aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/multiplikation/einlteung.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-07-28 08:07:03 +0200
committerGitHub <noreply@github.com>2021-07-28 08:07:03 +0200
commit9a8dcc1cf9aa0ddd918008e6f2421b48797c38ec (patch)
treeb5113260e190dfc7a94e4298bf6eb5ae21c08344 /buch/papers/multiplikation/einlteung.tex
parentMerge pull request #50 from paschost/patch-1 (diff)
parentadded first part of paper and code (diff)
downloadSeminarMatrizen-9a8dcc1cf9aa0ddd918008e6f2421b48797c38ec.tar.gz
SeminarMatrizen-9a8dcc1cf9aa0ddd918008e6f2421b48797c38ec.zip
Merge pull request #52 from Nunigan/master
Multiplikation #1
Diffstat (limited to 'buch/papers/multiplikation/einlteung.tex')
-rwxr-xr-xbuch/papers/multiplikation/einlteung.tex52
1 files changed, 52 insertions, 0 deletions
diff --git a/buch/papers/multiplikation/einlteung.tex b/buch/papers/multiplikation/einlteung.tex
new file mode 100755
index 0000000..bc4bfcf
--- /dev/null
+++ b/buch/papers/multiplikation/einlteung.tex
@@ -0,0 +1,52 @@
+%
+% einleitung.tex -- Beispiel-File für die Einleitung
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Einleitung \label{multiplikation:section:einleitung}}
+\rhead{Einleitung}
+
+Die Multiplikation zweier Matrizen ist eine wichtige Operation die in verschiedensten Teilen der Mathematik Anwendung findet.
+Die Beschreibung der Multiplikation aus der Definition 2.10 (\textcolor{blue} {Kein Hyperlink zu einer Definition?)}:
+
+Eine $m\times n$-Matrix $\mathbf{A}\in M_{m\times n}(\Bbbk)$ und eine
+$n\times p$-Matrix $\mathbf{B}\in M_{n\times l}(\Bbbk)$ haben als Produkt
+eine $n\times l$-Matrix $\mathbf{C}=\mathbf{AB}\in M_{n\times l}(\Bbbk)$ mit den
+Koeffizienten
+\begin{equation}
+c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.
+\label{multiplikation:eq:MM}
+\end{equation}
+Grafisch kann die Matrizenmultiplikation $AB=C$ wie in \ref{multiplikation:fig:mm_viz} visualisiert werden.
+\begin{figure}
+ \center
+ \includegraphics[]{papers/multiplikation/images/mm_visualisation}
+ \caption{Matrizen Multiplikation}
+ \label{multiplikation:fig:mm_viz}
+\end{figure}
+Im Fall einer Matrizengr\"osse von $2\times 2$
+\begin{equation}
+ \begin{bmatrix}
+A_{11} & A_{12}\\
+A_{21} & A_{22}
+\end{bmatrix}
+\begin{bmatrix}
+B_{11} & B_{12}\\
+B_{21} & B_{22}
+\end{bmatrix}
+=
+\begin{bmatrix}
+C_{11} & C_{12}\\
+C_{21} & C_{22}
+\end{bmatrix}
+\end{equation}
+kann die Gleichung der einzelnen Terme
+\begin{equation} \label{multiplikation:eq:MM_exp}
+\begin{split}
+C_{11} &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21}\\
+C_{12} &= A_{11} \cdot B_{12} + A_{12} \cdot B_{22}\\
+C_{21} &= A_{21} \cdot B_{11} + A_{22} \cdot B_{21}\\
+C_{22} &= A_{21} \cdot B_{12} + A_{22} \cdot B_{22}
+\end{split}
+\end{equation}
+explizit geschrieben werden.