung einer Gruppe $G$ ist ein Homomorphismus +Eine {\em Darstellung} einer Gruppe $G$ ist ein Homomorphismus $G\to\operatorname{GL}_n(\mathbb{R})$. \index{Darstellung} \end{definition} @@ -324,11 +343,12 @@ sind alle Teilmengen von $\operatorname{GL}_n(\mathbb{R})$. Die Einbettungsabbildung $G\hookrightarrow \operatorname{GL}_n(\mathbb{R})$ ist damit automatisch eine Darstellung, sie heisst auch die {\em reguläre Darstellung} der Gruppe $G$. -\index{reguläre Darstellung} +\index{reguläre Darstellung}% +\index{Darstellung, reguläre}% \end{beispiel} In Kapitel~\ref{buch:chapter:permutationen} wird gezeigt, -dass Permutationen einer endlichen eine Gruppe bilden und wie +dass Permutationen einer endlichen Menge eine Gruppe bilden und wie sie durch Matrizen dargestellt werden können. diff --git a/buch/chapters/10-vektorenmatrizen/hadamard.tex b/buch/chapters/10-vektorenmatrizen/hadamard.tex index 1fd0373..787b0f5 100644 --- a/buch/chapters/10-vektorenmatrizen/hadamard.tex +++ b/buch/chapters/10-vektorenmatrizen/hadamard.tex @@ -25,14 +25,16 @@ dies ist das Hadamard-Produkt. \begin{definition} Das {\em Hadamard-Produkt} zweier Matrizen +\index{Hadamard-Produkt}% $A,B\in M_{m\times n}(\Bbbk)$ ist definiert als die Matrix $A\odot B$ mit den Komponenten \[ -(A\odot B)_{ij} = (A)_{ij} (B)_{ij}. +(A\odot B)_{i\!j} = (A)_{i\!j} (B)_{i\!j}. \] Wir nennen $M_{m\times n}(\Bbbk)$ mit der Multiplikation $\odot$ -auch die Hadamard-Algebra $H_{m\times n}(\Bbbk)$. +auch die {\em Hadamard-Algebra} $H_{m\times n}(\Bbbk)$. +\index{Hadamard-Algebra}% \end{definition} Dies ist jedoch nur interessant, wenn $M_{m\times n}(\Bbbk)$ mit diesem @@ -46,30 +48,30 @@ Es gilt \begin{align*} A\odot(B\odot C) &= (A\odot B)\odot C &&\Leftrightarrow& -a_{ij}(b_{ij}c_{ij}) &= (a_{ij}b_{ij})c_{ij} +a_{i\!j}(b_{i\!j}c_{i\!j}) &= (a_{i\!j}b_{i\!j})c_{i\!j} \\ A\odot(B+C) &= A\odot B + A\odot C &&\Leftrightarrow& -a_{ij}(b_{ij}+c_{ij}) &= a_{ij}b_{ij} + a_{ij}c_{ij} +a_{i\!j}(b_{i\!j}+c_{i\!j}) &= a_{i\!j}b_{i\!j} + a_{i\!j}c_{i\!j} \\ (A+B)\odot C&=A\odot C+B\odot C &&\Leftrightarrow& -(a_{ij}+b_{ij})c_{ij}&=a_{ij}c_{ij} + b_{ij}c_{ij} +(a_{i\!j}+b_{i\!j})c_{i\!j}&=a_{i\!j}c_{i\!j} + b_{i\!j}c_{i\!j} \\ (\lambda A)\odot B &= \lambda (A\odot B) &&\Leftrightarrow& -(\lambda a_{ij})b_{ij}&=\lambda(a_{ij}b_{ij}) +(\lambda a_{i\!j})b_{i\!j}&=\lambda(a_{i\!j}b_{i\!j}) \\ A\odot(\lambda B)&=\lambda(A\odot B) &&\Leftrightarrow& -a_{ij}(\lambda b_{ij})&=\lambda(a_{ij}b_{ij}) +a_{i\!j}(\lambda b_{i\!j})&=\lambda(a_{i\!j}b_{i\!j}) \end{align*} für alle $i,j$. Das Hadamard-Produkt ist kommutativ, da die Multiplikation in $\Bbbk$ kommuativ ist. Das Hadamard-Produkt kann auch für Matrizen mit Einträgen in einem -Ring