aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2021-03-30 11:49:04 +0200
committerNao Pross <np@0hm.ch>2021-03-30 11:49:04 +0200
commita986e271bde9cb1bf124ae3eabd0a7c5e2f4dc2b (patch)
treeebd4690c0ce3220376fb7fcb16119d6bfff6dfc5 /buch/chapters
parentChange title and authors, remove sample (diff)
parentTippfehler korrigiert (mit Dank für den Hinweis an L. Zogg) (diff)
downloadSeminarMatrizen-a986e271bde9cb1bf124ae3eabd0a7c5e2f4dc2b.tar.gz
SeminarMatrizen-a986e271bde9cb1bf124ae3eabd0a7c5e2f4dc2b.zip
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarMatrizen
Diffstat (limited to 'buch/chapters')
-rw-r--r--buch/chapters/30-endlichekoerper/uebungsaufgaben/3003.tex2
-rw-r--r--buch/chapters/30-endlichekoerper/uebungsaufgaben/3004.tex30
-rw-r--r--buch/chapters/40-eigenwerte/Makefile.inc3
-rw-r--r--buch/chapters/40-eigenwerte/chapter.tex4
-rw-r--r--buch/chapters/40-eigenwerte/grundlagen.tex30
-rw-r--r--buch/chapters/40-eigenwerte/images/Makefile7
-rw-r--r--buch/chapters/40-eigenwerte/images/bild1.jpgbin0 -> 76315 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/bild2.jpgbin0 -> 87846 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/drei.jpgbin0 -> 95383 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kern1.jpgbin0 -> 61717 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kern2.jpgbin0 -> 87289 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kernbild.pdfbin0 -> 189482 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kernbild.tex40
-rw-r--r--buch/chapters/40-eigenwerte/images/kernbild1.jpgbin0 -> 84647 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kernbild2.jpgbin0 -> 76111 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kombiniert.jpgbin0 -> 117063 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kombiniert.pdfbin0 -> 131131 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/kombiniert.tex48
-rw-r--r--buch/chapters/40-eigenwerte/spektralradius.tex6
-rw-r--r--buch/chapters/40-eigenwerte/spektraltheorie.tex581
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex72
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex151
-rw-r--r--buch/chapters/60-gruppen/chapter.tex24
-rw-r--r--buch/chapters/60-gruppen/images/castle.jpegbin0 -> 148054 bytes
-rw-r--r--buch/chapters/60-gruppen/lie-algebren.tex255
-rw-r--r--buch/chapters/60-gruppen/lie-gruppen.tex318
-rw-r--r--buch/chapters/60-gruppen/symmetrien.tex98
27 files changed, 1645 insertions, 24 deletions
diff --git a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3003.tex b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3003.tex
index 8a83256..5dea881 100644
--- a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3003.tex
+++ b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3003.tex
@@ -46,7 +46,7 @@ Q(2)Q(1)Q(3)Q(4)
\begin{pmatrix} 4&-17\\ -11&47 \end{pmatrix}.
\end{align*}
Daraus kann man ablesen, dass $s=4$ und $t=-17$, tatsächlich ist
-$4\cdot 47-47\cdot 11=188-187=1$.
+$4\cdot 47-17\cdot 11=188-187=1$.
Wir schliessen daraus, dass $-17=30\in\mathbb{F}_{47}$ die multiplikative
Inverse von $b=11$ ist.
Die Rechnung $11\cdot 30 = 330 = 7\cdot 47 + 1$ zeigt, dass dies
diff --git a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3004.tex b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3004.tex
index 046ac94..deb15dc 100644
--- a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3004.tex
+++ b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3004.tex
@@ -65,19 +65,19 @@ Die Gauss-Tableaux sind
\begin{align*}
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
- 1 & 1 & 0 & 0 & 1\\
- 0 & 1 & 1 & 1 & 0\\
- 1 & 1 & 1 & 1 & 0\\
- 0 & 1 & 1 & 0 & 1\\
+ 1 & 1 & 0 & 0 & 0\\
+ 0 & 1 & 1 & 1 & 1\\
+ 1 & 1 & 1 & 1 & 1\\
+ 0 & 1 & 1 & 0 & 0\\
\hline
\end{tabular}
&\to
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
- 1 & 1 & 0 & 0 & 1\\
- 0 & 1 & 1 & 1 & 0\\
+ 1 & 1 & 0 & 0 & 0\\
+ 0 & 1 & 1 & 1 & 1\\
0 & 0 & 1 & 1 & 1\\
- 0 & 1 & 1 & 0 & 1\\
+ 0 & 1 & 1 & 0 & 0\\
\hline
\end{tabular}
%\\
@@ -85,8 +85,8 @@ Die Gauss-Tableaux sind
\to
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
- 1 & 1 & 0 & 0 & 1\\
- 0 & 1 & 1 & 1 & 0\\
+ 1 & 1 & 0 & 0 & 0\\
+ 0 & 1 & 1 & 1 & 1\\
0 & 0 & 1 & 1 & 1\\
0 & 0 & 0 & 1 & 1\\
\hline
@@ -95,8 +95,8 @@ Die Gauss-Tableaux sind
\to
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
- 1 & 1 & 0 & 0 & 1\\
- 0 & 1 & 1 & 0 & 1\\
+ 1 & 1 & 0 & 0 & 0\\
+ 0 & 1 & 1 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 & 1\\
\hline
@@ -106,8 +106,8 @@ Die Gauss-Tableaux sind
\to
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
- 1 & 1 & 0 & 0 & 1\\
- 0 & 1 & 0 & 0 & 1\\
+ 1 & 1 & 0 & 0 & 0\\
+ 0 & 1 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 & 1\\
\hline
@@ -118,7 +118,7 @@ Die Gauss-Tableaux sind
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
1 & 0 & 0 & 0 & 0\\
- 0 & 1 & 0 & 0 & 1\\
+ 0 & 1 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 & 1\\
\hline
@@ -128,7 +128,7 @@ In der ersten Zeile stehen die Schritt der Vorwärtsreduktion, in der
zweiten die Schritte des Rückwärtseinsetzens.
Als Lösung liest man ab
\[
-x=\begin{pmatrix}0\\1\\0\\1 \end{pmatrix},
+x=\begin{pmatrix}0\\0\\0\\1 \end{pmatrix},
\]
die Korrektheit kann man leicht durch Einsetzen überprüfen.
\item
diff --git a/buch/chapters/40-eigenwerte/Makefile.inc b/buch/chapters/40-eigenwerte/Makefile.inc
index b15f476..5f30ab5 100644
--- a/buch/chapters/40-eigenwerte/Makefile.inc
+++ b/buch/chapters/40-eigenwerte/Makefile.inc
@@ -12,4 +12,7 @@ CHAPTERFILES = $(CHAPTERFILES) \
chapters/40-eigenwerte/spektraltheorie.tex \
chapters/40-eigenwerte/uebungsaufgaben/4001.tex \
chapters/40-eigenwerte/uebungsaufgaben/4002.tex \
+ chapters/40-eigenwerte/uebungsaufgaben/4003.tex \
+ chapters/40-eigenwerte/uebungsaufgaben/4004.tex \
+ chapters/40-eigenwerte/uebungsaufgaben/4005.tex \
chapters/40-eigenwerte/chapter.tex
diff --git a/buch/chapters/40-eigenwerte/chapter.tex b/buch/chapters/40-eigenwerte/chapter.tex
index e769b38..5f8cb83 100644
--- a/buch/chapters/40-eigenwerte/chapter.tex
+++ b/buch/chapters/40-eigenwerte/chapter.tex
@@ -34,8 +34,8 @@ Dies wird in Abschnitt~\ref{buch:section:spektraltheorie} beschrieben.
\input{chapters/40-eigenwerte/grundlagen.tex}
\input{chapters/40-eigenwerte/normalformen.tex}
\input{chapters/40-eigenwerte/spektralradius.tex}
-\input{chapters/40-eigenwerte/numerisch.tex}
\input{chapters/40-eigenwerte/spektraltheorie.tex}
+\input{chapters/40-eigenwerte/numerisch.tex}
\section*{Übungsaufgaben}
\rhead{Übungsaufgaben}
@@ -44,5 +44,7 @@ Dies wird in Abschnitt~\ref{buch:section:spektraltheorie} beschrieben.
\uebungsaufgabe{4001}
\uebungsaufgabe{4002}
\uebungsaufgabe{4003}
+\uebungsaufgabe{4004}
+\uebungsaufgabe{4005}
\end{uebungsaufgaben}
diff --git a/buch/chapters/40-eigenwerte/grundlagen.tex b/buch/chapters/40-eigenwerte/grundlagen.tex
index d984452..ffc452b 100644
--- a/buch/chapters/40-eigenwerte/grundlagen.tex
+++ b/buch/chapters/40-eigenwerte/grundlagen.tex
@@ -16,6 +16,36 @@ gestreckt werden.
Gelingt es, eine Basis aus solchen sogenanten {\em Eigenvektoren} zu finden,
dann kann man die Matrix $A$ durch Basiswechsel in diese Form bringen.
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/40-eigenwerte/images/kernbild.pdf}
+\caption{Iterierte Kerne und Bilder einer $3\times 3$-Matrix mit Rang~2.
+Die abnehmend geschachtelten iterierten Bilder
+$\mathcal{J}^1(A) \subset \mathcal{J}^2(A)$
+sind links dargestellt, die zunehmen geschachtelten iterierten Kerne
+$\mathcal{K}^1(A) \subset \mathcal{K}^2(A)$ rechts.
+\label{buch:eigenwerte:img:kernbild}}
+\end{figure}
+
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/40-eigenwerte/images/kombiniert.pdf}
+\caption{Iterierte Kerne und Bilder einer $3\times 3$-Matrix mit Rang~2.
+Da $\dim\mathcal{J}^2(A)=1$ und $\dim\mathcal{J}^1(A)=2$ ist, muss es
+einen Vektor in $\mathcal{J}^1(A)$ geben, der von $A$ auf $0$ abgebildet
+wird, der also auch im Kern $\mathcal{K}^1(A)$ liegt.
+Daher ist $\mathcal{K}^1(A)$ die Schnittgerade von $\mathcal{J}^1(A)$ und
+$\mathcal{K}^2(A)$.
+Man kann auch gut erkennen, dass
+$\mathbb{R}^3
+=
+\mathcal{K}^1(A)\oplus \mathcal{J}^1(A)
+=
+\mathcal{K}^2(A) \oplus \mathcal{J}^2(A)$
+ist.
