diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-07-28 08:07:03 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-07-28 08:07:03 +0200 |
commit | 9a8dcc1cf9aa0ddd918008e6f2421b48797c38ec (patch) | |
tree | b5113260e190dfc7a94e4298bf6eb5ae21c08344 /buch/papers/multiplikation/code/MM.py | |
parent | Merge pull request #50 from paschost/patch-1 (diff) | |
parent | added first part of paper and code (diff) | |
download | SeminarMatrizen-9a8dcc1cf9aa0ddd918008e6f2421b48797c38ec.tar.gz SeminarMatrizen-9a8dcc1cf9aa0ddd918008e6f2421b48797c38ec.zip |
Merge pull request #52 from Nunigan/master
Multiplikation #1
Diffstat (limited to 'buch/papers/multiplikation/code/MM.py')
-rw-r--r-- | buch/papers/multiplikation/code/MM.py | 311 |
1 files changed, 311 insertions, 0 deletions
diff --git a/buch/papers/multiplikation/code/MM.py b/buch/papers/multiplikation/code/MM.py new file mode 100644 index 0000000..626b82d --- /dev/null +++ b/buch/papers/multiplikation/code/MM.py @@ -0,0 +1,311 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Mar 19 07:31:29 2021 + +@author: nunigan +""" +import numpy as np +import time +import matplotlib.pyplot as plt +from scipy.optimize import curve_fit +import tikzplotlib +def MM(A, B): + n = np.shape(A)[0] + C = np.zeros((n, n)) + for i in range(n): + for j in range(n): + C[i, j] = 0 + for k in range(n): + C[i, j] += A[i, k]*B[k, j] + return C + + +def MM_dc(A, B): + n = np.shape(A)[0] + if(n <= 2): + C = np.zeros((n, n)) + C[0, 0] = A[0, 0]*B[0, 0]+A[0, 1]*B[1, 0] + C[0, 1] = A[0, 0]*B[0, 1]+A[0, 1]*B[1, 1] + C[1, 0] = A[1, 0]*B[0, 0]+A[1, 1]*B[1, 0] + C[1, 1] = A[1, 0]*B[0, 1]+A[1, 1]*B[1, 1] + return C + else: + A11, A12, A21, A22 = A[:n//2, :n//2], A[:n//2, n//2:], A[n//2:, :n//2], A[n//2:, n//2:] + B11, B12, B21, B22 = B[:n//2, :n//2], B[:n//2, n//2:], B[n//2:, :n//2], B[n//2:, n//2:] + C11 = MM_dc(A11, B11) + MM_dc(A12, B21) + C12 = MM_dc(A11, B12) + MM_dc(A12, B22) + C21 = MM_dc(A21, B11) + MM_dc(A22, B21) + C22 = MM_dc(A21, B12) + MM_dc(A22, B22) + C = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22)))) + return C + + +def strassen(A, B): + n = np.shape(A)[0] + if(n <= 2): + C = np.zeros((n, n)) + P = (A[0, 0]+A[1, 1])*(B[0, 0]+B[1, 1]) + Q = (A[1, 0]+A[1, 1])*B[0, 0] + R = A[0, 0]*(B[0, 1]-B[1, 1]) + S = A[1, 1]*(B[1, 0]-B[0, 0]) + T = (A[0, 0]+A[0, 1])*B[1, 1] + U = (A[1, 0]-A[0, 0])*(B[0, 0]+B[0, 1]) + V = (A[0, 1]-A[1, 1])*(B[1, 0]+B[1, 1]) + C[0, 0] = P+S-T+V + C[0, 1] = R+T + C[1, 0] = Q+S + C[1, 1] = P+R-Q+U + return C + else: + m = n//2 + A11, A12, A21, A22 = A[:m, :m], A[:m, m:], A[m:, :m], A[m:, m:] + B11, B12, B21, B22 = B[:m, :m], B[:m, m:], B[m:, :m], B[m:, m:] + P = strassen((A11+A22),(B11+B22)) + Q = strassen((A21+A22),B11) + R = strassen(A11,(B12-B22)) + S = strassen(A22,(B21-B11)) + T = strassen((A11+A12),B22) + U = strassen((A21-A11),(B11+B12)) + V = strassen((A12-A22),(B21+B22)) + + C11 = P+S-T+V + C12 = R+T + C21 = Q+S + C22 = P+R-Q+U + + C = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22)))) + return C + +def winograd_inner(a, b): + n = np.shape(a)[0] + if n%2 == 0: + xi = np.sum(a[::2]*a[1::2]) + etha = np.sum(b[::2]*b[1::2]) + # print("xi = {}, etha = {}".format(xi, etha)) + ab = np.sum((a[::2]+b[1::2])*(a[1::2]+b[::2]))-xi-etha + else: + xi = np.sum(a[0:-1:2]*a[1::2]) + etha = np.sum(b[0:-1:2]*b[1::2]) + ab = np.sum((a[0:-1:2]+b[1::2])*(a[1::2]+b[0:-1:2]))-xi-etha+a[-1]*b[-1] + return ab + +def winograd(A, B): + m,n = np.shape(A) + n2,p = np.shape(B) + C = np.zeros((m,p)) + for i in range(np.shape(A)[0]): + for j in range(np.shape(B)[1]): + C[i,j] = winograd_inner(A[i,:], B[:,j]) + return C + +def winograd2(A, B): + m,n = np.shape(A) + n2,p = np.shape(B) + C = np.zeros((m,p)) + xi = np.zeros((m)) + eta = np.zeros((p)) + ab = 0 + for i in range(m): + for j in range(n//2): + xi[i] += A[i,2*j]*A[i,2*j+1] + + for i in range(p): + for j in range(n//2): + eta[i] += B[2*j,i]*B[2*j+1,i] + + if n%2==0: + for i in range(m): + for j in range(p): + ab = 0 + for k in range(n//2): + ab += (A[i,2*k]+B[2*k+1,j])*(A[i,2*k+1]+B[2*k,j]) + C[i,j] = ab-eta[j]-xi[i] + else: + for i in range(m): + for j in range(p): + ab = 0 + for k in range(n//2): + ab += (A[i,2*k]+B[2*k+1,j])*(A[i,2*k+1]+B[2*k,j]) + C[i,j] = ab-eta[j]-xi[i]+A[i,-1]*B[-1,j] + + return C + +def test_perfomance(n): + t_mm = [] + t_mm_dc = [] + t_mm_strassen = [] + t_wino = [] + t_np = [] + + for i in n: + A = np.random.randn(i, i) + B = np.random.randn(i, i) + # A = np.random.randint(-100, 100,(i, i)) + # B = np.random.randint(-100, 100,(i, i)) + + start = time.time() + C3 = strassen(A, B) + t_mm_strassen.append(time.time() - start) + + start = time.time() + C1 = MM(A, B) + t_mm.append(time.time() - start) + + start = time.time() + C2 = MM_dc(A, B) + t_mm_dc.append(time.time() - start) + + start = time.time() + C4 = winograd2(A, B) + t_wino.append(time.time() - start) + + start = time.time() + C = A@B + t_np.append(time.time() - start) + + plt.figure(figsize=(13,8)) + plt.rcParams['font.family'] = 'STIXGeneral' + plt.rc('axes', labelsize=23) + plt.rc('xtick', labelsize=23) + plt.rc('ytick', labelsize=23) + plt.plot(n, t_mm, label='Standard', lw=5) + plt.plot(n, t_mm_dc, label='Divide and conquer', lw=5) + plt.plot(n, t_mm_strassen, label='Strassen', lw=5) + plt.plot(n, t_wino, label='Winograd', lw=5) + plt.plot(n, t_np, label='NumPy A@B', lw=5) + plt.legend() + plt.xlabel("n") + plt.ylabel("time (s)") + plt.grid(True) + plt.tight_layout() + # plt.yscale('log') + plt.legend(fontsize=19) + plt.savefig('meas_' + str(max(n))+ '.pdf') + arr = np.array([n, t_mm, t_mm_dc, t_mm_strassen, t_wino, t_np]) + np.savetxt('meas_' + str(max(n))+ '.txt',arr) + return arr + + +def plot(num): + arr = np.loadtxt('meas_{}.txt'.format(num)) + n, t_mm, t_mm_dc, t_mm_strassen, t_wino, t_np = arr + plt.figure(figsize=(13,8)) + plt.rcParams['font.family'] = 'STIXGeneral' + plt.rc('axes', labelsize=23) + plt.rc('xtick', labelsize=23) + plt.rc('ytick', labelsize=23) + plt.plot(n, t_mm, label='3 For Loops', lw=5) + plt.plot(n, t_mm_dc, label='Divide and Conquer', lw=5) + plt.plot(n, t_mm_strassen, label='Strassen', lw=5) + # plt.plot(n, t_wino, label='Winograd', lw=5) + plt.plot(n, t_np, label='NumPy A@B', lw=5) + plt.legend() + plt.xlabel("n") + plt.ylabel("time (s)") + plt.grid(True) + plt.tight_layout() + # plt.yscale('log') + plt.legend(fontsize=19) + plt.savefig('meas_' + str(num)+ '.pdf') + return arr + +def plot_c_res(ave, num): + MM = np.loadtxt("meas/MM.txt", delimiter=',') + # winograd = np.loadtxt("meas/winograd.txt", delimiter=',') + blas = np.loadtxt("meas/blas.txt", delimiter=',') + MM_dc = np.loadtxt("meas/MM_dc.txt", delimiter=',') + strassen = np.loadtxt("meas/strassen.txt", delimiter=',') + + MM_t = MM[:,0] + MM_n = MM[:,1] + MM_t = np.mean(MM_t.reshape(-1,ave),axis=1) + MM_n = np.mean(MM_n.reshape(-1,ave),axis=1) + + MM_dc_t = MM_dc[:,0] + MM_dc_n = MM_dc[:,1] + MM_dc_t = np.mean(MM_dc_t.reshape(-1,ave),axis=1) + MM_dc_n = np.mean(MM_dc_n.reshape(-1,ave),axis=1) + + strassen_t = strassen[:,0] + strassen_n = strassen[:,1] + strassen_t = np.mean(strassen_t.reshape(-1,ave),axis=1) + strassen_n = np.mean(strassen_n.reshape(-1,ave),axis=1) + + # winograd_t = winograd[:,0] + # winograd_n = winograd[:,1] + # winograd_t = np.mean(winograd_t.reshape(-1,ave),axis=1) + # winograd_n = np.mean(winograd_n.reshape(-1,ave),axis=1) + + blas_t = blas[:,0] + blas_n = blas[:,1] + blas_t = np.mean(blas_t.reshape(-1,ave),axis=1) + blas_n = np.mean(blas_n.reshape(-1,ave),axis=1) + + def func(x, a,b): + return b*x**a + + # popt, pcov = curve_fit(func, blas_n, blas_t) + # popt1, pcov2 = curve_fit(func, blas_n, winograd_t) + # popt2, pcov2 = curve_fit(func, blas_n, MM_t) + + plt.figure(figsize=(13,8)) + plt.rcParams['font.family'] = 'STIXGeneral' + plt.rc('axes', labelsize=23) + plt.rc('xtick', labelsize=23) + plt.rc('ytick', labelsize=23) + plt.plot(MM_n, MM_t, label='3 For Loops', lw=5) + # plt.plot(winograd_n, winograd_t, label='Winograd MM', lw=5) + plt.plot(blas_n, blas_t, label='Blas', lw=5) + plt.plot(strassen_n, strassen_t, label='Strassen', lw=5) + plt.plot(MM_dc_n, MM_dc_t, label='Divide and Conquer', lw=5) + plt.xlabel("n") + plt.ylabel("time (s)") + plt.grid(True) + plt.tight_layout() + plt.legend(fontsize=19) + plt.savefig('c_meas_' + str(num)+ '.pdf') + + # plt.plot(blas_n, func(blas_n, *popt), 'r-', label='fit blas: a=%5.5f, b=%5.10f' % tuple(popt)) + # plt.plot(blas_n, func(blas_n, *popt1), 'r-', label='fit winograd: a=%5.5f, b=%5.10f' % tuple(popt1)) + # plt.plot(blas_n, func(blas_n, *popt2), 'r-', label='fit MM: a=%5.5f, b=%5.10f' % tuple(popt2)) + + plt.legend() + + +# test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +if __name__ == '__main__': + plot_c_res(1, 4096) + + + # plot(8) + # n = np.logspace(1,10,10,base=2,dtype=(np.int)) + # n = np.arange(1,50,2) + A = np.random.randint(-10, 10, (5,3)) + B = np.random.randint(-10, 10, (3,5)) + + C = winograd2(A, B) + C_test = A@B + print(C) + print(C_test) + # print(np.equal(C, C_test)) + + # t_np = test_perfomance(n) + # C = strassen(A, B) + # C_test = A@B + + + # plot_c_res() + # def func(x, a): + # return x**a + + # popt, pcov = curve_fit(func, n, t_np, bounds=(2, 3)) + + + # plt.figure() + # plt.plot(n, t_np, 'b-', label='data') + # plt.plot(n, func(n, *popt), 'r-', label='fit: a=%5.3f' % tuple(popt)) + # plt.xlabel('x') + # plt.ylabel('y') + # plt.legend() +
\ No newline at end of file |