diff options
author | JODBaer <JODBaer@github.com> | 2021-08-02 16:46:59 +0200 |
---|---|---|
committer | JODBaer <JODBaer@github.com> | 2021-08-02 16:46:59 +0200 |
commit | 9f22156ea159efa4f688f4d476c57bab9cfe4531 (patch) | |
tree | f0bb1fc0c7bfa0887bba2e34e2668e85c1c48959 /buch/papers/munkres | |
parent | save (diff) | |
parent | Merge pull request #60 from Kuehnee/master (diff) | |
download | SeminarMatrizen-9f22156ea159efa4f688f4d476c57bab9cfe4531.tar.gz SeminarMatrizen-9f22156ea159efa4f688f4d476c57bab9cfe4531.zip |
Merge remote-tracking branch 'upstream/master' into Baer
Diffstat (limited to '')
-rw-r--r-- | buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png | bin | 0 -> 1179631 bytes | |||
-rw-r--r-- | buch/papers/munkres/figures/Ungarische_Methode_Beispiel_Zuw.png | bin | 0 -> 117508 bytes | |||
-rw-r--r-- | buch/papers/munkres/figures/ganzzahlige_punkte.png | bin | 0 -> 257390 bytes | |||
-rw-r--r-- | buch/papers/munkres/teil1.tex | 25 | ||||
-rw-r--r-- | buch/papers/munkres/teil2.tex | 4 | ||||
-rw-r--r-- | buch/papers/munkres/teil3.tex | 82 |
6 files changed, 99 insertions, 12 deletions
diff --git a/buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png b/buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png Binary files differnew file mode 100644 index 0000000..fb4d061 --- /dev/null +++ b/buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png diff --git a/buch/papers/munkres/figures/Ungarische_Methode_Beispiel_Zuw.png b/buch/papers/munkres/figures/Ungarische_Methode_Beispiel_Zuw.png Binary files differnew file mode 100644 index 0000000..73217d3 --- /dev/null +++ b/buch/papers/munkres/figures/Ungarische_Methode_Beispiel_Zuw.png diff --git a/buch/papers/munkres/figures/ganzzahlige_punkte.png b/buch/papers/munkres/figures/ganzzahlige_punkte.png Binary files differnew file mode 100644 index 0000000..5689825 --- /dev/null +++ b/buch/papers/munkres/figures/ganzzahlige_punkte.png diff --git a/buch/papers/munkres/teil1.tex b/buch/papers/munkres/teil1.tex index c13732c..d22b57f 100644 --- a/buch/papers/munkres/teil1.tex +++ b/buch/papers/munkres/teil1.tex @@ -7,22 +7,37 @@ \label{munkres:section:teil1}} \rhead{Problemstellung} -Das spezielle an einem Zuordnungsproblem ist, dass es an jedem Ort nur eine Einheit angeboten bzw. nachgefragt wird. Es werden hier nicht Mengen möglichst kostenminimal von einem zum anderen -Ort transportiert, sondern es geht um die kostenminimale Zuordnung von z.B. Personen, oder Bau-Materialien auf bestimmte Orte, Stellen oder Aufgaben. +Das Spezielle an einem Zuordnungsproblem ist, dass es an jedem Ort nur eine Einheit angeboten bzw. nachgefragt wird. Es werden hier nicht Mengen möglichst kostenminimal von einem zum anderen +Ort transportiert, sondern es geht um die kostenminimale Zuordnung von z.B. Personen, oder Bau-Maschinen auf bestimmte Orte, Stellen oder Aufgaben. Um dieses Problem in einer einfachen, händischen Art und Weise zu lösen wurde der Munkres-Algorithmus, auch die Ungarische Methode genannt, entwickelt. Diese Methode ist ein weiteres Hauptthema dieses Kapitels. \subsection{Zuordnungsproblem an einem konkreten Beispiel \label{munkres:subsection:bonorum}} +Man hat den Fall, wo ein Bauunternehmer einen Bauingenieur beauftragt, eine optimale Transportroute für die Umplatzierung