+\label{buch:eigenwerte:img:kombiniert}}
+\end{figure}
+
%
% Kern und Bild von Matrixpotenzen
%
diff --git a/buch/chapters/40-eigenwerte/images/Makefile b/buch/chapters/40-eigenwerte/images/Makefile
index db00dac..753153d 100644
--- a/buch/chapters/40-eigenwerte/images/Makefile
+++ b/buch/chapters/40-eigenwerte/images/Makefile
@@ -3,7 +3,7 @@
#
# (c) 2020 Prof Dr Andreas Müller, Hochschule Rappersil
#
-all: sp.pdf nilpotent.pdf
+all: sp.pdf nilpotent.pdf kernbild.pdf kombiniert.pdf
sp.pdf: sp.tex sppaths.tex
pdflatex sp.tex
@@ -14,3 +14,8 @@ sppaths.tex: spbeispiel.m
nilpotent.pdf: nilpotent.tex
pdflatex nilpotent.tex
+kernbild.pdf: kernbild.tex bild2.jpg kern2.jpg
+ pdflatex kernbild.tex
+
+kombiniert.pdf: kombiniert.tex kombiniert.jpg
+ pdflatex kombiniert.tex
diff --git a/buch/chapters/40-eigenwerte/images/bild1.jpg b/buch/chapters/40-eigenwerte/images/bild1.jpg
new file mode 100644
index 0000000..879fae8
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/bild1.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/bild2.jpg b/buch/chapters/40-eigenwerte/images/bild2.jpg
new file mode 100644
index 0000000..2597c95
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/bild2.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/drei.jpg b/buch/chapters/40-eigenwerte/images/drei.jpg
new file mode 100644
index 0000000..35f9034
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/drei.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kern1.jpg b/buch/chapters/40-eigenwerte/images/kern1.jpg
new file mode 100644
index 0000000..5c99664
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kern1.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kern2.jpg b/buch/chapters/40-eigenwerte/images/kern2.jpg
new file mode 100644
index 0000000..87d18ac
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kern2.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kernbild.pdf b/buch/chapters/40-eigenwerte/images/kernbild.pdf
new file mode 100644
index 0000000..2a321b2
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kernbild.pdf
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kernbild.tex b/buch/chapters/40-eigenwerte/images/kernbild.tex
new file mode 100644
index 0000000..4eced84
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kernbild.tex
@@ -0,0 +1,40 @@
+%
+% kernbild.tex -- Kern und Bild einer Matrix
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\definecolor{darkgreen}{rgb}{0,0.4,0}
+\definecolor{turqoise}{rgb}{0,0.3,0.6}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\begin{scope}[xshift=-3.5cm]
+\node at (0,0) {\includegraphics[width=6.8cm]{bild2.jpg}};
+
+\fill[color=white,opacity=0.8] (-3,-2.75) rectangle (-2,-2.3);
+\node[color=orange] at (-2.5,-2.5) {$\mathcal{J}^1(A)$};
+\node at (3.3,0) {$x_1$};
+\node at (0.3,3.2) {$x_3$};
+\node[color=purple] at (2.3,0.6) [rotate=8] {$\mathcal{J}^2(A)$};
+\end{scope}
+
+\begin{scope}[xshift=3.5cm]
+\node at (0,0) {\includegraphics[width=6.8cm]{kern2.jpg}};
+\node[color=darkgreen] at (1.8,2.2) [rotate=58] {$\mathcal{K}^1(A)$};
+\fill[color=white,opacity=0.8] (-1.5,0.8) rectangle (-0.5,1.2);
+\node[color=turqoise] at (-1,1) {$\mathcal{K}^2(A)$};
+\node at (3.3,0) {$x_1$};
+\node at (0.3,3.2) {$x_3$};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/40-eigenwerte/images/kernbild1.jpg b/buch/chapters/40-eigenwerte/images/kernbild1.jpg
new file mode 100644
index 0000000..87e874e
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kernbild1.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kernbild2.jpg b/buch/chapters/40-eigenwerte/images/kernbild2.jpg
new file mode 100644
index 0000000..1160b31
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kernbild2.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kombiniert.jpg b/buch/chapters/40-eigenwerte/images/kombiniert.jpg
new file mode 100644
index 0000000..bebc36f
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kombiniert.jpg
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kombiniert.pdf b/buch/chapters/40-eigenwerte/images/kombiniert.pdf
new file mode 100644
index 0000000..91cee0b
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kombiniert.pdf
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/kombiniert.tex b/buch/chapters/40-eigenwerte/images/kombiniert.tex
new file mode 100644
index 0000000..d850c64
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/kombiniert.tex
@@ -0,0 +1,48 @@
+%
+% kombiniert.tex -- Iterierte Kerne und Bilder
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\definecolor{darkgreen}{rgb}{0,0.4,0}
+\definecolor{turqoise}{rgb}{0,0.3,0.6}
+\def\skala{1}
+\newboolean{showgrid}
+\setboolean{showgrid}{false}
+\def\breite{7}
+\def\hoehe{7}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\node at (0,0) {\includegraphics[width=13.8cm]{kombiniert.jpg}};
+
+\node at (6.6,-0.1) {$x_1$};
+\node at (0.3,6.7) {$x_3$};
+
+\node[color=purple] at (4.8,1) [rotate=8] {$\mathcal{J}^2(A)$};
+\node[color=darkgreen] at (3.5,4.6) [rotate=58] {$\mathcal{K}^1(A)$};
+
+\fill[color=white,opacity=0.8] (-2.3,3.8) rectangle (-1.3,4.2);
+\node[color=turqoise] at (-1.8,4) {$\mathcal{K}^2(A)$};
+
+\fill[color=white,opacity=0.8] (2.5,-5.75) rectangle (3.5,-5.3);
+\node[color=orange] at (3,-5.5) {$\mathcal{J}^1(A)$};
+
+%\node at G
+% Gitter
+\ifthenelse{\boolean{showgrid}}{
+\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe);
+\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe);
+\draw (-\breite,-\hoehe) grid (\breite, \hoehe);
+\fill (0,0) circle[radius=0.05];
+}{}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/40-eigenwerte/spektralradius.tex b/buch/chapters/40-eigenwerte/spektralradius.tex
index bdc725f..a36dc33 100644
--- a/buch/chapters/40-eigenwerte/spektralradius.tex
+++ b/buch/chapters/40-eigenwerte/spektralradius.tex
@@ -3,9 +3,9 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswi
%
-\section{Funktionen einer Matrix
-\label{buch:section:funktionen-einer-matrix}}
-\rhead{Funktionen einer Matrix}
+\section{Analytische Funktionen einer Matrix
+\label{buch:section:analytische-funktionen-einer-matrix}}
+\rhead{Analytische Funktionen einer Matrix}
Eine zentrale Motivation in der Entwicklung der Eigenwerttheorie
war das Bestreben, Potenzen $A^k$ auch für grosse $k$ effizient
zu berechnen.
diff --git a/buch/chapters/40-eigenwerte/spektraltheorie.tex b/buch/chapters/40-eigenwerte/spektraltheorie.tex
index 4146505..a3f86ba 100644
--- a/buch/chapters/40-eigenwerte/spektraltheorie.tex
+++ b/buch/chapters/40-eigenwerte/spektraltheorie.tex
@@ -5,7 +5,582 @@
%
\section{Spektraltheorie
\label{buch:section:spektraltheorie}}
-% Matrix-Exponentialfunktion
-% Wurzel einer Matrix
-% Beliebige Funktion f(A) für normale Matrizen
+Aufgabe der Spektraltheorie ist, Bedingungen an eine Matrix $A$ und eine
+Funktion $f(z)$ zu finden, unter denen es möglich ist, $f(A)$ auf
+konsistente Art und Weise zu definieren.
+Weiter müssen Methoden entwickelt werden, mit denen $f(A)$ berechnet
+werden kann.
+Für ein Polynom $p(z)$ ist $p(A)$ durch einsetzen definiert.
+Für Funktionen, die sich nicht durch ein Polynom darstellen lassen,
+muss eine Approximation der Funktion durch Polynome verwendet werden.
+Sei also $p_n(z)$ eine Folge von Polynomen, die als Approximation der
+Funktion $f(z)$ verwendet werden soll.
+Das Ziel ist, $f(A)$ als den Grenzwert der Matrixfolge $p_n(A)$
+zu definieren.
+
+Zunächst ist nicht klar, wie eine solche Folge gewählt werden muss.
+Es muss eine Teilmenge von $K\subset\mathbb{C}$ spezifiziert werden,
+auf der die Funktionenfolge $p_n(z)$ konvergieren muss,
+damit auch die Konvergenz der Matrizenfolge $p_n(A)$ garantiert ist.
+Auch die Art der Konvergenz von $p_n(z)$ auf der Menge $K$ ist noch
+unklar.
+Da der Abstand zweier Matrizen $A$ und $B$ in der Operatornorm
+mit der grössten Abweichung $\|(A-B)v\|$ für Einheitsvektoren $v$
+gemessen wird, ist es einigermassen plausibel, dass
+die grösse Abweichung zwischen zwei Polynomen $|p(z) - q(z)|$ auf
+der Menge $K$ kleine sein muss, wenn $\|p(A)-q(A)\|$ klein
+sein soll.
+Da die Differenz $p(z)-q(z)$ für beliebige Polynome, die sich nicht
+nur um eine Konstante unterscheiden, mit $z$ über alle Grenzen wächst,
+muss $K$ beschränkt sein.
+Gesucht ist also eine kompakte Menge $K\subset\mathbb{C}$ und eine
+Folge $p_n(z)$ von Polynomen, die auf $K$ gleichmässig gegen $f(z)$
+konvergieren.
+Die Wahl von $K$ muss sicherstellen, dass für jede gleichmässig
+konvergente Folge von Polynomen $p_n(z)$ auch die Matrizenfolge
+$p_n(A)$ konvergiert.
+
+Es wird sich zeigen, dass die Menge $K$ das Spektrum von $A$ ist,
+also eine endliche Teilmenge von $\mathbb{C}$.
+Jede Funktion kann auf so einer Menge durch Polynome exakt wiedergegeben
+werden.
+Es gibt insbesondere Folgen von Polynomen, die eingeschränkt
+auf das Spektrum gleich sind, also $p_n(z)=p_m(z)$ für alle $z\in K$,
+die aber ausserhalb des Spektrums alle verschieden sind.
+Als Beispiel kann die Matrix
+\[
+N=\begin{pmatrix}0&1\\0&0\end{pmatrix}
+\]
+herangezogen werden.
+Ihr Spektrum ist $\operatorname{Sp}(N)=\{0\}\subset\mathbb{C}$.
+Zwei Polynome stimmen genau dann auf $\operatorname{Sp}(N)$ überein,
+wenn der konstante Koeffizient gleich ist.
+Die Polynome $p(z)=z$ und $q(z)=z^2$ stimmen daher auf dem Spektrum
+überein.
+Für die Matrizen gilt aber $p(N)=N$ und $q(N)=N^2=0$, die Matrizen
+stimmen also nicht überein.
+Es braucht also zusätzliche Bedingungen an die Matrix $A$, die
+sicherstellen, dass $p(A)=0$ ist, wann immer $p(z)=0$ für
+$z\in\operatorname{Sp}(A)$ gilt.
+
+In diesem Abschnitt sollen diese Fragen untersucht werden.
+In Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
+wird gezeigt, wie sich Funktionen durch Polynome approximieren
+lassen, woraus sich dann Approximationen von $f(A)$ für diagonalisierbare
+Matrizen mit reellen Eigenwerten ergeben.
