aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/multiplikation/code/MM.py
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-07-28 08:07:03 +0200
committerGitHub <noreply@github.com>2021-07-28 08:07:03 +0200
commit9a8dcc1cf9aa0ddd918008e6f2421b48797c38ec (patch)
treeb5113260e190dfc7a94e4298bf6eb5ae21c08344 /buch/papers/multiplikation/code/MM.py
parentMerge pull request #50 from paschost/patch-1 (diff)
parentadded first part of paper and code (diff)
downloadSeminarMatrizen-9a8dcc1cf9aa0ddd918008e6f2421b48797c38ec.tar.gz
SeminarMatrizen-9a8dcc1cf9aa0ddd918008e6f2421b48797c38ec.zip
Merge pull request #52 from Nunigan/master
Multiplikation #1
Diffstat (limited to 'buch/papers/multiplikation/code/MM.py')
-rw-r--r--buch/papers/multiplikation/code/MM.py311
1 files changed, 311 insertions, 0 deletions
diff --git a/buch/papers/multiplikation/code/MM.py b/buch/papers/multiplikation/code/MM.py
new file mode 100644
index 0000000..626b82d
--- /dev/null
+++ b/buch/papers/multiplikation/code/MM.py
@@ -0,0 +1,311 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 19 07:31:29 2021
+
+@author: nunigan
+"""
+import numpy as np
+import time
+import matplotlib.pyplot as plt
+from scipy.optimize import curve_fit
+import tikzplotlib
+def MM(A, B):
+ n = np.shape(A)[0]
+ C = np.zeros((n, n))
+ for i in range(n):
+ for j in range(n):
+ C[i, j] = 0
+ for k in range(n):
+ C[i, j] += A[i, k]*B[k, j]
+ return C
+
+
+def MM_dc(A, B):
+ n = np.shape(A)[0]
+ if(n <= 2):
+ C = np.zeros((n, n))
+ C[0, 0] = A[0, 0]*B[0, 0]+A[0, 1]*B[1, 0]
+ C[0, 1] = A[0, 0]*B[0, 1]+A[0, 1]*B[1, 1]
+ C[1, 0] = A[1, 0]*B[0, 0]+A[1, 1]*B[1, 0]
+ C[1, 1] = A[1, 0]*B[0, 1]+A[1, 1]*B[1, 1]
+ return C
+ else:
+ A11, A12, A21, A22 = A[:n//2, :n//2], A[:n//2, n//2:], A[n//2:, :n//2], A[n//2:, n//2:]
+ B11, B12, B21, B22 = B[:n//2, :n//2], B[:n//2, n//2:], B[n//2:, :n//2], B[n//2:, n//2:]
+ C11 = MM_dc(A11, B11) + MM_dc(A12, B21)
+ C12 = MM_dc(A11, B12) + MM_dc(A12, B22)
+ C21 = MM_dc(A21, B11) + MM_dc(A22, B21)
+ C22 = MM_dc(A21, B12) + MM_dc(A22, B22)
+ C = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
+ return C
+
+
+def strassen(A, B):
+ n = np.shape(A)[0]
+ if(n <= 2):
+ C = np.zeros((n, n))
+ P = (A[0, 0]+A[1, 1])*(B[0, 0]+B[1, 1])
+ Q = (A[1, 0]+A[1, 1])*B[0, 0]
+ R = A[0, 0]*(B[0, 1]-B[1, 1])
+ S = A[1, 1]*(B[1, 0]-B[0, 0])
+ T = (A[0, 0]+A[0, 1])*B[1, 1]
+ U = (A[1, 0]-A[0, 0])*(B[0, 0]+B[0, 1])
+ V = (A[0, 1]-A[1, 1])*(B[1, 0]+B[1, 1])
+ C[0, 0] = P+S-T+V
+ C[0, 1] = R+T
+ C[1, 0] = Q+S
+ C[1, 1] = P+R-Q+U
+ return C
+ else:
+ m = n//2
+ A11, A12, A21, A22 = A[:m, :m], A[:m, m:], A[m:, :m], A[m:, m:]
+ B11, B12, B21, B22 = B[:m, :m], B[:m, m:], B[m:, :m], B[m:, m:]
+ P = strassen((A11+A22),(B11+B22))
+ Q = strassen((A21+A22),B11)
+ R = strassen(A11,(B12-B22))
+ S = strassen(A22,(B21-B11))
+ T = strassen((A11+A12),B22)
+ U = strassen((A21-A11),(B11+B12))
+ V = strassen((A12-A22),(B21+B22))
+
+ C11 = P+S-T+V
+ C12 = R+T
+ C21 = Q+S
+ C22 = P+R-Q+U
+
+ C = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
+ return C
+
+def winograd_inner(a, b):
+ n = np.shape(a)[0]
+ if n%2 == 0:
+ xi = np.sum(a[::2]*a[1::2])
