aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/clifford/9_KomplexeZahlen.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-08-23 11:08:17 +0200
committerGitHub <noreply@github.com>2021-08-23 11:08:17 +0200
commit360f8827052e68fd6c6c4f4fa1b09e1e105cc59f (patch)
tree95fc683cbee1cb1f17ecae40c6acb4c1738c3636 /buch/papers/clifford/9_KomplexeZahlen.tex
parentMerge pull request #90 from Nunigan/master (diff)
parentletzter Commit? (diff)
downloadSeminarMatrizen-360f8827052e68fd6c6c4f4fa1b09e1e105cc59f.tar.gz
SeminarMatrizen-360f8827052e68fd6c6c4f4fa1b09e1e105cc59f.zip
Merge pull request #91 from Malarius1999/master
letzter Commit?
Diffstat (limited to 'buch/papers/clifford/9_KomplexeZahlen.tex')
-rw-r--r--buch/papers/clifford/9_KomplexeZahlen.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/buch/papers/clifford/9_KomplexeZahlen.tex b/buch/papers/clifford/9_KomplexeZahlen.tex
index e29885f..12fa546 100644
--- a/buch/papers/clifford/9_KomplexeZahlen.tex
+++ b/buch/papers/clifford/9_KomplexeZahlen.tex
@@ -18,14 +18,14 @@ j^2 = -1\quad\text{und}\quad\mathbf{e}_{12}^2 = -1
besitzen. Die Kommutativität
\begin{align}
\begin{split}
-\mathbf{g}_1\mathbf{g}_2 = \mathbf{g}_2\mathbf{g}_1 \enspace&\Leftrightarrow\enspace (a + b \mathbf{e}_{12})(f + g \mathbf{e}_{12}) = (f + g \mathbf{e}_{12})(a + b \mathbf{e}_{12})\\ &\Leftrightarrow\enspace |\mathbf{g}_1||\mathbf{g}_2|e^{(\theta_{g_1} + \theta_{g_2})\mathbf{e}_{12}} = |\mathbf{g}_2||\mathbf{g}_1|e^{(\theta_{g_2} + \theta_{g_1})\mathbf{e}_{12}},
+\mathbf{g}_1\mathbf{g}_2 = \mathbf{g}_2\mathbf{g}_1 \enspace&\Leftrightarrow\enspace (a + b \mathbf{e}_{12})(f + g \mathbf{e}_{12}) = (f + g \mathbf{e}_{12})(a + b \mathbf{e}_{12})\\ &\Leftrightarrow\enspace |\mathbf{g}_1|\,|\mathbf{g}_2|e^{(\theta_{g_1} + \theta_{g_2})\mathbf{e}_{12}} = |\mathbf{g}_2|\,|\mathbf{g}_1|e^{(\theta_{g_2} + \theta_{g_1})\mathbf{e}_{12}},
\end{split}
\end{align}
welche wir schon von den komplexen Zahlen her kennen, ist dabei eine in der geometrischen Algebra nur selten anzutreffende Eigenschaft. Beispielsweise ist das geometrische Produkt von
\begin{align}
\mathbf{g}_1\mathbf{v}\not= \mathbf{v}\mathbf{g}_1 \quad\Leftrightarrow\quad(a + b \mathbf{e}_{12})(x\mathbf{e}_1+y\mathbf{e}_2)\not= (x\mathbf{e}_1+y\mathbf{e}_2)(a + b \mathbf{e}_{12})
\end{align}
-und auch die im folgenden Kapitel behandelten Quaternionen nicht kommutativ.
+und auch die im folgenden Kapitel behandelten Quaternionen sind nicht kommutativ.
Um später die Auswirkung der Quaternionen auf Vektoren besser zu verstehen, möchten wir kurz darauf eingehen, was ein $\mathbf{g}_n$ für eine Auswirkung auf einen Vektor hat.
Wir kennen diesen Effekt schon von den komplexen Zahlen. Wenn eine komplexe Zahl $c_1=a+bj$ mit einer zweiten $c_2=f+gj$ multipliziert wird, dann kann man