aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/clifford/9_KomplexeZahlen.tex
diff options
context:
space:
mode:
authorMalarius1999 <malarius1999@gmail.com>2021-07-14 15:29:21 +0200
committerMalarius1999 <malarius1999@gmail.com>2021-07-14 15:29:21 +0200
commit563f5b49ab5ba582ebf9e94d0708b6564823c8e2 (patch)
tree5aa527bffcaf1a2e1e48564011cb6c1ebca4f57e /buch/papers/clifford/9_KomplexeZahlen.tex
parentVergessenes Kapitel DiracMatrizen hinzugefügt (diff)
downloadSeminarMatrizen-563f5b49ab5ba582ebf9e94d0708b6564823c8e2.tar.gz
SeminarMatrizen-563f5b49ab5ba582ebf9e94d0708b6564823c8e2.zip
Verbesserungen & Bilder
-Verbesserung von Herrn Müller hinzugefügt (Weiss aber nicht ob "Sätze" überall gut & Kapitel Komplexe Zahlen doch nicht verschoben) -Bilder hinzugefügt (noch nicht in Buch included) -Graphiken mit Tikz erstellt -Weitere Beispiele hinzugefügt
Diffstat (limited to 'buch/papers/clifford/9_KomplexeZahlen.tex')
-rw-r--r--buch/papers/clifford/9_KomplexeZahlen.tex11
1 files changed, 6 insertions, 5 deletions
diff --git a/buch/papers/clifford/9_KomplexeZahlen.tex b/buch/papers/clifford/9_KomplexeZahlen.tex
index 120828b..70107da 100644
--- a/buch/papers/clifford/9_KomplexeZahlen.tex
+++ b/buch/papers/clifford/9_KomplexeZahlen.tex
@@ -6,18 +6,19 @@
\section{Komplexe Zahlen}
\rhead{Komplexe Zahlen}
-Die komplexen Zahlen finden eine Vielzahl von Anwendungsgebiete in den Ingenieurwissenschaften. Das liegt daran, weil die komplexen Zahlen Rotationen und Schwingungen gut beschreiben können. Nachdem vorherigen Kapitel überrascht es wahrscheinlich nicht viele, dass es möglich ist komplexe Zahlen in der geometrischen Algebra darzustellen. Sie können durch die geraden Grade der 2 Dimensionalen geometrischen Algebra vollständig beschrieben werden: $G_2^+(\mathbb{R}) \cong \mathbb{C}$. Das bedeutet eine komplexe Zahl kann durch ein Skalar (Grad 0) und einem Bivektor (Grad 2) dargestellt werden. Als Abkürzung nehme ich die Bezeichnung $\mathbf{g}_n \in G_2^+(\mathbb{R})$.
+Die komplexen Zahlen finden eine Vielzahl von Anwendungsgebiete in den Ingenieurwissenschaften. Das liegt daran, weil die komplexen Zahlen Rotationen und Schwingungen gut beschreiben können. Nach dem vorherigen Kapitel überrascht es wahrscheinlich nicht viele, dass es möglich ist komplexe Zahlen in der geometrischen Algebra darzustellen. Sie können durch die geraden Grade der 2 Dimensionalen geometrischen Algebra vollständig beschrieben werden: $\mathbf{g}_n \in G_2^+(\mathbb{R}) \cong \mathbb{C}$. Das bedeutet eine komplexe Zahl kann durch ein Skalar (Grad 0) und einem Bivektor (Grad 2) dargestellt werden
\begin{align}
- a_0 + a_1 j \cong a_0 + a_1 \mathbf{e}_{12} = \mathbf{g}_n\quad a_0, a_1 \in \mathbb{R}
+ a_0 + a_1 j \cong a_0 + a_1 \mathbf{e}_{12} = \mathbf{g}_n\quad a_0, a_1 \in \mathbb{R}\\
+ |r|e^{\theta j} \cong |r|e^{\theta \mathbf{e}_{12}} = \mathbf{g}_n; \quad r, \theta \in \mathbb{R}
\end{align}
-oder in Polarform.
+weil $j$ und $\mathbf{e}_{12}$ beide die Eigenschaft besitzen quadriert $-1$ zu ergeben
\begin{align}
- |r|e^{\theta j} \cong |r|e^{\theta \mathbf{e}_{12}} = \mathbf{g}_n; \quad r, \theta \in \mathbb{R}
+ j^2 = -1\quad \mathbf{e}_{12}^2 = -1
\end{align}
Man beachte, dass wenn wir, wie bei den komplexen Zahlen, Elemente von $G_2^+(\mathbb{R})$ miteinander Multiplizieren, ist es nicht, wie im Kapitel Rotation bei der Formel (\ref{rotGA})beschrieben, eine Multiplikation von zwei $g_n$ mit einem Vektor. Im zweidimensionalen bewirken beide Multiplikationen grundsätzlich das Gleiche (eine Drehstreckung), aber die Multiplikation von mehreren $g_n$ ist kommutativ, wie wir es von den komplexen Zahlen kennen.
\begin{align}
\mathbf{g}_1\mathbf{g}_2 = \mathbf{g}_2\mathbf{g}_1 \quad&\Leftrightarrow\quad (a + b \mathbf{e}_{12})(f + g \mathbf{e}_{12}) = (f + g \mathbf{e}_{12})(a + b \mathbf{e}_{12})\\
- \mathbf{g}_1\mathbf{v}\mathbf{g}_2\not= \mathbf{g}_2\mathbf{v}\mathbf{g}_1 \quad&\Leftrightarrow\quad(a + b \mathbf{e}_{12})(x\mathbf{e}_1+y\mathbf{e}_2)(f + g \mathbf{e}_{12}) \not= (a + b \mathbf{e}_{12})(f + g \mathbf{e}_{12})(x\mathbf{e}_1+y\mathbf{e}_2)
+ \mathbf{g}_1\mathbf{v}\not= \mathbf{v}\mathbf{g}_1 \quad&\Leftrightarrow\quad(a + b \mathbf{e}_{12})(x\mathbf{e}_1+y\mathbf{e}_2)\not= (x\mathbf{e}_1+y\mathbf{e}_2)(a + b \mathbf{e}_{12})
\end{align}
Um später die Auswirkung der Quaternionen besser zu verstehen, möchte ich kurz darauf eingehen, was ein $g_n$ für eine Auswirkung auf einen Vektor hat.
Wir kennen diesen Effekt schon von den komplexen Zahlen. Wenn eine komplexe Zahl $c_1=a+bj$ mit einer zweiten $c_2=f+gj$ multipliziert wird, dann kann man diese so aufteilen.