+ etha = np.sum(b[::2]*b[1::2])
+ # print("xi = {}, etha = {}".format(xi, etha))
+ ab = np.sum((a[::2]+b[1::2])*(a[1::2]+b[::2]))-xi-etha
+ else:
+ xi = np.sum(a[0:-1:2]*a[1::2])
+ etha = np.sum(b[0:-1:2]*b[1::2])
+ ab = np.sum((a[0:-1:2]+b[1::2])*(a[1::2]+b[0:-1:2]))-xi-etha+a[-1]*b[-1]
+ return ab
+
+def winograd(A, B):
+ m,n = np.shape(A)
+ n2,p = np.shape(B)
+ C = np.zeros((m,p))
+ for i in range(np.shape(A)[0]):
+ for j in range(np.shape(B)[1]):
+ C[i,j] = winograd_inner(A[i,:], B[:,j])
+ return C
+
+def winograd2(A, B):
+ m,n = np.shape(A)
+ n2,p = np.shape(B)
+ C = np.zeros((m,p))
+ xi = np.zeros((m))
+ eta = np.zeros((p))
+ ab = 0
+ for i in range(m):
+ for j in range(n//2):
+ xi[i] += A[i,2*j]*A[i,2*j+1]
+
+ for i in range(p):
+ for j in range(n//2):
+ eta[i] += B[2*j,i]*B[2*j+1,i]
+
+ if n%2==0:
+ for i in range(m):
+ for j in range(p):
+ ab = 0
+ for k in range(n//2):
+ ab += (A[i,2*k]+B[2*k+1,j])*(A[i,2*k+1]+B[2*k,j])
+ C[i,j] = ab-eta[j]-xi[i]
+ else:
+ for i in range(m):
+ for j in range(p):
+ ab = 0
+ for k in range(n//2):
+ ab += (A[i,2*k]+B[2*k+1,j])*(A[i,2*k+1]+B[2*k,j])
+ C[i,j] = ab-eta[j]-xi[i]+A[i,-1]*B[-1,j]
+
+ return C
+
+def test_perfomance(n):
+ t_mm = []
+ t_mm_dc = []
+ t_mm_strassen = []
+ t_wino = []
+ t_np = []
+
+ for i in n:
+ A = np.random.randn(i, i)
+ B = np.random.randn(i, i)
+ # A = np.random.randint(-100, 100,(i, i))
+ # B = np.random.randint(-100, 100,(i, i))
+
+ start = time.time()
+ C3 = strassen(A, B)
+ t_mm_strassen.append(time.time() - start)
+
+ start = time.time()
+ C1 = MM(A, B)
+ t_mm.append(time.time() - start)
+
+ start = time.time()
+ C2 = MM_dc(A, B)
+ t_mm_dc.append(time.time() - start)
+
+ start = time.time()
+ C4 = winograd2(A, B)
+ t_wino.append(time.time() - start)
+
+ start = time.time()
+ C = A@B
+ t_np.append(time.time() - start)
+
+ plt.figure(figsize=(13,8))
+ plt.rcParams['font.family'] = 'STIXGeneral'
+ plt.rc('axes', labelsize=23)
+ plt.rc('xtick', labelsize=23)
+ plt.rc('ytick', labelsize=23)
+ plt.plot(n, t_mm, label='Standard', lw=5)
+ plt.plot(n, t_mm_dc, label='Divide and conquer', lw=5)
+ plt.plot(n, t_mm_strassen, label='Strassen', lw=5)
+ plt.plot(n, t_wino, label='Winograd', lw=5)
+ plt.plot(n, t_np, label='NumPy A@B', lw=5)
+ plt.legend()
+ plt.xlabel("n")
+ plt.ylabel("time (s)")
+ plt.grid(True)
+ plt.tight_layout()
+ # plt.yscale('log')
+ plt.legend(fontsize=19)
+ plt.savefig('meas_' + str(max(n))+ '.pdf')
+ arr = np.array([n, t_mm, t_mm_dc, t_mm_strassen, t_wino, t_np])
+ np.savetxt('meas_' + str(max(n))+ '.txt',arr)
+ return arr
+
+
+def plot(num):
+ arr = np.loadtxt('meas_{}.txt'.format(num))
+ n, t_mm, t_mm_dc, t_mm_strassen, t_wino, t_np = arr
+ plt.figure(figsize=(13,8))
+ plt.rcParams['font.family'] = 'STIXGeneral'
+ plt.rc('axes', labelsize=23)
+ plt.rc('xtick', labelsize=23)
+ plt.rc('ytick', labelsize=23)
+ plt.plot(n, t_mm, label='3 For Loops', lw=5)
+ plt.plot(n, t_mm_dc, label='Divide and Conquer', lw=5)
+ plt.plot(n, t_mm_strassen, label='Strassen', lw=5)
+ # plt.plot(n, t_wino, label='Winograd', lw=5)
+ plt.plot(n, t_np, label='NumPy A@B', lw=5)
+ plt.legend()
+ plt.xlabel("n")
+ plt.ylabel("time (s)")