+
+Der Satz von Stone-Weierstrass, der in
+Abschnitt~\ref{buch:subsetion:stone-weierstrass} dargestellt wird,
+ist ein sehr allgemeines Approximationsresultat, welches nicht nur
+zeigt, dass die Approximation unter sehr natürlichen Voraussetzungen
+beliebig genau möglich ist, sondern uns im komplexen Fall auch
+weitere Einsicht dafür geben kann, welche Voraussetzungen an eine
+komplexe Matrix gestellt werden müssen, damit man damit rechnen kann,
+dass die Approximation zu einer konsistenten Definition von $f(A)$ führt.
+
+%
+% Approximation
+%
+\subsection{Approximation durch Polynome
+\label{buch:subsection:approximation-durch-polynome}}
+Die der Berechnung von $f(A)$ für eine beleibige stetige Funktion,
+die sich nicht als Potenzreihe schreiben lässt, verwendet Approximationen
+von Polynomen.
+Die numerische Mathematik hat eine grosse Menge von solchen
+Approximationsverfahren entwickelt, wovon zwei kurz (ohne Beweise)
+vorgestellt werden sollen.
+
+\subsubsection{Das Legendre-Interpolationspolynom}
+Zu vorgegebenen, verschiedenen Zahlen $z_i\in\mathbb{C}$, $0\le i\le n$,
+die auch die {\em Stützstellen} genannt werden,
+gibt es immer ein Polynom vom Grade $n$, welches in den $z_i$ vorgegebene
+Werte $f(z_i)$ annimmt.
+Ein solches Polynom lässt sich im Prinzip mit Hilfe eines linearen
+Gleichungssystems finden, man kann aber auch direkt eine Lösung
+konstruieren.
+Dazu bildet man erst die Polynome
+\begin{align*}
+l(z) &= (z-z_0)(z-z_1)\dots (z-z_n) \qquad\text{und}
+\\
+l_i(z) &= (z-z_0)\dots \widehat{(z-z_i)}\dots (z-z_n).
+\end{align*}
+Darin bedeutet der Hut, dass dieser Term weggelassen werden soll.
+Für $z\ne z_i$ ist $l_i(z)=l(z)/(z-z_i)$.
+Die Polynome
+\[
+k_i(z)
+=
+\frac{l_i(z)}{l_i(z_i)}
+=
+\frac{(z-z_0)\dots \widehat{(z-z_i)}\dots (z-z_n)}{(z_i-z_0)\dots \widehat{(z_i-z_i)}\dots (z_i-z_n)}
+\]
+haben die Eigenschaft
+$k_i(z_j)=\delta_{ij}$.
+Damit lässt sich jetzt ein Polynom
+\[
+p(z) = \sum_{j=0}^n f(z_j) \frac{l_j(z)}{l_j(z_j)}
+\]
+vom Grad $n$ konstruieren, welches die Werte
+\[
+p(z_i)
+=
+\sum_{j=0}^n f(z_j) \frac{l_j(z_i)}{l_j(z_j)}
+=
+\sum_{j=0}^n f(z_j) \delta_{ij}
+=
+f_(z_i)
+\]
+annimmt.
+Das Polynom $p(z)$ heisst das {\em Legendre-Interpolationspolynom}.
+
+Zwar lässt sich also für eine endliche Menge von komplexen Zahlen immer
+ein Polynom finden, welches vorgeschriebene Wert in allen diesen Zahlen
+annimmt, doch ist die Stabilität für grosse $n$ eher beschränkt.
+
+
+\subsubsection{Gleichmassige Approximation mit Bernstein-Polynomen}
+Das Legendre-Interpolationspolynom nimmt in den Stützstellen die
+verlangten Werte an, aber ausserhalb der Stützstellen ist nicht
+garantiert, dass man eine gute Approximation einer Funktion $f(z)$
+erhält.
+
+Für die Approximation auf einem reellen Interval $[a,b]$ hat
+Sergei Natanowitsch Bernstein ein
+Dazu werden zuerst die reellen Bernsteinpolynome vom Grad $n$
+durch
+\begin{align*}
+B_{i,n}(t) = \binom{n}{i} t^i(1-t)^{n-i}.
+\end{align*}
+definiert.
+Als Approximationspolynom für die auf dem Interval
+$[0,1]$ definierte, stetige Funktion $f(t)$ kann man dann
+\[
+B_n(f)(t)
+=
+\sum_{i=0}^n B_{i,n}(t) f\biggl(\frac{i}{n}\biggr)
+\]
+verwenden.
+Die Polynome $B_n(f)(t)$ konvergieren gleichmässig auf $[0,1]$
+gegen die Funktion $f(t)$.
+Über die Konvergenz ausserhalb des reellen Intervalls wird nichts
+ausgesagt.
+Die Approximation mit Bernstein-Polynomen ist daher nur sinnvoll,
+wenn man weiss, dass die Eigenwerte der Matrix reell sind, was im
+wesentlichen auf diagonalisierbare Matrizen führt.
+
+Für ein anderes Interval $[a,b]$ kann man ein Approximationspolynom
+erhalten, indem man die affine Transformation
+$s\mapsto (s-a)/(b-a)$
+von $[a,b]$ auf $[0,1]$
+verwendet.
+
+%
+% Der Satz von Stone-Weierstrass
+%
+\subsection{Der Satz von Stone-Weierstrasss
+\label{buch:subsetion:stone-weierstrass}}
+Der Satz von Stone-Weierstrass behandelt im Gegensatz zu den in
+Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
+besprochenen Approximationsmethoden nicht nur Funktionen von
+reellen Variablen durch Polynome.
+Vielmehr kann das Definitionsgebiet irgend eine abgeschlossene
+und beschränkte Teilmenge eines reellen oder komplexen Vektorraumes
+sein und die Funktionen können Polynome aber auch viel allgemeinere
+Funktionen verwendet werden, wie zum Beispiel die Funktionen
+$x\mapsto \cos nx$ und $x\mapsto \sin nx$ definiert auf dem
+Intervall $[0,2\pi]$.
+In diesem Fall liefert der Satz von Stone-Weierstrass die Aussage,
+dass sich jede stetige periodische Funktion gleichmässig durch
+trigonometrische Polynome approximieren lässt.
+
+Die Aussage des Satz von Stone-Weierstrass über reelle Funktionen
+lässt sich nicht auf komplexe Funktionen erweitern.
+Von besonderem Interesse ist jedoch, dass der Beweis des Satz
+zeigt, warum solche Aussagen für komplexe Funktionen nicht mehr
+zutreffen.
+Im Falle der Approximation von komplexen Funktionen $f(z)$ durch Polynome
+zwecks Definition von $f(A)$ werden sich daraus Bedingungen an die
+Matrix ableiten lassen, die eine konsistente Definition überhaupt
+erst ermöglichen werden.
+
+\subsubsection{Punkte trennen}
+Aus den konstanten Funktionen lassen sich durch algebraische
+Operationen nur weitere konstante Funktionen erzeugen.
+Die konstanten Funktionen sind also nur dann eine genügend
+reichhaltige Menge, wenn die Menge $K$ nur einen einzigen Punkt
+enthält.
+Damit sich Funktionen approximieren lassen, die in zwei Punkten
+verschiedene Werte haben, muss es auch unter den zur Approximation
+zur Verfügung stehenden Funktionen solche haben, deren Werte sich
+in diesen Punkten unterscheiden.
+Diese Bedingung wird in der folgenden Definition formalisiert.
+
+\begin{definition}
+Sei $K$ eine beliebige Menge und $A$ eine Menge von Funktionen
+$K\to \mathbb{C}$.
+Man sagt, $A$ {\em trennt die Punkte von $K$}, wenn es für jedes Paar
+\index{Punkte trennen}%
+von Punkten $x,y\in K$ eine Funktion $f\in A$ gibt derart, dass
+$f(x)\ne f(y)$.
+\end{definition}
+
+Man kann sich die Funktionen $f$, die gemäss dieser Definition die Punkte
+von $K$ trennen, als eine Art Koordinaten der Punkte in $K$ vorstellen.
+Die Punkte der Teilmenge $K\subset \mathbb{R}^n$ werden zum Beispiel
+von den Koordinatenfunktionen $x\mapsto x_i$ getrennt.
+Wir schreiben für die $i$-Koordinate daher auch als Funktion $x_i(x)=x_i$.
+Zwei verschiedene Punkte $x,y\in K$ unterscheiden sich in mindestens
+einer Koordinate.
+Für diese Koordinate sind dann die Werte der zugehörigen
+Koordinatenfunktion $x_i=x_i(x)\ne x_i(y)=y_i$ verschieden, die
+Funktionen $x_1(x)$ bis $x_n(x)$ trennen also die Punkte.
+
+\begin{beispiel}
+Wir betrachten einen Kreis in der Ebene, also die Menge
+\[
+S^1
+=
+\{(x_1,x_2)\;|\; x_1^2 + x_2^2=1\}
+\]
+$S^1$ ist eine abgeschlossene und beschränkte Menge in $\mathbb{R}^2$.
+Die Funktion $x\mapsto x_1$ trennt die Punkte nicht, denn zu jedem
+Punkt $(x_1,x_2)\in S^2$ gibt es den an der ersten Achse
+gespiegelten Punkt $\sigma(x)=(x_1,-x_2)$, dessen erste Koordinate
+den gleichen Wert hat.
+Ebenso trennt die Koordinatenfunktion $x\mapsto x_2$ die Punkte nicht.
+Die Menge $A=\{ x_1(x), x_2(x)\}$ bestehend aus den beiden
+Koordinatenfunktionen trennt dagegen die Punkte von $S^1$, da die Punkte
+sich immer in mindestens einem Punkt unterscheiden.
+
+Man könnte auch versuchen, den Kreis in Polarkoordinaten zu beschreiben.
+Die Funktion $\varphi(x)$, die jedem Punkt $x\in S^1$ den Polarwinkel
+zuordnet, trennt sicher die Punkte des Kreises.
+Zwei verschiedene Punkte auf dem Kreis haben verschieden Polarwinkel.
+Die Menge $\{\varphi\}$ trennt also die Punkte von $S^1$.
+Allerdings ist die Funktion nicht stetig, was zwar der Definition
+nicht widerspricht aber ein Hindernis für spätere Anwendungen ist.
+\end{beispiel}
+
+
+\subsubsection{Der Satz von Stone-Weierstrass für reelle Funktionen}
+Die Beispiele von Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
+haben bezeigt, dass sich reellwertige Funktionen einer reellen
+Variable durch Polynome beliebig genau approximieren lassen.
+Es wurde sogar eine Methode vorgestellt, die eine auf einem Intervall
+gleichmässig konvergente Polynomefolge produziert.
+Die Variable $x\in[a,b]$ trennt natürlich die Punkte, die Algebra der
+Polynome in der Variablen $x$ enthält also sicher Funktionen, die in
+verschiedenen Punkten des Intervalls auch verschiedene Werte annehmen.
+Nicht ganz so selbstverständlich ist aber, dass sich daraus bereits
+ergibt, dass jede beliebige Funktion sich als Polynome in $x$
+approximieren lässt.
+Dies ist der Inhalt des folgenden Satzes von Stone-Weierstrass.
