diff options
author | Reto Fritsche <reto.fritsche@ost.ch> | 2021-08-09 23:18:14 +0200 |
---|---|---|
committer | Reto Fritsche <reto.fritsche@ost.ch> | 2021-08-09 23:18:14 +0200 |
commit | 5a229fced6ee10f25060e190c0b08bba048a7617 (patch) | |
tree | 592f07a72dc67d12135564d2497f1b3649fe78eb /buch/papers/ifs/teil1.tex | |
parent | scratch ready (diff) | |
parent | Merge branch 'master' of github.com:AndreasFMueller/SeminarMatrizen (diff) | |
download | SeminarMatrizen-5a229fced6ee10f25060e190c0b08bba048a7617.tar.gz SeminarMatrizen-5a229fced6ee10f25060e190c0b08bba048a7617.zip |
Merge remote-tracking branch 'upstream/master' into mceliece
Diffstat (limited to 'buch/papers/ifs/teil1.tex')
-rw-r--r-- | buch/papers/ifs/teil1.tex | 24 |
1 files changed, 11 insertions, 13 deletions
diff --git a/buch/papers/ifs/teil1.tex b/buch/papers/ifs/teil1.tex index a75b529..caba120 100644 --- a/buch/papers/ifs/teil1.tex +++ b/buch/papers/ifs/teil1.tex @@ -7,29 +7,27 @@ \label{ifs:section:teil1}} \rhead{Problemstellung} Bevor wir die IFS ansehen, schauen wir uns Fraktale genauer an. - - Über die genaue Definition von Fraktalen sind sich die Mathematiker nicht einig. -In diesem Kapitel orientieren wir uns an den Eigenschaften welche Kenneth Falconer in seinem Buch Fractal Geometry \cite{ifs:fractal-geometry} beschreibt. +In diesem Kapitel orientieren wir uns an den Eigenschaften, welche Kenneth Falconer in seinem Buch {\em Fractal Geometry} \cite{ifs:fractal-geometry} beschreibt. Von einem Fraktal $F$ können wir folgende Eigenschaften erwarten: \begin{enumerate} \item $F$ hat eine unendlich feine Struktur \item $F$ kann nicht mit der klassischen Geometrie beschrieben werden. \item Oftmals hat $F$ eine Form von Selbstähnlichkeit. - \item Die 'fraktale Dimension' ist grösser als die topologische Dimension + Man spricht von einer selbstähnlichen Menge, wenn sich diese Menge überdecken lässt mit echten Teilmengen, die zur ganzen Menge ähnlich sind. + \item Die `fraktale Dimension' ist grösser als die topologische Dimension. \item Viele Fraktale lassen sich auf eine simple Art definieren. Es genügen zum Beispiel nur wenige Funktionen, welche rekursiv ausgeführt werden, um ein Fraktal zu definieren. \end{enumerate} \subsection{Koch Kurve \label{ifs:subsection:lilkoch}} Diese Eigenschaften möchten wir nun am Beispiel der Koch Kurve näher anschauen. -In Abbildung \ref{ifs:kochkurve8} sehen wir die Koch Kurve. Sie besteht aus lauter kleineren Kopien von sich selber. -Den Konstruktionsvorgang ist in Abbildung \ref{ifs:kochconst} dargestellt. +In Abbildung \ref{ifs:kochkurve8} sehen wir die Koch Kurve. Sie besteht aus lauter kleineren Kopien von sich selbst. +Der Konstruktionsvorgang ist in Abbildung \ref{ifs:kochconst} dargestellt. Gestartet wird mit einer einzelnen Strecke der Länge $a$. Diese wird in ersten Schritt durch vier gleich langen Streckenabschnitte der Länge $\frac{a}{3}$ ersetzt. In \ref{ifs:kochconstb} ist die Anordnung dieser vier Streckenabschnitte ersichtlich. Dieser Schritt wird nun für jeden der resultierten Streckenabschnitten wiederholt. Die Kurve besteht also aus vier kleineren Kopien der ganzen Kurve, was auch unter Selbstähnlichkeit bekannt ist. -Man spricht von einer selbstähnlichen Menge, wenn sich diese Menge überdecken lässt mit echten Teilmengen, die zur ganzen Menge ähnlich sind. \begin{figure} @@ -66,7 +64,7 @@ berechnen. In jedem Schritt wird die Länge um den Faktor $\frac{4}{3}$ verlängert. Daraus resultiert, dass die Länge gegen $\infty$ divergiert. -Die Fläche unter der Kurve lässt sich folgendermassen berechnen +Die Fläche zwischen der Strecke von $O$ nach $(1,0)$ und der Kurve lässt sich folgendermassen berechnen \begin{align*} A_0 &= 0 \\ A_1 &= \left( \frac{a}{3}\right)^2 \frac{\sqrt{3}}{4} = a^2 \frac{\sqrt{3}}{36}\\ @@ -88,22 +86,22 @@ Wie wir sehen ist die Koch-Kurve ein Objekt mit endlicher Fläche, aber unendlic Zu guter Letzt bestimmen wir die Dimension der Kurve. Es gibt viele verschiedene Methoden die Dimension zu definieren. Diese können dann auch unterschiedliche Resultate liefern. Vor allem im Zusammenhang mit Fraktalen findet man in der Literatur unterschiedliche Arten. -In diesem Beispiel werden wir die Ähnlichkeits-Dimension \cite{ifs:fractal-geometry}. +Da die Kochsche Kurve selbstähnlich ist, ist die Ähnlichkeits-Dimension \cite{ifs:fractal-geometry} die angemessene Messzahl für die Dimension. Die Ähnlichkeits-Dimension $D$ ist das Verhältnis der Logarithmen der Anzahl Kopien $N$ des Originales und deren Skalierungsfaktor $\epsilon$ \begin{align*} D = - \frac{\log N}{\log \epsilon }. \end{align*} -Mit ihr kann man einfach die Dimension selbstähnlicher Mengen bestimmen. -Als Beispiel nehmen wir ein gleichseitiges Dreieck. Dieses besteht aus $N = 4$ Kopien mit halber ($\epsilon = 1/2$) Kantenlänge $l$, Abbildung \ref{ifs:trinagle}. +Die Ähnlichkeits-Dimension stimmt für viele gewöhnliche Geometrische Objekte mit der intuitiven Vorstellung von Dimension überein. +Zum Beispiel besteht ein Dreieck aus $N = 4$ Kopien mit halber ($\epsilon = 1/2$) Kantenlänge $l$, Abbildung \ref{ifs:trinagle}. Somit hat das Dreieck die Dimension $D = 2$. Die Koch Kurve besteht aus $N = 4$ Kopien mit Kantenlänge $\epsilon =l \cdot 1/3$. Ihre Ähnlichkeits-Dimension ist somit \begin{align*} D = - \frac{\log N }{\log \epsilon } = - \frac{\log 4 }{\log 1/3 } \approx 1.2619. \end{align*} -Wie wir nun sehen besitzt die Koch-Kurve alle oben beschriebenen Eigenschaften von Fraktalen. -Dies muss jedoch nicht bei allen Fraktalen der Fall. Sonst wäre die Frage nach einer 'richtigen' Definition einfach zu beantworten. +Wie wir nun sehen, besitzt die Koch-Kurve alle oben beschriebenen Eigenschaften von Fraktalen. +Dies muss jedoch nicht bei allen Fraktalen der Fall sein. Sonst wäre die Frage nach einer `richtigen' Definition einfach zu beantworten. \begin{figure} \centering \begin{tikzpicture} |