+ plt.grid(True)
+ plt.tight_layout()
+ # plt.yscale('log')
+ plt.legend(fontsize=19)
+ plt.savefig('meas_' + str(num)+ '.pdf')
+ return arr
+
+def plot_c_res(ave, num):
+ MM = np.loadtxt("meas/MM.txt", delimiter=',')
+ # winograd = np.loadtxt("meas/winograd.txt", delimiter=',')
+ blas = np.loadtxt("meas/blas.txt", delimiter=',')
+ MM_dc = np.loadtxt("meas/MM_dc.txt", delimiter=',')
+ strassen = np.loadtxt("meas/strassen.txt", delimiter=',')
+
+ MM_t = MM[:,0]
+ MM_n = MM[:,1]
+ MM_t = np.mean(MM_t.reshape(-1,ave),axis=1)
+ MM_n = np.mean(MM_n.reshape(-1,ave),axis=1)
+
+ MM_dc_t = MM_dc[:,0]
+ MM_dc_n = MM_dc[:,1]
+ MM_dc_t = np.mean(MM_dc_t.reshape(-1,ave),axis=1)
+ MM_dc_n = np.mean(MM_dc_n.reshape(-1,ave),axis=1)
+
+ strassen_t = strassen[:,0]
+ strassen_n = strassen[:,1]
+ strassen_t = np.mean(strassen_t.reshape(-1,ave),axis=1)
+ strassen_n = np.mean(strassen_n.reshape(-1,ave),axis=1)
+
+ # winograd_t = winograd[:,0]
+ # winograd_n = winograd[:,1]
+ # winograd_t = np.mean(winograd_t.reshape(-1,ave),axis=1)
+ # winograd_n = np.mean(winograd_n.reshape(-1,ave),axis=1)
+
+ blas_t = blas[:,0]
+ blas_n = blas[:,1]
+ blas_t = np.mean(blas_t.reshape(-1,ave),axis=1)
+ blas_n = np.mean(blas_n.reshape(-1,ave),axis=1)
+
+ def func(x, a,b):
+ return b*x**a
+
+ # popt, pcov = curve_fit(func, blas_n, blas_t)
+ # popt1, pcov2 = curve_fit(func, blas_n, winograd_t)
+ # popt2, pcov2 = curve_fit(func, blas_n, MM_t)
+
+ plt.figure(figsize=(13,8))
+ plt.rcParams['font.family'] = 'STIXGeneral'
+ plt.rc('axes', labelsize=23)
+ plt.rc('xtick', labelsize=23)
+ plt.rc('ytick', labelsize=23)
+ plt.plot(MM_n, MM_t, label='3 For Loops', lw=5)
+ # plt.plot(winograd_n, winograd_t, label='Winograd MM', lw=5)
+ plt.plot(blas_n, blas_t, label='Blas', lw=5)
+ plt.plot(strassen_n, strassen_t, label='Strassen', lw=5)
+ plt.plot(MM_dc_n, MM_dc_t, label='Divide and Conquer', lw=5)
+ plt.xlabel("n")
+ plt.ylabel("time (s)")
+ plt.grid(True)
+ plt.tight_layout()
+ plt.legend(fontsize=19)
+ plt.savefig('c_meas_' + str(num)+ '.pdf')
+
+ # plt.plot(blas_n, func(blas_n, *popt), 'r-', label='fit blas: a=%5.5f, b=%5.10f' % tuple(popt))
+ # plt.plot(blas_n, func(blas_n, *popt1), 'r-', label='fit winograd: a=%5.5f, b=%5.10f' % tuple(popt1))
+ # plt.plot(blas_n, func(blas_n, *popt2), 'r-', label='fit MM: a=%5.5f, b=%5.10f' % tuple(popt2))
+
+ plt.legend()
+
+
+# test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+if __name__ == '__main__':
+ plot_c_res(1, 4096)
+
+
+ # plot(8)
+ # n = np.logspace(1,10,10,base=2,dtype=(np.int))
+ # n = np.arange(1,50,2)
+ A = np.random.randint(-10, 10, (5,3))
+ B = np.random.randint(-10, 10, (3,5))
+
+ C = winograd2(A, B)
+ C_test = A@B
+ print(C)
+ print(C_test)
+ # print(np.equal(C, C_test))
+
+ # t_np = test_perfomance(n)
+ # C = strassen(A, B)
+ # C_test = A@B
+
+
+ # plot_c_res()
+ # def func(x, a):
+ # return x**a
+
+ # popt, pcov = curve_fit(func, n, t_np, bounds=(2, 3))
+
+
+ # plt.figure()
+ # plt.plot(n, t_np, 'b-', label='data')
+ # plt.plot(n, func(n, *popt), 'r-', label='fit: a=%5.3f' % tuple(popt))
+ # plt.xlabel('x')
+ # plt.ylabel('y')
+ # plt.legend()
+ \ No newline at end of file