+
+\begin{satz}[Stone-Weierstrass]
+\label{buch:satz:stone-weierstrass}
+Enthält eine $\mathbb{R}$-Algebra $A$ von stetigen, rellen Funktionen
+auf einer kompakten Menge $K$ die konstanten Funktionen und trennt sie
+Punkte, d.~h.~für zwei verschiedene Punkte $x,y\in K$ gibt es
+immer eine Funktion $f\in A$ mit $f(x)\ne f(y)$, dann ist jede stetige,
+reelle Funktion auf $K$ gleichmässig approximierbar durch Funktionen
+in $A$.
+\end{satz}
+
+\begin{proof}[Beweis]
+XXX TODO
+\end{proof}
+
+Der entscheidende Schritt des Beweises ist, dass man die Betragsfunktion
+konstruieren kann.
+Daraus leiten sich dann alle folgenden Konstruktionen ab.
+
+\subsubsection{Anwendung auf symmetrische und hermitesche Matrizen}
+Für symmetrische und hermitesche Matrizen $A$ ist bekannt, dass die
+Eigenwerte reell sind, also das Spektrum $\operatorname{A}\subset\mathbb{R}$
+ist.
+Für eine Funktion $\mathbb{R}\to \mathbb{R}$ lässt sich nach dem
+Satz~\ref{buch:satz:stone-weierstrass} immer eine Folge $p_n$ von
+approximierenden Polynomen in $x$ finden, die auf $\operatorname{Sp}(A)$
+gleichmässig konvergiert.
+Die Matrix $f(A)$ kann dann definiert werden also der Grenzwert
+\[
+f(A) = \lim_{n\to\infty} p_n(A).
+\]
+Da diese Matrizen auch diagonalisierbar sind, kann man eine Basis
+aus Eigenvektoren verwenden.
+Die Wirkung von $p_n(A)$ auf einem Eigenvektor $v$ zum Eigenwert $\lambda$
+ist
+\[
+p_n(A)v
+=
+(a_kA^k + a_{k-1}A^{k-1}+\dots +a_2A^2+a_1A+a_0I)v
+=
+(a_k\lambda^k + a_{k-1}\lambda^{k-1}+\dots + a_2\lambda^2 + a_1\lambda + a_0)v
+=
+p_n(\lambda)v.
+\]
+Im Grenzwert wirkt $f(A)$ daher durch Multiplikation eines Eigenvektors
+mit $f(\lambda)$, die Matrix $f(A)$ hat in der genannten Basis die
+Diagonalform
+\[
+A=\begin{pmatrix}
+\lambda_1& & & \\
+ &\lambda_2& & \\
+ & &\ddots& \\
+ & & &\lambda_n
+\end{pmatrix}
+\qquad\Rightarrow\qquad
+f(A)=\begin{pmatrix}
+f(\lambda_1)& & & \\
+ &f(\lambda_2)& & \\
+ & &\ddots& \\
+ & & &f(\lambda_n)
+\end{pmatrix}.
+\]
+
+\begin{satz}
+\label{buch:eigenwerte:satz:spektralsatz}
+Ist $A$ symmetrische oder selbstadjungiert Matrix und $f$ eine Funktion
+auf dem Spektrum $\operatorname{Sp}(A)$ von $A$.
+Dann gibt es genau eine Matrix $f(A)$, die Grenzwert jeder beliebigen
+Folge $p_n(A)$ für Polynomfolgen, die $\operatorname{Sp}(A)$ gleichmässig
+gegen $f$ konvergieren.
+\end{satz}
+
+\subsubsection{Der Satz von Stone-Weierstrass für komplexe Funktionen}
+Der Satz~\ref{buch:satz:stone-weierstrass} von Stone-Weierstrass für
+reelle Funktionen gilt nicht für komplexe Funktionen.
+Der Grund ist, dass im Beweis benötigt wird, dass man den Betrag
+einer Funktion approximieren können muss.
+Dies geschah, indem zunächst eine Polynom-Approximation für die
+Quadratwurzel konstruiert wurde, die dann auf das Quadrat einer
+Funktion angewendet wurde.
+Der Betrag einer komplexen Zahl $z$ ist aber nicht allein aus $z$
+berechenbar, man braucht in irgend einer Form Zugang zu Real-
+und Imaginärteil.
+Zum Beispiel kann man Real- und Imaginärteil als
+$\Re z= \frac12(z+\overline{z})$ und $\Im z = \frac12(z-\overline{z})$
+bestimmen.
+Kenntnis von Real- und Imaginärteil ist als gleichbedeutend mit
+der Kenntnis der komplex Konjugierten $\overline{z}$.
+Der Betrag lässt sich daraus als $|z|^2 = z\overline{z}$ finden.
+Beide Beispiele zeigen, dass man den im Beweis benötigten Betrag
+nur dann bestimmen kann, wenn mit jeder Funktion aus $A$ auch die
+komplex konjugierte Funktion zur Verfügung steht.
+
+\begin{satz}[Stone-Weierstrass]
+Enthält eine $\mathbb{C}$-Algebra $A$ von stetigen, komplexwertigen
+Funktionen auf einer kompakten Menge $K$ die konstanten Funktionen,
+trennt sie Punkte und ist ausserdem mit jeder Funktion $f\in A$ auch
+die komplex konjugiert Funktion $\overline{f}\in A$,
+dann lässt sich jede stetige, komplexwertige Funktion
+auf $K$ gleichmässig durch Funktionen aus $A$ approximieren.
+\end{satz}
+
+Mit Hilfe der konjugiert komplexen Funktion lässt sich immer eine
+Approximation für die Betragsfunktion finden, so dass sich der
+Beweis des reellen Satzes von Stone-Weierstrass übertragen lässt.
+
+%
+% Normale Matrizen
+%
+\subsection{Normale Matrizen
+\label{buch:subsection:normale-matrizen}}
+Aus dem Satz von Stone-Weierstrass für komplexe Matrizen kann man
+jetzt einen Spektralsätze für eine etwas grössere Klasse von Matrizen
+ableiten, als im Satz~\ref{buch:eigenwerte:satz:spektralsatz}
+möglich war.
+Der Satz besagt, dass für eine beliebige Funktion $f$ auf dem Spektrum
+$\operatorname{Sp}(A)$ eine Folge von auf $\operatorname{Sp}(A)$
+gleichmässig konvergenten, approximierenden Polynomen
+$p_n(z,\overline{z})$ gefunden werden kann.
+Doch wie soll jetzt aus dieser Polynomfolge ein Kandidat von $f(A)$
+gefunden werden?
+
+Zunächst stellt sich die Frage, was für die Variable $\overline{z}$
+eingesetzt werden soll.
+$1\times 1$-Matrizen sind notwendigerweise diagonal, also muss
+man in diesem Fall die Matrix $\overline{A}$ für die Variable
+$\overline{z}$ eingesetzt werden.
+Dies erklärt aber noch nicht, wie für $n\times n$-Matrizen
+vorzugehen ist, wenn $n>1$ ist.
+
+Die Notwendigkeit, die Variable $\overline{z}$ hinzuzunehmen
+ergab sich aus der Anforderung, dass der Betrag aus $|z|^2=z\overline{z}$
+konstruiert werden können muss.
+Insbesondere muss beim Einsetzen eine Matrix entstehen, die nur
+positive Eigenwerte hat.
+Für eine beliebige komplexe $n\times n$-Matrix $A$ ist aber
+$A\overline{A}$ nicht notwendigerweise positiv, wie das Beispiel
+\[
+A
+=
+\begin{pmatrix}0&i\\i&0\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+A\overline{A}
+=
+\begin{pmatrix}0&i\\-i&0\end{pmatrix}
+\begin{pmatrix}0&-i\\i&0\end{pmatrix}
+=
+\begin{pmatrix}
+-1&0\\
+ 0&-1
+\end{pmatrix}
+=
+-I
+\]
+zeigt.
+Eine positive Matrix entsteht dagegen immer, wenn man statt
+$A$ die Adjungierte $A^*=\overline{A}^t$ verwendet.
+
+Die Substitution von $A$ für $z$ und $A^*$ für $\overline{z}$
+in einem Polynom $p(z,\overline{z})$ ist nicht unbedingt eindeutig.
+Schon das Polynom $p(z,\overline{z})=z\overline{z}$ kann man auch
+als $\overline{z}z$ schreiben.
+Damit die Substition eindeutig wird, muss man also fordern, dass
+$AA^* = A^*A$ ist.
+
+\begin{definition}
+Eine Matrix $A\in M_n(\mathbb{C})$ heisst {\em normal}, wenn $AA^*=A^*A$ gilt.
+\end{definition}
+
+\subsubsection{Beispiele normaler Matrizen}
+
+\begin{enumerate}
+\item
+Hermitesche und Antihermitesche Matrizen sind normal, denn solche
+Matrizen erfüllen $A^*=\pm A$ und damit
+\(
+AA^* = \pm A^2 = A^*A.
+\)
+\item
+Symmetrische und antisymmetrische Matrizen sind normal,
+denn aus $A=A^t$ folgt $A^*=\overline{A}^t$ und damit
+\begin{align*}
+AA^* &= A\overline{A}^t =
+\\
+A^*A &=
+\end{align*}
+\item
+Unitäre Matrizen $U$ sind normal, das $UU^*=I=U^*U$ gilt.
+\item
+Orthogonale Matrizen sind normal wegen $O(n) = U(n) \cap M_n(\mathbb{R})$.
+\end{enumerate}
+
+Jede Matrix lässt sich durch Wahl einer geeigneten Basis in Jordansche
+Normalform bringen.
+Allerdings sind Jordan-Blöcke keine normalen Matrizen, wie der folgende
+Satz zeigt.
+
+\begin{satz}
+Eine Dreiecksmatrix ist genau dann normal, wenn sie diagonal ist.
+\end{satz}
+
+\begin{proof}[Beweis]
+Sei $A$ eine obere Dreiecksmatrix, das Argument für eine untere Dreiecksmatrix
+funktioniert gleich.
+Wir berechnen ein Diagonalelement für beide Produkte $AA^*$ und $A^*A$.
+Dazu brauchen wir die Matrixelemente von $A$ und $A^*$.
+Bezeichnen wir die Matrixelemente von $A$ mit $a_{ij}$, dann hat $A^*$
+die Matrixelemente $(A^*)_{ij}=\overline{a}_{ji}$.
+Damit kann man die Diagonalelemente der Produkte als
+\begin{align*}
+(AA^*)_{ii}
+&=
+\sum_{j=1}^n a_{ij}\overline{a}_{ij}
+=
+\sum_{j=i}^n |a_{ij}|^2
+\\
+(A^*A)_{ii}
+&=
+\sum_{j=1}^n \overline{a}_{ji}a_{ji}
+=
+\sum_{j=1}^i |a_{ji}|^2
+\end{align*}
+ausrechnen.
+Der obere Ausdruck ist die quadrierte Länge der Zeile $i$ der Matrix $A$,
+der untere ist die quadrierte Länge der Spalte $i$.
+Da die Matrix eine obere Dreiecksmatrix ist, hat die erste Spalte höchstens
+ein einziges von $0$ verschiedenes Element.
+Daher kann auch die erste Zeile höchstens dieses eine Elemente haben.