seiner Kräne zu eruieren. Das heisst, die Transportstrecke für die Umplatzierung seine Kräne +soll möglichst klein werden. +Die Frage lautet, wie sind die Kräne umzusetzen, damit deren Transportstrecke minimal wird? Bei der normalen Optimierung dürfen normalerweise beliebige reelle Werte angenommen werden $\mathbb{R}$. +Beim Beispiel mit den Kräne gibt es aber ein Problem. Bei der Suche nach der optimalen Lösung darf nur die Methode der ganzzahligen Optimierung gewählt werden $\mathbb{Z}$. Materialien kann man aufteilen, jedoch Maschinen nicht. Die Bauarbeiter auf der neuen Baustelle benötigen einen ganzen Kran und nicht nur einen halben Kran. Es muss immer ein ganzer Kran von A nach B oder gar kein Kran verschoben werden. Also 1 oder 0. +Für solche Optimierungsproblem für reelle Varianten sind verschiedene Verfahren entwickelt worden, die im Allgemeinen auch sehr effizient sind. Das reelle Problem ist also in einer einfachen Art uns weise lösbar. Doch das Problem bleibt, wie in der Illustration oben ersichtlich. Es kann mit ganzzahligen Punkten kein Optimum erzielt werden. Das Ziel ist es an das Optimum so nah wie möglich heranzukommen und dies ist eine vergleichsweise träge und langsame Angelegenheit. + +\begin{figure} +\centering +\includegraphics[width=5cm]{papers/munkres/figures/ganzzahlige_punkte} +\caption{Problem der Ganzzahligkeit.} +\label{munkres:Vr2} +\end{figure} + \subsection{Zuordnungsproblem abstrakt \label{munkres:subsection:bonorum}} -Es sind alle Angebots- und Bedarfsmengen gleich 1 +In einem Zuordnungsproblem sind alle Angebots- und Bedarfsmengen gleich 1 \begin{equation} a_{i}=b_{j}=1 \end{equation} +Das Ziel ist es die Gesamtkosten zu minimieren. Mit Hilfe einer $n\times n$ Matrix $\mathbb{A}$ $\mathbb{\in}$ $\mathbb{R}^{n,n}$ kann der Faktor Kosten mit in die Rechnung eingebracht werden. +In der Zelle dieser Matrix sind $a_{i,j}$ die Wege dargestellt, die entstehen, wenn man z.B. einem Kran $i$ den Einsatzort $j$ zuordnet. -\subsection{alternative Darstellungen des Zuordnungsproblems +\subsection{Alternative Darstellungen des Zuordnungsproblems \label{munkres:subsection:bonorum}} \begin{equation} Netzwerk @@ -35,7 +50,7 @@ Bitpartiter Graph \end{equation} Ein bipartiter Graph ist ein mathematisches Modell für Beziehungen zwischen den Elementen zweier Mengen. -Es eignet sich sehr gut zur Untersuchung von Zuordnungsproblemen» +Es eignet sich sehr gut zur Untersuchung von Zuordnungsproblemen. \begin{figure} \centering \includegraphics[width=5cm]{papers/munkres/figures/Netzwerkdarstellung} diff --git a/buch/papers/munkres/teil2.tex b/buch/papers/munkres/teil2.tex index 9a44cd4..a3b249e 100644 --- a/buch/papers/munkres/teil2.tex +++ b/buch/papers/munkres/teil2.tex @@ -7,7 +7,7 @@ \label{munkres:section:teil2}} \rhead{Schwierigkeit der Lösung (Permutationen)} -Eine Permutation ist eine Anordnung von Objekten in einer bestimmten Reihenfolge oder eine Umordnung von Objekten aus einer vorgegebenen Reihung. Ist eine maximale Zuordnung (maximales Matching) gefunden, so steht in jeder Zeile und jeder Spalte der Matrix genau ein Element, das zur optimalen Lösung gehört, eine solche Gruppe von Positionen wird auch als Transversale der Matrix bezeichnet. +Eine Permutation ist eine Anordnung von Objekten in einer bestimmten Reihenfolge