definiert werden, in diesem Fall ist es möglich, dass die entsehende +Ring definiert werden, in diesem Fall ist es möglich, dass die entstehende Algebra nicht kommutativ ist. Die Hadamard-Algebra hat auch ein Eins-Elemente, nämlich die Matrix, @@ -77,6 +79,7 @@ die aus lauter Einsen besteht. \begin{definition} Die sogenannte {\em Einsmatrix} $U$ ist die Matrix +\index{Einsmatrix} \[ U=\begin{pmatrix} 1&1&\dots&1\\ @@ -106,7 +109,7 @@ Auch die Hadamard-Algebra $H_{m\times n}(\Bbbk)$ kann als Funktionenalgebra betrachtet werden. Einer Matrix $A\in H_{m\times n}(\Bbbk)$ ordnet man die Funktion \[ -a\colon [m]\times [n] : (i,j) \mapsto a_{ij} +a\colon [m]\times [n] : (i,j) \mapsto a_{i\!j} \] zu. Dabei gehen die Algebraoperationen von $H_{m\times n}(\Bbbk)$ über @@ -131,7 +134,7 @@ A=\begin{pmatrix}3&4\\4&5\end{pmatrix} B=\begin{pmatrix}-5&4\\4&-3\end{pmatrix} \] sind inverse Matrizen bezüglich des Matrizenproduktes, also -$AB=E$. +$AB=I$. Für das Hadamard-Produkt gilt dagegen \[ A\odot B @@ -141,13 +144,15 @@ A\odot B 16&-15 \end{pmatrix}. \] -Die Inverse einer Matrix $A$ Bezüglich des Hadamard-Produktes hat -die Einträge $a_{ij}^{-1}$. -Die Matrix $E$ ist bezüglich des gewöhnlichen Matrizenproduktes +Die Inverse einer Matrix $A$ bezüglich des Hadamard-Produktes hat +die Einträge $a_{i\!j}^{-1}$. +Die Matrix $I$ ist bezüglich des gewöhnlichen Matrizenproduktes invertierbar, aber sie ist bezüglich des Hadamard-Produktes nicht invertierbar. +Umgekehrt ist die Einsmatrix $U$ invertierbar bezüglich des +Hadamard-Produktes, aber für $n>1$ nicht für das Matrizenprodukt. -\subsubsection{Einbettung der Hadamard-Algebra ein eine Matrizenalgebra} +\subsubsection{Einbettung der Hadamard-Algebra in eine Matrizenalgebra} Hadamard-Algebren können als Unteralgebren einer Matrizenalgebra betrachtet werden. Der Operator $\operatorname{diag}$ bildet Vektoren ab in Diagonalmatrizen @@ -224,36 +229,32 @@ a_{nn} Bei dieser Abbildung geht die Hadamard-Multiplikation wieder in das gewöhnliche Matrizenprodukt über. -% XXX Faltungsmatrizen und Fouriertheorie -\subsubsection{Beispiel: Faltung und Fourier-Theorie} - -\subsection{Weitere Verknüpfungen -\label{buch:vektorenmatrizen:subsection:weitere}} - \subsubsection{Transposition} Das Hadamard-Produkt verträgt sich mit der Transposition: +\index{Transposition}% \[ (A\odot B)^t = A^t \odot B^t. \] Insbesondere ist das Hadamard-Produkt zweier symmetrischer Matrizen auch wieder symmetrisch. -\subsubsection{Frobeniusnorm} +\subsubsection{Frobenius-Norm} Das Hadamard-Produkt in der Hadamard-Algebra $H_{m\times n}(\mathbb{R})$ nimmt keine Rücksicht auf die Dimensionen einer Matrix und ist nicht unterscheidbar von $\mathbb{R}^{m\times n}$ mit dem