+Die Matrix hat daher Blockstruktur mit einem $1\times 1$-Block in der
+linken obere Ecke und einem $n-1$-dimensionalen Block für den Rest.
+Durch Wiederholen des Arguments für den $(n-1)\times (n-1)$-Block
+kann man so schrittweise schliessen, dass die Matrix $A$ diagonal sein muss.
+\end{proof}
+
+
+\begin{satz}
+Sind $A$ und $B$ normale Matrizen und $AB^*=B^*A$, dann sind auch $A+B$
+und $AB$ normal.
+\end{satz}
+
+\begin{proof}[Beweis]
+Zunächst folgt aus $AB^*=B^*A$ auch
+$A^*B = (B^*A)^* = (AB^*)^* = BA^*$.
+Der Beweis erfolgt durch Nachrechnen:
+\begin{align*}
+(A+B)(A+B)^*
+&=
+AA^* + AB^* + BA^*+BB^*
+\\
+(A+B)^*(A+B)
+&=
+A^*A + A^*B + B^*A + B^*B
+\end{align*}
+Die ersten und letzten Terme auf der rechten Seite stimmen überein, weil
+$A$ und $B$ normal sind.
+Die gemischten Terme stimmen überein wegen der Vertauschbarkeit von
+$A$ und $B^*$.
+
+Für das Produkt rechnet man
+\begin{align*}
+(AB)(AB)^*
+&= ABB^*A^* = AB^*BA^*
+= B^*AA^*B
+=
+B^*A^*AB
+=
+(AB)^*(AB),
+\end{align*}
+was zeigt, dass auch $AB$ normal ist.
+\end{proof}
+
+\subsubsection{Äquivalente Bedingungen}
+Es gibt eine grosse Zahl äquivalenter Eigenschaften für normale Matrizen.
+Die folgenden Eigenschaften sind äquivalent:
+\begin{enumerate}
+\item
+Die Matrix $A$ ist mit einer unitären Matrix diagonalisierbar
+\item
+Es gibt eine orthonormale Basis von Eigenvektoren von $A$ für $\mathbb{C}^n$
+\item
+Für jeden Vektor $x\in\mathbb{C}^n$ gilt $\|Ax\|=\|A^*x\|$
+\item
+Die Forbenius-Norm der Matrix $A$ kann mit den Eigenwerten $\lambda_i$
+von $A$ berechnet werden:
+$\operatorname{Spur}(A^*A) = \sum_{i=1}^n |\lambda_i|^2$
+\item
+Der hermitesche Teil $\frac12(A+A^*)$ und der antihermitesche Teil
+$\frac12(A-A^*)$ von $A$ vertauschen.
+\item
+$A^*$ ist ein Polynom vom Grad $n-1$ in $A$.
+\item
+Es gibt eine unitäre Matrix $U$ derart, dass $A^*=AU$
+\item
+Es gibt eine Polarzerlegugn $A=UP$ mit einer unitären Matrix $U$ und
+einer postiv semidefiniten Matrix $P$, die untereinander vertauschen.
+\item
+Es gibt eine Matrix $N$ mit verschiedenen Eigenwerten, mit denen $A$
+vertauscht.
+\item
+Wenn $A$ die (absteigend geordneten) singulärwerte $\sigma_i$ und
+die absteigend geordneten Eigenwerte $\lambda_i$ hat,
+dann it $\sigma_i=|\lambda_i|$.
+\end{enumerate}
+
+
+
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex
new file mode 100644
index 0000000..5940b46
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex
@@ -0,0 +1,72 @@
+Berechnen Sie $\sin At$ für die Matrix
+\[
+A=\begin{pmatrix}
+\omega& 1 \\
+ 0 &\omega
+\end{pmatrix}.
+\]
+Kontrollieren Sie Ihr Resultat, indem Sie den Fall $\omega = 0$ gesondert
+ausrechnen.
+\begin{hinweis}
+Schreiben Sie $A=\omega I + N$ mit einer nilpotenten Matrix.
+\end{hinweis}
+
+\begin{loesung}
+Man muss $At$ in die Potenzreihe
+\[
+\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots
+\]
+für die Sinus-Funktion einsetzen.
+Mit der Schreibweise $A=\omega I + N$, wobei $N^2=0$ können die Potenzen etwas
+leichter berechnet werden:
+\begin{align*}
+A^0 &= I
+\\
+A^1 &= \omega I + N
+\\
+A^2 &= \omega^2 I + 2\omega N
+\\
+A^3 &= \omega^3 I + 3\omega^2 N
+\\
+A^4 &= \omega^4 I + 4\omega^3 N
+\\
+&\phantom{a}\vdots
+\\
+A^k &= \omega^k I + k\omega^{k-1} N
+\end{align*}
+Damit kann man jetzt $\sin At$ berechnen:
+\begin{align}
+\sin At
+&=
+At - \frac{A^3t^3}{3!} + \frac{A^5t^5}{5!} - \frac{A^7t^7}{7!}
+\dots
+\notag
+\\
+&=
+\biggl(
+\omega t - \frac{\omega^3t^3}{3!} + \frac{\omega^5t^5}{5!} - \frac{\omega^7t^7}{7!}
++\dots
+\biggr)I
++
+\biggl(
+t -\frac{3\omega^2t^3}{3!} + \frac{5\omega^4t^5}{5!} - \frac{7\omega^6t^7}{7!}+\dots
+\biggr)N
+\notag
+\\
+&=
+I\sin\omega t
++tN\biggl(1-\frac{\omega^2t^2}{2!} +\frac{\omega^4t^4}{4!}
+- \frac{\omega^6t^6}{6!}
++\dots\biggr)
+\notag
+\\
+&=I\sin\omega t + tN\cos\omega t.
+\label{4004:resultat}
+\end{align}
+Im Fall $\omega=0$ ist $A=N$ und $A^2=0$, so dass
+\[
+\sin At = tN,
+\]
+dies stimmt mit \eqref{4004:resultat} für $\omega=0$ überein, da
+$\cos\omega t = \cos 0=1$ in diesem Fall.
+\end{loesung}
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex
new file mode 100644
index 0000000..ec76c34
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex
@@ -0,0 +1,151 @@
+Rechnen Sie nach, dass die Matrix
+\[
+A
+=
+\begin{pmatrix}
+2&1&0\\
+0&2&1\\
+1&0&2
+\end{pmatrix}
+\]
+normal ist.
+\begin{teilaufgaben}
+\item
+Berechnen Sie die Eigenwerte, indem Sie das charakteristische Polynom
+von $A$ und seine Nullstellen bestimmen.
+\item
+Das Polynom
+\[
+p(z,\overline{z})
+=
+\frac{(3-\sqrt{3})z\overline{z}-9(1-\sqrt{3})}{6}
+\]
+hat die Eigenschaft, dass
+\begin{align*}
+p(\lambda,\lambda) &= |\lambda|
+\end{align*}
+für alle drei Eigenwerte von $A$.
+Verwenden Sie dieses Polynom, um $B=|A|$ zu berechen.
+\item
+Überprüfen Sie Ihr Resultat, indem Sie mit einem Computeralgebra-Programm
+die Eigenwerte von $B$ bestimmen.
+\end{teilaufgaben}
+
+\begin{loesung}
+Die Matrix $A$ ist von der Form $2I+O$ mit $O\in\operatorname{SO}(3)$,
+für solche Matrizen wurde gezeigt, dass sie normal sind.
+Man kann aber auch direkt nachrechnen:
+\begin{align*}
+AA^t
+&=
+\begin{pmatrix}
+2&1&0\\
+0&2&1\\
+1&0&2
+\end{pmatrix}
+\begin{pmatrix}
+2&0&1\\
+1&2&0\\
+0&1&2
+\end{pmatrix}
+=
+\begin{pmatrix}
+5&2&2\\
+2&5&2\\
+2&2&5
+\end{pmatrix}
+\\
+A^tA
+&=
+\begin{pmatrix}
+2&0&1\\
+1&2&0\\
+0&1&2
+\end{pmatrix}
+\begin{pmatrix}
+2&1&0\\
+0&2&1\\
+1&0&2
+\end{pmatrix}
+=
+\begin{pmatrix}
+5&2&2\\
+2&5&2\\
+2&2&5
+\end{pmatrix}
+\end{align*}
+Es gilt also $AA^t=A^tA$, die Matrix ist also normal.
+\begin{teilaufgaben}
+\item Das charakteristische Polynom ist
+\begin{align}
+\chi_A(\lambda)
+&=\left|
+\begin{matrix}
+2-\lambda & 1 & 0  \\
+ 0 & 2-\lambda & 1 \\
+ 1 & 0 & 2-\lambda
+\end{matrix}
+\right|
+=
+(2-\lambda)^3+1
+\label{4005:charpoly}
+\\
+&=-\lambda^3 -6\lambda^2 + 12\lambda +9.
+\notag
+\end{align}
+Mit einem Taschenrechner kann man die Nullstellen finden,
+aber man kann das auch die Form \eqref{4005:charpoly}
+des charakteristischen Polynoms direkt faktorisieren:
+\begin{align*}
+\chi_A(\lambda)
+&=
+(2-\lambda)^3+1
+\\
+&=
+((2-\lambda)+1)
+((2-\lambda)^2 -(2-\lambda)+1)
+\\
+&=
+(3-\lambda)
+(\lambda^2-3\lambda +4-2+\lambda +1)
+\\
+&=
+(3-\lambda)
+(\lambda^2-2\lambda +3)
+\end{align*}
+Daraus kann man bereits einen Eigenwert $\lambda=3$ ablesen,
+die weiteren Eigenwerte sind die Nullstellen des zweiten Faktors, die
+man mit der Lösungsformel für quadratische Gleichungen finden kann:
+\begin{align*}
+\lambda_{\pm}
+&=
+\frac{3\pm\sqrt{9-12}}{2}
+=
+\frac{3}{2} \pm\frac{\sqrt{-3}}{2}
+=
+\frac{3}{2} \pm i\frac{\sqrt{3}}{2}
+\end{align*}
+\item
+Wir müssen $z=A$ und $\overline{z}=A^t$ im Polynom $p(z,\overline{z})$
+substituieren und erhalten
+\begin{align*}
+B
+&=
+\frac{3-\sqrt{3}}6 \begin{pmatrix}5&2&2\\2&5&2\\2&2&5\end{pmatrix}
++\frac{\sqrt{3}-1}{2}I
+\\
+&=
+\begin{pmatrix}
+ 2.1547005& 0.42264973& 0.42264973 \\
+ 0.4226497& 2.15470053& 0.42264973 \\
+ 0.4226497& 0.42264973& 2.15470053
+\end{pmatrix}
+\end{align*}
+\item
+Tatsächlich gibt die Berechnung der Eigenwerte
+den einfachen Eigenwert $\mu_0=3=|\lambda_0|$
+und
+den doppelten Eigenwert $\mu_{\pm} = \sqrt{3}=1.7320508=|\lambda_{\pm}|$.
