aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/punktgruppen/crystals.tex
diff options
context:
space:
mode:
authorJODBaer <JODBaer@github.com>2021-08-07 11:20:44 +0200
committerJODBaer <JODBaer@github.com>2021-08-07 11:20:44 +0200
commitcc5efb2320d8d029ff735608ef6815db292cca2c (patch)
treebeac3f06d1a230d87de27d3eff3482dd2bdd061a /buch/papers/punktgruppen/crystals.tex
parentsave (diff)
parentMerge pull request #75 from Nunigan/master (diff)
downloadSeminarMatrizen-cc5efb2320d8d029ff735608ef6815db292cca2c.tar.gz
SeminarMatrizen-cc5efb2320d8d029ff735608ef6815db292cca2c.zip
Merge remote-tracking branch 'upstream/master' into Baer
Diffstat (limited to 'buch/papers/punktgruppen/crystals.tex')
-rw-r--r--buch/papers/punktgruppen/crystals.tex22
1 files changed, 11 insertions, 11 deletions
diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex
index 42008e1..4b93927 100644
--- a/buch/papers/punktgruppen/crystals.tex
+++ b/buch/papers/punktgruppen/crystals.tex
@@ -18,7 +18,7 @@ Glücklicherweise ist das Innere eines Kristalles relativ einfach definiert.
Ein zweidimensionales Beispiel eines solchen Muster ist Abbildung \ref{fig:punktgruppen:lattice}.
Für die Überschaubarkeit haben wir ein simples Motiv eines einzelnen grauen Punktes dargestellt und betrachten dies nur in zwei Dimensionen.
Die eingezeichneten Vektoren \(\vec{a}_1\) und \(\vec{a}_2\) sind die kleinstmöglichen Schritte im Raum bis sich das Kristallgitter wiederholt.
-Wird ein beliebiger grauer Gitterpunkt in \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von \(\vec{a}_1\) und \(\vec{a}_2\) verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort.
+Wird ein beliebiger grauer Gitterpunkt in Abbildung \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von \(\vec{a}_1\) und \(\vec{a}_2\) verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort.
Im dreidimensionalen Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor \(\vec{c}\) also
\[
\vec{r} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = \sum_i n_i \vec{a}_i
@@ -39,7 +39,7 @@ können wir auch sagen, dass alle Verschiebungen um eine Linearkombination
der Vektoren $\vec{a}_1$ , $\vec{a}_2$ und $\vec{a}_3$ erlaubt sind.
Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich grossen Kristallgittern besteht.
-\subsection{Limitierte Kristallsymmetrien} \label{txt:punktgruppen:Translationssymmetrie}
+\subsection{Einschränkungen durch Kristallsymmetrien} \label{sec:punktgruppen:Translationssymmetrie}
Die Translationssymmetrie ist wohl keine grosse Überraschung, wenn man die Abbildung \ref{fig:punktgruppen:lattice} betrachtet.
Was nicht direkt ersichtlich ist, ist dass bei beliebigen Grundvektoren nicht beliebige Symmetrien erstellt werden können.
Dies weil die Translationssymmetrie eines Kristalles weitere Symmetrien deutlich einschränkt.
@@ -53,7 +53,7 @@ Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich g
\label{fig:punktgruppen:rot-geometry}
\end{figure}
-\begin{satz}
+\begin{satz} \label{thm:punktgruppen:crystal-restriction}
Die Rotationssymmetrien eines Kristalls sind auf 2-fach, 3-fach, 4-fach und 6-fach beschränkt.
Mit anderen Worten: Es sind nur Drehwinkel von
0\(^{\circ}\),
@@ -87,7 +87,7 @@ Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich g
Wir beginnen, indem wir die Länge der Verschiebung \(|\vec{Q}| = Q\) setzen und \(|\vec{Q}'| = Q'\).
Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass \(Q' = Q + 2x\).
Da \(\vec{Q}\) eine Translation um ein Grundvektor ist , muss \(\vec{Q}'\) ein ganzes Vielfaches von \(\vec{Q}\) sein.
- Demnach auch die Länge
+ Demnach ist auch die Länge
\[
Q' = nQ = Q + 2x .
\]
@@ -95,12 +95,12 @@ Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich g
\[
nQ = Q + 2Q\sin(\alpha - \pi/2) .
\]
- Wir können durch \(Q\) dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht,
+ Wir können durch \(Q\), dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht,
da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangiert.
- Zusätzlich können wir den Sinusterm vereinfachen.
+ Zusätzlich können wir den Sinusterm vereinfachen. Somit wird
\[
- n = 1 - 2\cos\alpha \quad\iff\quad
- \alpha = \cos^{-1}\left(\frac{1-n}{2}\right)
+ n = 1 - 2\cos\alpha \quad\text{oder}\quad
+ \alpha = \cos^{-1}\left(\frac{1-n}{2}\right).
\]
Dies schränkt die möglichen Rotationssymmetrien auf
\(
@@ -144,10 +144,10 @@ Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:kristallklas
Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:kristallklassen} zu sehen sind.
\begin{itemize}
\item In Kristallen ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\) zu finden.
- Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher in der Kristallographie nicht relevant.
- \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen.
+ Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nach Satz \ref{thm:punktgruppen:crystal-restriction} nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher in der Kristallographie nicht relevant.
+ \item Dank Abschnitt \ref{sec:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen.
Ist im Subskript eine Zahl \(n\) zu finden, steht dies für eine \(n\)-fache Symmetrie.
- Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} keine mögliche Rotationssymmetrie eines Kristalles ist.
+ Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen, da \(360^\circ/5 = 72^\circ\) was nach Satz \ref{thm:punktgruppen:crystal-restriction} keine mögliche Rotationssymmetrie eines Kristalles ist.
\item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse.
Für die folgenden Betrachtungen müssen wir uns Abbildung \ref{fig:punktgruppen:kristallklassen} genauer ansehen.
Dabei ist mit horizontal flach auf dem Papier gemeint.