oder eine Umordnung von Objekten aus einer vorgegebenen Reihung. Ist eine optimale Zuordnung gefunden, so steht in jeder Zeile und jeder Spalte der Matrix genau ein Element, das zur optimalen Lösung gehört, eine solche Gruppe von Positionen wird auch als Transversale der Matrix bezeichnet. -Die Problemstellung kann auch so formuliert werden, dass man die Zeilen- oder die Spaltenvektoren so umordnet soll, dass die Summe der Elemente in der Hauptdiagonale maximal wird. Hieraus wird sofort ersichtlich, dass es in einer n×n-Matrix genau so viele Möglichkeiten gibt, die Zeilen- bzw. Spaltenvektoren zu ordnen, wie es Permutationen von n Elementen gibt, also n!. Außer bei kleinen Matrizen ist es nahezu aussichtslos, die optimale Lösung durch Berechnung aller Möglichkeiten zu finden. Schon bei einer 10×10-Matrix gibt es nahezu 3,63 Millionen (3.628.800) zu berücksichtigender Permutationen. +Die Problemstellung kann auch so formuliert werden, dass man die Zeilen- oder die Spaltenvektoren so umordnet soll, dass die Summe der Elemente in der Hauptdiagonale maximal wird. Hieraus wird sofort ersichtlich, dass es in einer $n$×$n$-Matrix genau so viele Möglichkeiten gibt, die Zeilen- bzw. Spaltenvektoren zu ordnen, wie es Permutationen von $n$ Elementen gibt, also $n!$. Außer bei kleinen Matrizen ist es nahezu aussichtslos, die optimale Lösung durch Berechnung aller Möglichkeiten zu finden. Schon bei einer 10×10-Matrix gibt es nahezu 3,63 Millionen (3.628.800) zu berücksichtigender Permutationen. diff --git a/buch/papers/munkres/teil3.tex b/buch/papers/munkres/teil3.tex index cd47c92..874baae 100644 --- a/buch/papers/munkres/teil3.tex +++ b/buch/papers/munkres/teil3.tex @@ -7,7 +7,7 @@ \label{munkres:section:teil3}} \rhead{Der Munkres-Algorithmus (Ungarische Methode)} -Mit der ungarischen Methode können also lineare Optimierungsprobleme gelöst +Mit der ungarischen Methode können also Optimierungsprobleme gelöst werden, die bei gewichteten Zuordnungen in bipartiten Graphen entstehen. Mit ihr kann die eindeutige Zuordnung von Objekten aus zwei Gruppen so optimiert werden, dass die Gesamtkosten minimiert werden bzw.~der @@ -29,18 +29,90 @@ um eine $O(n^3)$-Laufzeit zu erreichen. \subsection{Besondere Leistung der Ungarischen Methode \label{munkres:subsection:malorum}} -Es ist ein kombinatorischer Optimierungsalgorithmus, der das Zuordnungsproblem +Die Ungarische Methode ist ein kombinatorischer Optimierungsalgorithmus, der das Zuordnungsproblem in polynomieller Zeit löst. Der Begriff polynomielle Laufzeit bedeutet, dass die Laufzeit des Programms -wie $n^2$, $n^3$, $n^4$, etc.~wächst und vernünftig skaliert. +wie $n^2$, $n^3$, $n^4$, etc.~wächst und vernünftig skaliert. $n$ ist hierbei die "Grösse" des Problems. +\subsection{Unterschiedliche Anzahl von Quellen und Zielen +\label{munkres:subsection:malorum}} +Es gibt Fälle, in welchen das Ausgangsproblem keine quadratische Form besitzt. Das ist z.B dann der Fall, wenn eine 3 Mitarbeiter 4 Eignungstests abdsolvieren müssen. In diesem Fall wird in der Ungarischen Methode die Matrix künstlich mittels einer Dummy Position quadratisch ergänzt. Dummy-Positionen werden dann mit der größten vorhandenen Zahl aus der Matrix besetzt. Beispielsweise eine $4\times 3$ wird zu einer $4\times 4$ Matrix. \subsection{Beispiel