+\qedhere
+\end{teilaufgaben}
+\end{loesung}
diff --git a/buch/chapters/60-gruppen/chapter.tex b/buch/chapters/60-gruppen/chapter.tex
index d07db3f..c2aa68d 100644
--- a/buch/chapters/60-gruppen/chapter.tex
+++ b/buch/chapters/60-gruppen/chapter.tex
@@ -7,6 +7,30 @@
\label{buch:chapter:matrizengruppen}}
\lhead{Matrizengruppen}
\rhead{}
+Matrizen können dazu verwendet werden, Symmetrien von geometrischen oder
+physikalischen Systemen zu beschreiben.
+Neben diskreten Symmetrien wie zum Beispiel Spiegelungen gehören dazu
+auch kontinuierliche Symmetrien wie Translationen oder Invarianz einer
+phyisikalischen Grösse über die Zeit.
+Solche Symmetrien müssen durch Matrizen beschrieben werden können,
+die auf stetige oder sogar differenzierbare Art von der Zeit abhängen.
+Die Menge der Matrizen, die zur Beschreibung solcher Symmetrien benutzt
+werden, muss also eine zusätzliche Struktur haben, die ermöglicht,
+sinnvoll über Stetigkeit und Differenzierbarkeit bei Matrizen
+zu sprechen.
+
+Die Menge der Matrizen bilden zunächst eine Gruppe,
+die zusätzliche differenziarbare Struktur macht daraus
+eine sogenannte Lie-Gruppe.
+Die Ableitungen nach einem Parameter liegen in der sogenannten
+Lie-Algebra, einer Matrizen-Algebra mit dem antisymmetrischen
+Lie-Klammer-Produkt $[A,B]=AB-BA$, auch Kommutator genannt.
+Lie-Gruppe und Lie-Algebra sind eng miteinander verknüpft,
+so eng, dass sich die meisten Eigenschaften der Gruppe aus den Eigenschaften
+der Lie-Gruppe aus der Lie-Algebra ableiten lassen.
+Die Verbindung wird hergestellt durch die Exponentialabbildung.
+Ziel dieses Kapitels ist, die Grundzüge dieses interessanten
+Zusammenhangs darzustellen.
\input{chapters/60-gruppen/symmetrien.tex}
\input{chapters/60-gruppen/lie-gruppen.tex}
diff --git a/buch/chapters/60-gruppen/images/castle.jpeg b/buch/chapters/60-gruppen/images/castle.jpeg
new file mode 100644
index 0000000..bf90a36
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/castle.jpeg
Binary files differ
diff --git a/buch/chapters/60-gruppen/lie-algebren.tex b/buch/chapters/60-gruppen/lie-algebren.tex
index 69d4b1d..6c6b74b 100644
--- a/buch/chapters/60-gruppen/lie-algebren.tex
+++ b/buch/chapters/60-gruppen/lie-algebren.tex
@@ -6,3 +6,258 @@
\section{Lie-Algebren
\label{buch:section:lie-algebren}}
\rhead{Lie-Algebren}
+Im vorangegangenen Abschnitt wurde gezeigt, dass alle beschriebenen
+Matrizengruppen als Untermannigfaltigkeiten im $n^2$-dimensionalen
+Vektorraum $M_n(\mathbb{R}9$ betrachtet werden können.
+Die Gruppen haben damit nicht nur die algebraische Struktur einer
+Matrixgruppe, sie haben auch die geometrische Struktur einer
+Mannigfaltigkeit.
+Insbesondere ist es sinnvoll, von Ableitungen zu sprechen.
+
+Eindimensionale Untergruppen einer Gruppe können auch als Kurven
+innerhalb der Gruppe angesehen werden.
+In diesem Abschnitt soll gezeigt werden, wie man zu jeder eindimensionalen
+Untergruppe einen Vektor in $M_n(\mathbb{R})$ finden kann derart, dass
+der Vektor als Tangentialvektor an diese Kurve gelten kann.
+Aus einer Abbildung zwischen der Gruppe und diesen Tagentialvektoren
+erhält man dann auch eine algebraische Struktur auf diesen Tangentialvektoren,
+die sogenannte Lie-Algebra.
+Sie ist charakteristisch für die Gruppe.
+Insbesondere werden wir sehen, wie die Gruppen $\operatorname{SO}(3)$
+und $\operatorname{SU}(2)$ die gleich Lie-Algebra haben und dass die
+Lie-Algebra von $\operatorname{SO}(3)$ mit dem Vektorprodukt in $\mathbb{R}^3$
+übereinstimmt.
+
+%
+% Tangentialvektoren und SO(2)
+%
+\subsection{Tangentialvektoren und $\operatorname{SO}(2)$}
+Die Drehungen in der Ebene können reell als Matrizen der Form
+\[
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha&-\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+\]
+als eidimensionale Kurve innerhalb von $M_2(\mathbb{R})$ beschrieben
+werden.
+Alternativ können Drehungen um den Winkel $\alpha$ als mit Hilfe von
+der Abbildung
+$
+\alpha\mapsto e^{i\alpha}
+$
+als komplexe Zahlen vom Betrag $1$ beschrieben werden.
+Dies sind zwei verschiedene Parametrisierungen der gleichen
+geometrischen Transformation.
+
+Die Ableitung nach $\alpha$ ist $ie^{i\alpha}$, der Tangentialvektor
+im Punkt $e^{i\alpha}$ ist also $ie^{i\alpha}$.
+Die Multiplikation mit $i$ ist die Drehung um $90^\circ$, der Tangentialvektor
+ist also der um $90^\circ$ gedrehte Ortsvektor zum Punkt auf der Kurve.
+
+In der Darstelllung als $2\times 2$-Matrix ist die Ableitung
+\[
+\frac{d}{d\alpha}D_\alpha
+=
+\frac{d}{d\alpha}
+\begin{pmatrix}
+\cos\alpha& -\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+=
+\begin{pmatrix}
+-\sin\alpha & -\cos\alpha \\
+ \cos\alpha & -\sin\alpha
+\end{pmatrix}.
+\]
+Die rechte Seite kann wieder mit der Drehmatrix $D_\alpha$ geschrieben
+werden, es ist nämlich
+\[
+\frac{d}{d\alpha}D_\alpha
+=
+\begin{pmatrix}
+-\sin\alpha & -\cos\alpha \\
+ \cos\alpha & -\sin\alpha
+\end{pmatrix}
+=
+\begin{pmatrix}
+\cos\alpha & -\sin\alpha\\
+\sin\alpha & \cos\alpha
+\end{pmatrix}
+\begin{pmatrix}
+0&-1\\
+1& 0
+\end{pmatrix}
+=
+D_\alpha J.
+\]
+Der Tangentialvektor an die Kurve $\alpha\mapsto D_\alpha$ innerhalb
+$M_2(\mathbb{R})$ im Punkt $D_\alpha$ ist also die Matrix
+$JD_\alpha$.
+Die Matrix $J$ ist die Drehung um $90^\circ$, denn $J=D_{\frac{\pi}2}$.
+Der Zusammenhang zwischen dem Punkt $D_\alpha$ und dem Tangentialvektor
+ist also analog zur Beschreibug mit komplexen Zahlen.
+
+Im Komplexen vermittelt die Exponentialfunktion den Zusammenhang zwischen
+dem Winkel $\alpha$ und dre Drehung $e^{i\alpha}$.
+Der Grund dafür ist natürlich die Differentialgleichung
+\[
+\frac{d}{d\alpha} z(\alpha) = iz(\alpha).
+\]
+Die analoge Differentialgleichung
+\[
+\frac{d}{d\alpha} D_\alpha = J D_\alpha
+\]
+führt auf die Matrix-Exponentialreihe
+\begin{align*}
+D_\alpha
+=
+\exp (J\alpha)
+&=
+\sum_{k=0}^\infty \frac{(J\alpha)^k}{k!}
+=
+\biggl(
+1-\frac{\alpha^2}{2!} + \frac{\alpha^4}{4!} -\frac{\alpha^6}{6!}+\dots
+\biggr)
++
+J\biggl(
+\alpha - \frac{\alpha^3}{3!}
++ \frac{\alpha^5}{5!}
+- \frac{\alpha^7}{7!}+\dots
+\biggr)
+\\
+&=
+I\cos\alpha
++
+J\sin\alpha,
+\end{align*}
+welche der Eulerschen Formel $e^{i\alpha} = \cos\alpha + i \sin\alpha$
+analog ist.
+
+In diesem Beispiel gibt es nur eine Tangentialrichtung und alle in Frage
+kommenden Matrizen vertauschen miteinander.
+Es ist daher nicht damit zu rechnen, dass sich eine interessante
+Algebrastruktur für die Ableitungen konstruieren lässt.
+
+%
+% Die Lie-Algebra einer Matrizengruppe
+%
+\subsection{Lie-Algebra einer Matrizengruppe}
+Das eindimensionale Beispiel $\operatorname{SO}(2)$ hat gezeigt, dass
+die Tangentialvektoren in einem beliebigen Punkt $D_\alpha$ aus dem
+Tangentialvektor im Punkt $I$ durch Anwendung der Drehung hervorgehen,
+die $I$ in $D_\alpha$ abbildet.
+Die Drehungen einer eindimensionalen Untergruppe transportieren daher
+den Tangentialvektor in $I$ entlang der Kurve auf jeden beliebigen
+anderen Punkt.
+Zu jedem Tangentialvektor im Punkt $I$ dürfte es daher genau eine
+eindimensionale Untergruppe geben.
+
+Sei die Abbildung $\varrho\colon\mathbb{R}\to G$ eine Einparameter-Untergruppe
+von $G\subset M_n(\mathbb{R})$.
+Durch Ableitung der Gleichung $\varrho(t+x) = \varrho(t)\varrho(x)$ nach
+$x$ folgt die Differentialgleichung
+\[
+\varrho'(t)
+=
+\frac{d}{dx}\varrho(t+x)\bigg|_{x=0}
+=
+\varrho(t) \frac{d}{dx}\varrho(0)\bigg|_{x=0}
+=
+\varrho(t) \varrho'(0).
+\]
+Der Tangentialvektor in $\varrho'(t)$ in $\varrho(t)$ ist daher
+der Tangentialvektor $\varrho'(0)$ in $I$ transportiert in den Punkt
+$\varrho(t)$ mit Hilfe der Matrix $\varrho(t)$.
+
+Aus der Differentialgleichung folgt auch, dass
+\[
+\varrho(t) = \exp (t\varrho'(0)).
+\]
+Zu einem Tangentialvektor in $I$ kann man also immer die
+Einparameter-Untergruppe mit Hilfe der Differentialgleichung
+oder der expliziten Exponentialreihe rekonstruieren.
+
+Die eindimensionale Gruppe $\operatorname{SO}(2)$ ist abelsch und
+hat einen eindimensionalen Tangentialraum, man kann also nicht mit
+einer interessanten Algebrastruktur rechnen.
+Für eine höherdimensionale, nichtabelsche Gruppe sollte sich aus
+der Tatsache, dass es verschiedene eindimensionale Untergruppen gibt,
+deren Elemente nicht mit den Elemente einer anderen solchen Gruppe
+vertauschen, eine interessante Algebra konstruieren lassen, deren
+Struktur die Nichtvertauschbarkeit wiederspiegelt.
