diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-08-03 17:31:07 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-08-03 17:31:07 +0200 |
commit | 081da7b6c063f8eeaf0afefac44e122641c5c2c6 (patch) | |
tree | 9caf5e3714dd815ed29fbe98fd1ff446a2d6115e /buch/papers/ifs/teil1.tex | |
parent | Merge pull request #64 from Kuehnee/master (diff) | |
parent | Merge branch 'master' of https://github.com/LordMcFungus/SeminarMatrizen into... (diff) | |
download | SeminarMatrizen-081da7b6c063f8eeaf0afefac44e122641c5c2c6.tar.gz SeminarMatrizen-081da7b6c063f8eeaf0afefac44e122641c5c2c6.zip |
Merge branch 'LordMcFungus-master'
Diffstat (limited to 'buch/papers/ifs/teil1.tex')
-rw-r--r-- | buch/papers/ifs/teil1.tex | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/buch/papers/ifs/teil1.tex b/buch/papers/ifs/teil1.tex index 7ce546a..caba120 100644 --- a/buch/papers/ifs/teil1.tex +++ b/buch/papers/ifs/teil1.tex @@ -15,7 +15,7 @@ Von einem Fraktal $F$ können wir folgende Eigenschaften erwarten: \item $F$ kann nicht mit der klassischen Geometrie beschrieben werden. \item Oftmals hat $F$ eine Form von Selbstähnlichkeit. Man spricht von einer selbstähnlichen Menge, wenn sich diese Menge überdecken lässt mit echten Teilmengen, die zur ganzen Menge ähnlich sind. - \item Die `fraktale Dimension´ ist grösser als die topologische Dimension + \item Die `fraktale Dimension' ist grösser als die topologische Dimension. \item Viele Fraktale lassen sich auf eine simple Art definieren. Es genügen zum Beispiel nur wenige Funktionen, welche rekursiv ausgeführt werden, um ein Fraktal zu definieren. \end{enumerate} \subsection{Koch Kurve @@ -64,7 +64,7 @@ berechnen. In jedem Schritt wird die Länge um den Faktor $\frac{4}{3}$ verlängert. Daraus resultiert, dass die Länge gegen $\infty$ divergiert. -Die Fläche der Kurve lässt sich folgendermassen berechnen +Die Fläche zwischen der Strecke von $O$ nach $(1,0)$ und der Kurve lässt sich folgendermassen berechnen \begin{align*} A_0 &= 0 \\ A_1 &= \left( \frac{a}{3}\right)^2 \frac{\sqrt{3}}{4} = a^2 \frac{\sqrt{3}}{36}\\ @@ -100,8 +100,8 @@ Ihre Ähnlichkeits-Dimension ist somit \begin{align*} D = - \frac{\log N }{\log \epsilon } = - \frac{\log 4 }{\log 1/3 } \approx 1.2619. \end{align*} -Wie wir nun sehen besitzt die Koch-Kurve alle oben beschriebenen Eigenschaften von Fraktalen. -Dies muss jedoch nicht bei allen Fraktalen der Fall sein. Sonst wäre die Frage nach einer 'richtigen' Definition einfach zu beantworten. +Wie wir nun sehen, besitzt die Koch-Kurve alle oben beschriebenen Eigenschaften von Fraktalen. +Dies muss jedoch nicht bei allen Fraktalen der Fall sein. Sonst wäre die Frage nach einer `richtigen' Definition einfach zu beantworten. \begin{figure} \centering \begin{tikzpicture} |