Hadamard-Produkt. Daher darf auch der Begriff einer mit den algebraischen Operationen -verträglichen Norm nicht von von den Dimensionen abhängen. +verträglichen Norm nicht von den spezifischen Dimensionen $m$ und $n$ abhängen. Dies führt auf die folgende Definition einer Norm. \begin{definition} -Die {\em Frobenius-Norm} einer Matrix $A\in H_{m\times n}\mathbb{R})$ -mit den Einträgen $(a_{ij})=A$ ist +Die {\em Frobenius-Norm} einer Matrix $A\in H_{m\times n}(\mathbb{R})$ +\index{Frobenius-Norm}% +mit den Einträgen $(a_{i\!j})=A$ ist \[ \| A\|_F = \sqrt{ -\sum_{i,j} a_{ij}^2 +\sum_{i,j} a_{i\!j}^2 }. \] Das {\em Frobenius-Skalarprodukt} zweier Matrizen @@ -262,14 +263,15 @@ ist \[ \langle A,B\rangle_F = -\sum_{i,j} a_{ij} b_{ij} +\sum_{i,j} a_{i\!j} b_{i\!j} = \operatorname{Spur} A^t B \] und es gilt $\|A\|_F = \sqrt{\langle A,A\rangle}$. \end{definition} -Für komplexe Matrizen muss +Für komplexe Matrizen muss die Definition angepasst werden, damit +das Skalarprodukt sesquilinear und positiv definit wird. \begin{definition} Die {\em komplexe Frobenius-Norm} einer Matrix $A\in H_{m\times n}(\mathbb{C})$ @@ -278,11 +280,11 @@ ist \| A\| = \sqrt{ -\sum_{i,j} |a_{ij}|^2 +\sum_{i,j} |a_{i\!j}|^2 } = \sqrt{ -\sum_{i,u} \overline{a}_{ij} a_{ij} +\sum_{i,u} \overline{a}_{i\!j} a_{i\!j} } \] das {\em komplexe Frobenius-Skalarprodukt} zweier Matrizen @@ -290,18 +292,10 @@ $A,B\in H_{m\times n}(\mathbb{C})$ ist das Produkt \[ \langle A,B\rangle_F = -\sum_{i,j}\overline{a}_{ij} b_{ij} +\sum_{i,j}\overline{a}_{i\!j} b_{i\!j} = \operatorname{Spur} (A^* B) \] und es gilt $\|A\|_F = \sqrt{\langle A,A\rangle}$. \end{definition} -% XXX Frobeniusnorm - -\subsubsection{Skalarprodukt} - -% XXX Skalarprodukt - - - diff --git a/buch/chapters/10-vektorenmatrizen/koerper.tex b/buch/chapters/10-vektorenmatrizen/koerper.tex index e1dda6d..1754ce6 100644 --- a/buch/chapters/10-vektorenmatrizen/koerper.tex +++ b/buch/chapters/10-vektorenmatrizen/koerper.tex @@ -11,10 +11,67 @@ sehr spezielle Algebren, man nennt sie Körper. In diesem Abschnitt sollen die wichtigsten Eigenschaften von Körpern zusammengetragen werden. +\begin{definition} +Ein Körper $K$ ist ein additive Gruppe mit einer multiplikativen +Verknüpfung derart, dass $K^* = K \setminus \{0\}$ eine Gruppe bezüglich +der Multiplikation ist. +Ausserdem gelten die Distributivgesetze +\[ +(a+b)c = ac+bc +\qquad a,b,c\in K. +\] +\end{definition} -XXX TODO +Ein Körper ist also ein Ring derart, dass die Einheitengruppe $K^*$ ist. +\begin{beispiel} +Die Menge $\mathbb{F}_2=\{0,1\}$ mit der Additions- und +Mutliplikationstabelle +\begin{center} +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}>{$}c<{$}|} +\hline ++&0&1\\ +\hline +0&0&1\\ +1&1&0\\ +\hline +\end{tabular} +\qquad +\qquad +\qquad +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}>{$}c<{$}|} +\hline +\cdot&0&1\\ +\hline +0&0&0\\ +1&0&1\\ +\hline +\end{tabular} +\end{center} +ist der kleinste mögliche Körper. +\end{beispiel} +\begin{beispiel} +Die Menge der rationalen Funktionen +\[ +\mathbb{Q}(z) += +\biggl\{ +f(z) += +\frac{p(z)}{q(z)} +\, +\bigg| +\, +\begin{minipage}{5.5cm} +\raggedright +$p(z), q(z)$ sind Polynome mit rationalen Koeffizienten, $q(z)\ne 0$ +\end{minipage} +\, +\biggr\} +\] +ist ein Körper. +\end{beispiel} diff --git a/buch/chapters/10-vektorenmatrizen/linear.tex b/buch/chapters/10-vektorenmatrizen/linear.tex index 28ec606..ba89266 100755 --- a/buch/chapters/10-vektorenmatrizen/linear.tex +++ b/buch/chapters/10-vektorenmatrizen/linear.tex @@ -395,7 +395,7 @@ a_{21}&a_{22}&\dots &a_{2n}\\ a_{m1}&a_{m2}&\dots &a_{mn}\\ \end{pmatrix} \] -mit $a_{ij}\in\Bbbk$. +mit $a_{i\!j}\in\Bbbk$. Die Menge aller $m\times n$-Matrizen wird mit \[ M_{m\times n}(\Bbbk) @@ -413,7 +413,7 @@ $M_n(\Bbbk) = M_{n\times n}(\Bbbk)$ ab. Die $m$-dimensionalen Spaltenvektoren $v\in \Bbbk^m$ sind $m\times 1$-Matrizen $v\in M_{n\times 1}(\Bbbk)$, die $n$-dimensionalen Zeilenvetoren $u\in\Bbbk^n$ sind $1\times n$-Matrizen $v\in M_{1\times n}(\Bbbk)$. -Eine $m\times n$-Matrix $A$ mit den Koeffizienten $a_{ij}$ besteht aus +Eine $m\times n$-Matrix $A$ mit den Koeffizienten $a_{i\!j}$ besteht aus den $n$ Spaltenvektoren \[ a_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix},\quad @@ -469,7 +469,7 @@ $n\times l$-Matrix $B\in M_{n\times l}(\Bbbk)$ haben als Produkt eine $m\times l$-Matrix $C=AB\in M_{m\times l}(\Bbbk)$ mit den Koeffizienten \begin{equation} -c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}. +c_{i\!j} = \sum_{k=1}^n a_{ik} b_{kj}. \label{buch:vektoren-und-matrizen:eqn:matrixmultiplikation} \end{equation} \end{definition} @@ -477,34 +477,34 @@ c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}. Die Koeffizienten $a_{ik}$ kommen aus der Zeile $i$ von $A$, die Koeffizienten $b_{kj}$ stehen in der Spalte $j$ von $B$, die Multiplikationsregel \eqref{buch:vektoren-unbd-matrizen:eqn:matrixmultiplikation} -besagt also, dass das Element $c_{ij}$ entsteht als das Produkt +besagt also, dass das Element $c_{i\!j}$ entsteht als das Produkt der Zeile $i$ von $A$ mit der Spalte $j$ von $C$. \subsubsection{Einheitsmatrix} Welche $m\times m$-Matrix $I\in M_{m}(\Bbbk)$ hat die Eigenschaft, dass $IA=A$ für jede beliebige Matrix $A\in M_{m\times n}(\Bbbk)$. -Wir bezeichnen die Einträge von $I$ mit $\delta_{ij}$. +Wir bezeichnen die Einträge von $I$ mit $\delta_{i\!j}$. Die Bedingung $IA=A$ bedeutet \[ -a_{ij} = \delta_{i1}a_{1j} + \dots + \delta_{im}a_{mj}, +a_{i\!j} = \delta_{i1}a_{1j} + \dots + \delta_{im}a_{mj}, \] -Da auf der linken Seite nur $a_{ij}$ vorkommt, müssen alle Terme auf der -rechten Seite verschwinden ausser dem Term mit $a_{ij}$, dessen +Da auf der linken Seite nur $a_{i\!j}$ vorkommt, müssen alle Terme auf der +rechten Seite verschwinden ausser dem Term mit $a_{i\!j}$, dessen Koeffizient $\delta_{ii}=1$ sein muss. Die Koeffizienten sind daher \[ -\delta_{ij} +\delta_{i\!j} = \begin{cases} 1&\qquad i=j\\ 0&\qquad\text{sonst} \end{cases} \] -Die Zahlen $\delta_{ij}$ heissen auch das {\em Kronecker-Symbol} oder +Die Zahlen $\delta_{i\!j}$ heissen auch das {\em Kronecker-Symbol} oder {\em Kronecker-Delta}. \index{Kronecker-$\delta$}% \index{Kronecker-Symbol}% -Die Matrix $I$ hat die Einträge $\delta_{ij}$ und heisst die +Die Matrix $I$ hat die Einträge $\delta_{i\!j}$ und heisst die {\em Einheitsmatrix} \index{Einheitsmatrix}% \[ @@ -608,7 +608,7 @@ das Tableau benötigt, alle Schritte operieren direkt auf den Daten des Tableaus. In jedem Schritt des Algorithmus wird zunächst eine Zeile $i$ und -Spalte $j$ ausgewählt, das Elemente $a_{ij}$ heisst das {\em Pivotelement}. +Spalte $j$ ausgewählt, das Elemente $a_{i\!j}$ heisst das {\em Pivotelement}. \index{Pivotelement}% Die {\em Pivotdivision} \index{Pivotdivision} @@ -617,7 +617,7 @@ Die {\em Pivotdivision} \hline a_{11}&\dots &a_{1j}&\dots &a_{1n}&b_1 \\[-2pt] \vdots& &\vdots&\ddots&\vdots&\vdots\\ -a_{i1}&\dots &{\color{red}a_{ij}}&\dots &a_{in}&b_i \\[-2pt] +a_{i1}&\dots &{\color{red}a_{i\!j}}&\dots &a_{in}&b_i \\[-2pt] \vdots& &\vdots&\ddots&\vdots&\vdots\\ a_{m1}&\dots &a_{mj}&\dots &a_{mn}&b_m \\ \hline @@ -627,7 +627,7 @@ a_{m1}&\dots &a_{mj}&\dots &a_{mn}&b_m \\ \hline a_{11}&\dots &a_{1j}&\dots &a_{1n}&b_1 \\[-2pt] \vdots& &\vdots&\ddots&\vdots&\vdots\\ -{\color{red}\frac{a_{i1}}{a_{ij}}}&\dots &{\color{red}1}&\dots &{\color{red}\frac{a_{in}}{a_{ij}}}&{\color{red}\frac{b_i}{a_{ij}}}\\[-2pt] +{\color{red}\frac{a_{i1}}{a_{i\!j}}}&\dots &{\color{red}1}&\dots &{\color{red}\frac{a_{in}}{a_{i\!j}}}&{\color{red}\frac{b_i}{a_{i\!j}}}\\[-2pt] \vdots& &\vdots&\ddots&\vdots&\vdots\\ a_{m1}&\dots &a_{mj}&\dots &a_{mn}&b_m \\ \hline @@ -864,7 +864,7 @@ a_{n1}&a_{n2}&\dots &a_{nn}&0 &0 &\dots &1 \\ \end{tabular} \] Die Vektoren $c_k$ sind die Spaltenvektoren der Matrix $C$ mit den -Einträgen $c_{ij}$. +Einträgen $c_{i\!j}$. Mit den Vektoren $c_k$ können jetzt beliebige inhomogene Gleichungssysteme $Ax=b$ gelöst werden. @@ -1046,7 +1046,7 @@ Die Inverse der $n\times n$-Matrix $A$ ist gegeben durch \index{Formel für die inverse Matrix}% \index{inverse Matrix, Formel für}% \begin{equation} -(A^{-1})_{ij} +(A^{-1})_{i\!j} = \frac{1}{\det(A)} \begin{pmatrix} @@ -1367,9 +1367,10 @@ Basis in die gestrichen umzurechnen gestattet. Ist $A$ die Matrix von $A$ in den Basen $\mathcal{B}$ und $\mathcal{C}$, dann ist Matrix der gleichen Abbildung in den Basen $\mathcal{B}'$ und $\mathcal{C}'$ gegeben durch die Matrix -\[ +\begin{equation} A' = T_VAT_U^{-1}. -\] +\label{buch:vektoren-und-matrizen:eqn:basiswechselabb} +\end{equation} \subsubsection{Umkehrabbbildung} Sei $f$ eine umkehrbare lineare Abbildung $U\to V$ und $g\colon V\to U$. diff --git a/buch/chapters/10-vektorenmatrizen/ringe.tex b/buch/chapters/10-vektorenmatrizen/ringe.tex index 21b29c2..a91b4ac 100644 --- a/buch/chapters/10-vektorenmatrizen/ringe.tex +++ b/buch/chapters/10-vektorenmatrizen/ringe.tex @@ -13,6 +13,7 @@ Eine ähnliche Situation haben wir bei $M_n(\Bbbk)$ angetroffen. $M_n(\Bbbk)$ ist eine zunächst eine Gruppe bezüglich der Addition, hat aber auch noch eine Multiplikation, die nicht immer umkehrbar ist. Diese Art von Struktur nennt man einen Ring. +\index{Ring} \subsubsection{Definition eines Rings} @@ -21,6 +22,7 @@ Diese Art von Struktur nennt man einen Ring. Eine Menge $R$ mit einer additiven Operation $+$ mit neutralem Element $0$ und einer multiplikativ geschriebenen Operation $\cdot$ heisst ein {\em Ring}, wenn folgendes gilt. +\index{Ring}% \begin{enumerate} \item $R$ ist eine Gruppe bezüglich der Addition. @@ -56,14 +58,15 @@ kein neutrales Element hat oder beides. \begin{definition} \index{Ring mit Eins}% -Ein Ring $R$ heisst ein Ring mit Eins, wenn die Multiplikation ein +Ein Ring $R$ heisst ein {\em Ring mit Eins}, wenn die Multiplikation ein neutrales Element hat. +\index{Ring mit Eins}% \end{definition} \begin{definition} \index{Ring!kommutativ}% \index{kommutativer Ring}% -Ein Ring $R$ heisst kommutativ, wenn die Multiplikation kommutativ +Ein Ring $R$ heisst {\em kommutativ}, wenn die Multiplikation kommutativ ist. \end{definition} @@ -93,7 +96,7 @@ für $a,b\in c(\mathbb{Z})$. Die Algebra ist kommutativ und hat die konstante Folge $u_n = 1\;\forall n$ als Eins. -Wir betrachten jetzt ein Unterring $c_0(\mathbb{Z})\subset c(\mathbb{Z})$ +Wir betrachten jetzt den Unterring $c_0(\mathbb{Z})\subset c(\mathbb{Z})$ bestehend aus den Folgen, die nur für endlich viele Folgenglieder von $0$ verschieden sind. Für eine Folge $a\in c_0(\mathbb{Z})$ gibt es eine Zahl $N$ derart, dass @@ -138,8 +141,8 @@ Ebenso ist das Produkt dieser Zahlen weil Realteil $ac-bd\in\mathbb{Z}$ und der Imaginärteil $ad+bc\in\mathbb{Z}$ ganze Zahlen sind. Die Menge $\mathbb{Z}[i]$ ist also ein kommutative Ring mit Eins, er -heisst der Ring der ganzen {\em Gaussschen Zahlen}. -\index{Gausssche Zahlen}% +heisst der Ring der {\em ganzen Gaussschen