+
+Seien also $A$ und $B$ Tangentialvektoren einer Matrizengruppe $G$,
+die zu den Einparameter-Untergruppen $\varphi(t)=\exp At$ und
+$\varrho(t)=\exp Bt$ gehören.
+Insbesondere gilt $\varphi'(0)=A$ und $\varrho'(0)=B$.
+Das Produkt $\pi(t)=\varphi(t)\varrho(t)$ ist allerdings nicht notwendigerweise
+eine Einparametergruppe, denn dazu müsste gelten
+\begin{align*}
+\pi(t+s)
+&=
+\varphi(t+s)\varrho(t+s)
+=
+\varphi(t)\varphi(s)\varrho(t)\varrho(s)
+\\
+=
+\pi(t)\pi(s)
+&=
+\varphi(t)\varrho(t)\varphi(s)\varrho(s)
+\end{align*}
+Durch Multiplikation von links mit $\varphi(t)^{-1}$ und
+mit $\varrho(s)^{-1}$ von rechts folgt, dass dies genau dann gilt,
+wenn
+\[
+\varphi(s)\varrho(t)=\varrho(t)\varphi(s).
+\]
+Die beiden Seiten dieser Gleichung sind erneut verschiedene Punkte
+in $G$.
+Durch Multiplikation mit $\varrho(t)^{-1}$ von links und mit
+$\varphi(s)^{-1}$ von rechts erhält man die äquivaliente
+Bedingung
+\begin{equation}
+\varrho(-t)\varphi(s)\varrho(t)\varphi(-s)=I.
+\label{buch:lie:konjugation}
+\end{equation}
+Ist die Gruppe $G$ nicht kommutativ, kann man nicht
+annehmen, dass diese Bedingung erfüllt ist.
+
+Aus \eqref{buch:lie:konjugation} erhält man jetzt eine Kurve
+\[
+t \mapsto \gamma(t,s) = \varrho(-t)\varphi(s)\varrho(t)\varphi(-s) \in G
+\]
+in der Gruppe, die für $t=0$ durch $I$ geht.
+Ihren Tangentialvektor kann man durch Ableitung bekommen:
+\begin{align*}
+\frac{d}{dt}\gamma(t,s)
+&=
+-\varrho'(-t)\varphi(s)\varrho(t)\varphi(-s)
++\varrho(-t)\varphi(s)\varrho'(t)\varphi(-t)
+\\
+\frac{d}{dt}\gamma(t)\bigg|_{t=0}
+&=
+-B\varphi(s) + \varphi(-s)B
+\end{align*}
+Durch erneute Ableitung nach $s$ erhält man dann
+\begin{align*}
+\frac{d}{ds} \frac{d}{dt}\gamma(t,s)\bigg|_{t=0}
+&=
+-B\varphi'(s) - \varphi(-s)B
+\end{align*}
+
+%
+% Die Lie-Algebra von SO(3)
+%
+\subsection{Die Lie-Algebra von $\operatorname{SO}(3)$}
+
+%
+% Die Lie-Algebra von SU(2)
+%
+\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$}
+
+
+
+
diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex
index cb1ca84..1268ce2 100644
--- a/buch/chapters/60-gruppen/lie-gruppen.tex
+++ b/buch/chapters/60-gruppen/lie-gruppen.tex
@@ -6,3 +6,321 @@
\section{Lie-Gruppen
\label{buch:section:lie-gruppen}}
\rhead{Lie-Gruppen}
+
+\subsection{Drehungen in der Ebene
+\label{buch:gruppen:drehungen2d}}
+Drehungen der Ebene können in einer orthonormierten Basis durch
+Matrizen der Form
+\[
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha&-\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+\]
+dargestellt werden.
+Wir bezeichnen die Menge der Drehmatrizen in der Ebene mit
+$\operatorname{SO}(2)\subset\operatorname{GL}_2(\mathbb{R})$.
+Die Abbildung
+\[
+D_{\bullet}
+\colon
+\mathbb{R}\to \operatorname{SO}(2)
+:
+\alpha \mapsto D_{\alpha}
+\]
+hat die Eigenschaften
+\begin{align*}
+D_{\alpha+\beta}&= D_{\alpha}D_{\beta}
+\\
+D_0&=I
+\\
+D_{2k\pi}&=I\qquad \forall k\in\mathbb{Z}.
+\end{align*}
+Daraus folgt zum Beispiel, dass $D_{\bullet}$ eine $2\pi$-periodische
+Funktion ist.
+$D_{\bullet}$ bildet die Menge der Winkel $[0,2\pi)$ bijektiv auf
+die Menge der Drehmatrizen in der Ebene ab.
+
+Ein alternatives Bild für die Drehungen der Ebene kann man in der komplexen
+Ebene $\mathbb{C}$ erhalten.
+Die Multiplikation mit der komplexen Zahl $e^{i\alpha}$ beschreibt eine
+Drehung der komplexen Ebene um den Winkel $\alpha$.
+Die Zahlen der Form $e^{i\alpha}$ haben den Betrag $1$ und die Abbildung
+\[
+f\colon \mathbb{R}\to \mathbb{C}:\alpha \mapsto e^{i\alpha}
+\]
+hat die Eigenschaften
+\begin{align*}
+f(\alpha+\beta) &= f(\alpha)f(\beta)
+\\
+f(0)&=1
+\\
+f(2\pi k)&=1\qquad\forall k\in\mathbb{Z},
+\end{align*}
+die zu den Eigenschaften der Abbildung $\alpha\mapsto D_{\alpha}$
+analog sind.
+
+Jede komplexe Zahl $z$ vom Betrag $1$ kann geschrieben werden in der Form
+$z=e^{i\alpha}$, die Abbildung $f$ ist also eine Parametrisierung des
+Einheitskreises in der Ebene.
+Wir bezeichen $S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ die komplexen Zahlen vom
+Betrag $1$.
+$S^1$ ist eine Gruppe bezüglich der Multiplikation, da für jede Zahl
+$z,w\in S^1$ gilt
+$|z^{-1}|=1$ und $|zw|=1$ und damit $z^{-1}\in S^1$ und $zw\in S^1$.
+
+Zu einer komplexen Zahl $z\in S^1$ gibt es einen bis auf Vielfache
+von $2\pi$ eindeutigen Winkel $\alpha(z)$ derart, dass $e^{i\alpha(z)}=z$.
+Damit kann man jetzt die Abbildung
+\[
+\varphi
+\colon
+S^1\to \operatorname{SO}(2)
+:
+z\mapsto D_{\alpha(z)}
+\]
+konstruieren.
+Da $D_{\alpha}$ $2\pi$-periodisch ist, geben um Vielfache
+von $2\pi$ verschiedene Wahlen von $\alpha(z)$ die gleiche
+Matrix $D_{\alpha(z)}$, die Abbildung $\varphi$ ist daher
+wohldefiniert.
+$\varphi$ erfüllt ausserdem die Bedingungen
+\begin{align*}
+\varphi(z_1z_2)
+&=
+D_{\alpha(z_1z_2)}
+=
+D_{\alpha(z_1)+\alpha(z_2)}
+=
+D_{\alpha(z_1)}D_{\alpha(z_2)}
+=
+\varphi(z_1)\varphi(z_2)
+\\
+\varphi(1)
+&=
+D_{\alpha(1)}
+=
+D_0
+=
+I
+\end{align*}
+Die Abbildung $\varphi$ ist ein Homomorphismus der Gruppe $S^1$
+in die Gruppe $\operatorname{SO}(2)$.
+Die Menge der Drehmatrizen in der Ebene kann also mit dem Einheitskreis
+in der komplexen Ebene identifiziert werden.
+
+%
+% Isometrien von R^n
+%
+\subsection{Isometrien von $\mathbb{R}^n$
+\label{buch:gruppen:isometrien}}
+Lineare Abbildungen der Ebene $\mathbb{R}^n$ mit dem üblichen Skalarprodukt
+können durch $n\times n$-Matrizen beschrieben werden.
+Die Matrizen, die das Skalarprodukt erhalten, bilden eine Gruppe,
+die in diesem Abschnitt genauer untersucht werden soll.
+Eine Matrix $A\in M_{2}(\mathbb{R})$ ändert das Skalarprodukt nicht, wenn
+für jedes beliebige Paar $x,y$ von Vektoren gilt
+$\langle Ax,Ay\rangle = \langle x,y\rangle$.
+Das Standardskalarprodukt kann mit dem Matrixprodukt ausgedrückt werden:
+\[
+\langle Ax,Ay\rangle
+=
+(Ax)^tAy
+=
+x^tA^tAy
+=
+x^ty
+=
+\langle x,y\rangle
+\]
+für jedes Paar von Vektoren $x,y\in\mathbb{R}$.
+
+Mit dem Skalarprodukt kann man auch die Matrixelemente einer Matrix
+einer Abbildung $f$ in der Standardbasis bestimmen.
+Das Skalarprodukt $\langle e_i, v\rangle$ ist die Länge der Projektion
+des Vektors $v$ auf die Richtung $e_i$.
+Die Komponenten von $Ae_j$ sind daher $a_{ij}=\langle e_i,f(e_j)\rangle$.
+Die Matrix $A$ der Abbildung $f$ hat also die Matrixelemente
+$a_{ij}=e_i^tAe_j$.
+
+\subsubsection{Die orthogonale Gruppe $\operatorname{O}(n)$}
+Die Matrixelemente von $A^tA$ sind
+$\langle A^tAe_i, e_j\rangle =\langle e_i,e_j\rangle = \delta_{ij}$
+sind diejenigen der Einheitsmatrix,
+die Matrix $A$ erfüllt $AA^t=I$ oder $A^{-1}=A^t$.
+Dies sind die {\em orthogonalen} Matrizen.
+Die Menge $\operatorname{O}(n)$ der isometrischen Abbildungen besteht
+daher aus den Matrizen
+\[
+\operatorname{O}(n)
+=
+\{ A\in M_n(\mathbb{R})\;|\; AA^t=I\}.
+\]
+Die Matrixgleichung $AA^t=I$ liefert $n(n+1)/2$ unabhängige Bedingungen,
+die die orthogonalen Matrizen innerhalb der $n^2$-dimensionalen
+Menge $M_n(\mathbb{R})$ auszeichnen.
+Die Menge $\operatorname{O}(n)$ der orthogonalen Matrizen hat daher
+die Dimension
+\[
+n^2 - \frac{n(n+1)}{2}
+=
+\frac{2n^2-n^2-n}{2}
+=
+\frac{n(n-1)}2.
+\]
+Im Spezialfall $n=2$ ist die Gruppe $O(2)$ eindimensional.
+
+\subsubsection{Die Gruppe $\operatorname{SO}(n)$}
+Die Gruppe $\operatorname{O}(n)$ enhält auch Isometrien, die
+die Orientierung des Raumes umkehren, wie zum Beispiel Spiegelungen.
+Wegen $\det (AA^t)=\det A\det A^t = (\det A)^2=1$ kann die Determinante
+einer orthogonalen Matrix nur $\pm 1$ sein.
+Orientierungserhaltende Isometrien haben Determinante $1$.