eines händischen Verfahrens \label{munkres:subsection:malorum}} +Die ungarische Methode kann in einem einfachen händischen Beispiel +erläutert werden. Es gibt eine Ausgangsmatrix. Diese Matrix wird in mehreren Schritten immer +weiter reduziert. Anschließend erfolgen mehrere Zuordnungen. Hierbei ist zu beachten, dass +jede Zeile und jede Spalte immer genau eine eindeutige Zuordnung ergibt. +Die optimale Lösung ist erreicht, wenn genau $n$ Zuordnungen gefunden +sind. + +\begin{enumerate} +\item Pro Zeile eruiert man die kleinste Zahl. Diese kleinste Zahl wird bei +allen anderen Ziffern in der jeweiligen Zeile subtrahiert. + +\item Danach zieht man wiederum die kleinste Zahl in jeder Spalte von allen +Zahlen in der Spalte ab. + +\item Es sollen möglichst viele Nullen markiert werden, welche freistehend sind. +(Freistehend bedeutet, sowohl in der jeweiligen Zeile und Spalte nur +eine markierte Null zu haben) + +\item Jeweilige Zeilen eruieren, bei welchen keine markierte Null vorhanden sind und kennzeichnen. + +\item In der vorherigen Zeile die 0 eruieren und die Spalte ebenfalls +kennzeichnen (*2) + +\item Im der selben Spalte die Markierte Null eruieren und die dazugehörige +Zeile kennzeichnen (*3) + +\item Alle Zeilen durchstreichen, welche KEINE Kennzeichnungen (*) haben + +\item Alle Spalten durchstreichen, welche EINE Kennzeichnung besitzt! (hier, *2) + +\item Kleinste Ziffer auswählen, welche nicht schon durchgestrichen sind. +(Im Beispiel ist es die Zahl 1. (Egal welche 1) + +\item Die eruierte kleinste Ziffer, wird von den nicht durchgestrichenen Ziffern +subtrahiert. Danach muss die Matrix wieder komplettiert werden. (inkl. Unterstreichen) + +\item Jeweilige Zahlen eruieren, welche vorgängig doppelt durchgestrichen wurden. + +\item Kleinste eruierte Ziffer von vorhin auf die zwei markierten Ziffern addieren. + +\item Es sollen wiederum von neuem möglichst viele Nullen markiert werden, +welche freistehend sind. In diesem Schritt werden nur die markierten Nullen betrachtet. + +\item Aus allen markierten Nullen in eine eins umwandeln. + +\item Die restlichen Ziffern, durch eine Null ersetzen. + +\item Zu guter letzt soll überall wo eine 1 steht, in der Ausgangsmatrix die +dazugehörige Ziffer ausgewählt werden. Nach Einsetzen und Eruieren der Zahlen ergeben sich nach Summieren der Zahlen der minimalste Transportweg. +\end{enumerate} + \begin{figure} \centering -\includegraphics[width=14cm]{papers/munkres/figures/beispiel_munkres} -\caption{Händisches Beispiel des Munkres Algorithmus.} +\includegraphics[width=14cm]{papers/munkres/figures/Ungarische_Methode_Beispiel.png} +\caption{Händisches Beispiel des Munkres Algorithmus, minimalster Transportweg.} \label{munkres:Vr2} \end{figure} + +\subsection{Zuordnung der Kräne +\label{munkres:subsection:malorum}} + +\begin{itemize} +\item Der Kran von Baustelle A1 soll zur Baustelle B2. +\item Der Kran von Baustelle A2 soll zur Baustelle B3. +\item Der Kran von Baustelle A3 soll zur Baustelle B4. +\item Der Kran von Baustelle A4 soll zur Baustelle B1. +\end{itemize} + +\begin{figure} +\centering +\includegraphics[width=3cm]{papers/munkres/figures/Ungarische_Methode_Beispiel_Zuw.png} +\caption{Händisches Beispiel des Munkres Algorithmus, Zuweisung der Kräne } +\label{munkres:Vr2} +\end{figure} + |