Zahlen}. +\index{ganze Gausssche Zahlen}% \end{beispiel} \begin{beispiel} @@ -214,7 +217,7 @@ $U(M_n(\Bbbk))=\operatorname{GL}_n(\Bbbk)$. \subsubsection{Nullteiler} Ein möglicher Grund, warum ein Element $r\in R$ nicht invertierbar -ist, kann sein, dass es ein Element $s\in R$ gibt mit $rs=0$. +ist, kann sein, dass es ein Element $s\in R$ mit $rs=0$ gibt. Wäre nämlich $t$ ein inverses Element, dann wäre $0=t0 = t(rs) = (tr)s=s$. \begin{definition} @@ -222,6 +225,8 @@ Ein Element $r\in R^*$ heisst ein {\em Nullteiler} in $R$, wenn es ein $s\in R^*$ gibt mit $rs=0$ Ein Ring ohne Nullteiler heisst {\em nullteilerfrei}. \end{definition} +\index{Nullteiler}% +\index{nullteilerfrei}% In $\mathbb{R}$ ist man sich gewohnt zu argumentieren, dass wenn ein Produkt $ab=0$ ist, dann muss einer der Faktoren $a=0$ oder $b=0$ sein. diff --git a/buch/chapters/10-vektorenmatrizen/skalarprodukt.tex b/buch/chapters/10-vektorenmatrizen/skalarprodukt.tex index dcee937..b249d0d 100644 --- a/buch/chapters/10-vektorenmatrizen/skalarprodukt.tex +++ b/buch/chapters/10-vektorenmatrizen/skalarprodukt.tex @@ -993,10 +993,14 @@ Beispiel ist die Funktion $f(x)=1/\sqrt{x}$ auf dem Interval $[0,1]$ \begin{align*} \|f\|_1 &= -\int_0^1 \frac 1\sqrt{x}\,dx +\int_0^1 \frac 1{\sqrt{x}}\,dx = -[2\sqrt{x}]_0^1 = 2 < \infty -&&\Rightarrow& \|f\|_2&<\infty +[2\sqrt{x}]_0^1 += +2 +< +\infty +&&\Rightarrow& \|f\|_1&<\infty \\ \|f\|_2^2 &= @@ -1006,7 +1010,7 @@ Beispiel ist die Funktion $f(x)=1/\sqrt{x}$ auf dem Interval $[0,1]$ = \lim_{t\to 0} [\log x]_t^1 = \infty &&\Rightarrow& -\|f\|_1 &= \infty. +\|f\|_2 &= \infty. \end{align*} Die Vektorräume der integrierbaren und der quadratintegrierbaren Funktionen sind also verschieden. diff --git a/buch/chapters/10-vektorenmatrizen/strukturen.tex b/buch/chapters/10-vektorenmatrizen/strukturen.tex index a2afa37..2ad7b88 100644 --- a/buch/chapters/10-vektorenmatrizen/strukturen.tex +++ b/buch/chapters/10-vektorenmatrizen/strukturen.tex @@ -17,9 +17,10 @@ werden. Im Laufe der Definition der Vektorräume $\Bbbk^n$ und der Operationen für die Matrizen in $M_{m\times n}(\Bbbk)$ haben wir eine ganze Reihe von algebraischen Strukturen kennengelernt. -Nicht immer sind alle Operationen verfügbar, in einem Vektorraum -gibt es normalerweise kein Produkt. -Und bei der Konstruktion des Zahlensystems wurde gezeigt, dass +Nicht immer sind alle Operationen verfügbar, die uns von der Diskussion +der Zahlenmengen her vertraut sind, zum Beispiel gibt es in einem +Vektorraum normalerweise kein Produkt. +Bei der Konstruktion des Zahlensystems wurde gezeigt, dass additive oder multiplikative Inverse nicht selbstverständlich sind. Sinnvolle Mathematik lässt sich aber erst betreiben, wenn zusammen |