+
+Die Gruppe
+\[
+\operatorname{SO}(n)
+=
+\{A\in\operatorname{O}(n)\;|\; \det A=1\}
+\]
+heisst die {\em spezielle orthogonale Gruppe}.
+Die Dimension der Gruppe $\operatorname{O}(n)$ ist $n(n-1)/2$.
+
+\subsubsection{Die Gruppe $\operatorname{SO}(3)$}
+Die Gruppe $\operatorname{SO}(3)$ der Drehungen des dreidimensionalen
+Raumes hat die Dimension $3(3-1)/2=3$.
+Eine Drehung wird festgelegt durch die Richtung der Drehachse und den
+Drehwinkel.
+Die Richtung der Drehachse ist ein Einheitsvektor, also ein Punkt
+auf der zweidimensionalen Kugel.
+Der Drehwinkel ist der dritte Parameter.
+
+Drehungen mit kleinen Drehwinkeln können zusammengesetzt werden
+aus den Matrizen
+\[
+D_{x,\alpha}
+=
+\begin{pmatrix}
+1&0&0\\
+0&\cos\alpha&-\sin\alpha\\
+0&\sin\alpha& \cos\alpha
+\end{pmatrix},
+\qquad
+D_{y,\beta}
+=
+\begin{pmatrix}
+ \cos\beta&0&\sin\beta\\
+ 0 &1& 0 \\
+-\sin\beta&0&\cos\beta
+\end{pmatrix},
+\qquad
+D_{z,\gamma}
+=
+\begin{pmatrix}
+\cos\gamma&-\sin\gamma&0\\
+\sin\gamma& \cos\gamma&0\\
+ 0 & 0 &1
+\end{pmatrix},
+\]
+die Drehungen um die Koordinatenachsen um den Winkel $\alpha$
+beschreiben.
+Auch die Winkel $\alpha$, $\beta$ und $\gamma$ können als die
+drei Koordinaten der Mannigkfaltigkeit $\operatorname{SO}(3)$
+angesehen werden.
+
+%
+% Die Gruppe SU(2)
+%
+\subsection{Die Gruppe $\operatorname{SU}(2)$
+\label{buch:gruppen:su2}}
+Die Menge der Matrizen
+\[
+\operatorname{SU}(2)
+=
+\left\{
+\left.
+A=\begin{pmatrix} a&b\\c&d\end{pmatrix}
+\;\right|\;
+a,b,c,d\in\mathbb{C},\det(A)=1, AA^*=I
+\right\}
+\]
+heisst die {\em spezielle unitäre Gruppe}.
+Wegen $\det(AB)=\det(A)\det(B)=1$ und $(AB)^*AB=B^*A^*AB=B^*B=I$ ist
+$\operatorname{SU}(2)$ eine Untergruppe von $\operatorname{GL}_2(\mathbb{C})$.
+Die Bedingungen $\det A=1$ und $AA^*=I$ schränken die möglichen Werte
+von $a$ und $b$ weiter ein.
+Aus
+\[
+A^*
+=
+\begin{pmatrix}
+\overline{a}&\overline{c}\\
+\overline{b}&\overline{d}
+\end{pmatrix}
+\]
+und den Bedingungen führen die Gleichungen
+\[
+\begin{aligned}
+a\overline{a}+b\overline{b}&=1
+&&\Rightarrow&|a|^2+|b|^2&=1
+\\
+a\overline{c}+b\overline{d}&=0
+&&\Rightarrow&
+\frac{a}{b}&=-\frac{\overline{d}}{\overline{c}}
+\\
+c\overline{a}+d\overline{b}&=0
+&&\Rightarrow&
+\frac{c}{d}&=-\frac{\overline{b}}{\overline{a}}
+\\
+c\overline{c}+d\overline{d}&=1&&\Rightarrow&|c|^2+|d|^2&=1
+\\
+ad-bc&=1
+\end{aligned}
+\]
+Aus der zweiten Gleichung kann man ableiten, dass es eine Zahl $t\in\mathbb{C}$
+gibt derart, dass $c=-t\overline{b}$ und $d=t\overline{a}$.
+Damit wird die Bedingung an die Determinante zu
+\[
+1
+=
+ad-bc = at\overline{a} - b(-t\overline{b})
+=
+t(|a|^2+|b|^2)
+=
+t,
+\]
+also muss die Matrix $A$ die Form haben
+\[
+A
+=
+\begin{pmatrix}
+a&b\\
+-\overline{b}&\overline{a}
+\end{pmatrix}
+\qquad\text{mit}\quad |a|^2+|b|^2=1.
+\]
+Schreibt man $a=a_1+ia_2$ und $b=b_1+ib_2$ mit rellen $a_i$ und $b_i$,
+dann besteht $SU(2)$ aus den Matrizen der Form
+\[
+A=
+\begin{pmatrix}
+ a_1+ia_2&b_1+ib_2\\
+-b_1+ib_2&a_1-ia_2
+\end{pmatrix}
+\]
+mit der zusätzlichen Bedingung
+\[
+|a|^2+|b|^2
+=
+a_1^2 + a_2^2 + b_1^2 + b_2^2 = 1.
+\]
+Die Matrizen von $\operatorname{SU}(2)$ stehen daher in einer
+eins-zu-eins-Beziehung zu den Vektoren $(a_1,a_2,b_1,b_2)\in\mathbb{R}^4$
+eines vierdimensionalen reellen Vektorraums mit Länge $1$.
+Geometrisch betrachtet ist also $\operatorname{SU}(2)$ eine dreidmensionalen
+Kugel, die in einem vierdimensionalen Raum eingebettet ist.
+
+
+
diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex
index 8d5c0e0..cb07475 100644
--- a/buch/chapters/60-gruppen/symmetrien.tex
+++ b/buch/chapters/60-gruppen/symmetrien.tex
@@ -7,4 +7,102 @@
\section{Symmetrien
\label{buch:section:symmetrien}}
\rhead{Symmetrien}
+Der geometrische Begriff der Symmetrie meint die Eigenschaft eines
+geometrischen Objektes, dass es bei einer Bewegung auf sich selbst
+abgebildet wird.
+Das Wort stammt aus dem altgriechischen, wo es {\em Gleichmass}
+bedeutet.
+Spiegelsymmetrische Objekte zeichnen sich zum Beispiel dadurch aus,
+dass Messungen von Strecken die gleichen Werte ergeben wie die Messungen
+der entsprechenden gespiegelten Strecken (siehe auch
+Abbildung~\ref{buch:lie:bild:castlehoward}, was die Herkunft des
+Begriffs verständlich macht.
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/60-gruppen/images/castle.jpeg}
+\caption{Das Castle Howard in Yorkshire war in dieser ausgeprägt symmetrischen
+Form geplant, wurde dann aber in modifizeirter Form gebaut.
+Messungen zwischen Punkten in der rechten Hälfte des Bildes
+ergeben die gleichen Werte wie Messungen entsprechenden Strecken
+in der linken Hälfte, was den Begriff Symmetrie rechtfertigt.
+\label{buch:lie:bild:castlehoward}}
+\end{figure}
+In der Physik wird dem Begriff der Symmetrie daher auch eine erweiterte
+Bedeutung gegeben.
+Jede Transformation eines Systems, welche bestimmte Grössen nicht
+verändert, wird als Symmetrie bezeichnet.
+Die Gesetze der Physik sind typischerweise unabhängig davon, wo man den
+den Nullpunkt der Zeit oder das räumlichen Koordinatensystems ansetzt,
+eine Transformation des Zeitnullpunktes oder des Ursprungs des
+Koordinatensystems ändert daher die Bewegungsgleichungen nicht, sie ist
+eine Symmetrie des Systems.
+
+Umgekehrt kann man fragen, welche Symmetrien ein System hat.
+Da sich Symmetrien zusammensetzen und umkehren lassen, kann man in davon
+ausgehen, dass die Symmetrietransformationen eine Gruppe bilden.
+Besonders interessant ist dies im Falle von Transformationen, die
+durch Matrizen beschrieben weren.
+Eine unter der Symmetrie erhaltene Eigenschaft definiert so eine
+Untergruppe der Gruppe $\operatorname{GL}_n(\mathbb{R})$ der
+invertierbaren Matrizen.
+Die erhaltenen Eigenschaften definieren eine Menge von Gleichungen,
+denen die Elemente der Untergruppe genügen müssen.
+Als Lösungsmenge einer Gleichung erhält die Untergruppe damit eine
+zusätzliche geometrische Struktur, man nennt sie eine differenzierbare
+Mannigfaltigkeit.
+Dieser Begriff wird im Abschnitt~\ref{buch:subsection:mannigfaltigkeit}
+eingeführt.
+Es wird sich zum Beispiel zeigen, dass die Menge der Drehungen der
+Ebene mit den Punkten eines Kreises parametrisieren lassen,
+die Lösungen der Gleichung $x^2+y^2=1$ sind.
+
+Eine Lie-Gruppe ist eine Gruppe, die gleichzeitig eine differenzierbare
+Mannigfaltigkeit ist.
+Die Existenz von geometrischen Konzepten wie Tangentialvektoren
+ermöglicht zusätzliche Werkzeuge, mit denen diese Gruppe untersucht
+und verstanden werden können.
+Ziel dieses Abschnitts ist, die Grundlagen für diese Untersuchung zu
+schaffen, die dann im Abschnitt~\ref{buch:section:lie-algebren}
+durchgeführt werden soll.
+
+\subsection{Algebraische Symmetrien
+\label{buch:subsection:algebraische-symmetrien}}
+Mit Matrizen lassen sich Symmetrien in einem geometrischen Problem
+oder in einem physikalischen System beschreiben.
+Man denkt dabei gerne zuerst an geometrische Symmetrien wie die
+Symmetrie unter Punktspiegelung oder die Spiegelung an der $x_1$-$x_2$-Ebene,
+wie sie zum Beispiel durch die Abbildungen
+\[
+\mathbb{R}^3\to\mathbb{R}^3 : x\mapsto -x
+\qquad\text{oder}\qquad
+\mathbb{R}^3\to\mathbb{R}^3 :
+\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
+\mapsto
+\begin{pmatrix}-x_1\\x_2\\x_3\end{pmatrix}
+\]
+dargestellt werden.
+Beide haben zunächst die Eigenschaft, dass Längen und Winkel und damit
+das Skalarprodukt erhalten sind.
+Diese Eigenschaft allein erlaubt aber noch nicht, die beiden Transformationen
+zu unterscheiden.
+Die Punktspiegelung zeichnet sich dadurch aus, das alle Geraden und alle
+Ebenen durch den Ursprung auf sich selbst abgebildet werden.
+Dies funktioniert für die Ebenenspiegelung nicht, dort bleibt nur die
+Spiegelungsebene (die $x_1$-$x_2$-Ebene im vorliegenden Fall) und
+ihre Normale erhalten.
+Die folgenden Beispiele sollen zeigen, wie solche Symmetriedefinitionen
+auf algebraische Bedingungen an die Matrixelemente führen.
+
+
+\subsection{Manningfaltigkeiten
+\label{buch:subsection:mannigfaltigkeit}}
+
+\subsection{Der Satz von Noether
+\label{buch:subsection:noether}}
+
+
+
+
+
+