aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/punktgruppen/symmetry.tex
diff options
context:
space:
mode:
authorJODBaer <JODBaer@github.com>2021-07-26 14:15:57 +0200
committerJODBaer <JODBaer@github.com>2021-07-26 14:15:57 +0200
commit9356db2fc0d95e60043c6ce62fa906964869cae2 (patch)
treef3cf93ea263d777c2396ee5e21369ec99868d53b /buch/papers/punktgruppen/symmetry.tex
parentupdate (diff)
parentMerge pull request #45 from NaoPross/master (diff)
downloadSeminarMatrizen-9356db2fc0d95e60043c6ce62fa906964869cae2.tar.gz
SeminarMatrizen-9356db2fc0d95e60043c6ce62fa906964869cae2.zip
Merge commit '56443dfc2486e08b0ed3bf8ecc61c9ad8a83e213' into Baer
Diffstat (limited to 'buch/papers/punktgruppen/symmetry.tex')
-rw-r--r--buch/papers/punktgruppen/symmetry.tex239
1 files changed, 99 insertions, 140 deletions
diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex
index 1dc6f98..0bb4aec 100644
--- a/buch/papers/punktgruppen/symmetry.tex
+++ b/buch/papers/punktgruppen/symmetry.tex
@@ -1,175 +1,134 @@
\section{Symmetrie}
Das Wort Symmetrie ist sehr alt und hat sich seltsamerweise von seinem
-ursprünglichen griechischen Wort
-\(\mathrm{\Sigma\nu\mu\mu\varepsilon\tau\rho\iota\alpha}\)
-\footnote{\emph{Symmetr\'ia}: ein gemeinsames Mass habend, gleichmässig,
-verhältnismässig} fast nicht verändert. In der Alltagssprache mag es ein
-locker definierter Begriff sein, aber in der Mathematik hat Symmetrie eine sehr
-präzise Bedeutung.
+ursprünglichen griechischen Wort \(\mathrm{\Sigma\upsilon\mu\mu\varepsilon\tau\rho\iota\alpha}\)\footnote{\emph{Symmetr\'ia}: ein gemeinsames Mass habend, gleichmässig,verhältnismässig} fast nicht verändert.
+In der Alltagssprache mag es ein locker definierter Begriff sein, in der Mathematik hat Symmetrie jedoch eine sehr präzise Bedeutung.
\begin{definition}[Symmetrie]
- Ein mathematisches Objekt wird als symmetrisch bezeichnet, wenn es unter einer
- bestimmten Operation invariant ist.
+ Ein mathematisches Objekt wird als symmetrisch bezeichnet, wenn es unter einer bestimmten Operation invariant ist.
\end{definition}
-Die intuitivsten Beispiele kommen aus der Geometrie, daher werden wir mit
-einigen geometrischen Beispielen beginnen. Wie wir jedoch später sehen werden,
-ist das Konzept der Symmetrie eigentlich viel allgemeiner.
+Die intuitivsten Beispiele kommen aus der Geometrie, daher werden wir mit einigen geometrischen Beispielen beginnen.
+Wie wir jedoch später sehen werden, ist das Konzept der Symmetrie eigentlich viel allgemeiner.
\begin{figure}
- \centering
- \includegraphics{papers/punktgruppen/figures/symmetric-shapes}
- \caption{
- Beispiele für geometrisch symmetrische Formen.
- \label{fig:punktgruppen:geometry-example}
- }
+ \centering
+ \includegraphics{papers/punktgruppen/figures/symmetric-shapes}
+ \caption{
+ Beispiele für geometrisch symmetrische Formen.
+ \label{fig:punktgruppen:geometry-example}
+ }
\end{figure}
\subsection{Geometrische Symmetrien}
-In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen,
-die offensichtlich symmetrisch sind. Zum Beispiel hat das Quadrat eine Gerade, an
-deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. Regelmässige
-Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete
-Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um
-einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert
-lässt. Das letzte Beispiel auf der rechten Seite ist eine unendliche
-Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für
-\(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Dies ist
-hoffentlich ausreichend, um die Bedeutung hinter der Notation zu verstehen, die
-nun eingeführt wird.
-
-% Vieleicht eine kurze Einführung in für die Definition, ich habe das gefühl, dass in der Definition die Symmetrie-Operation und die Gruppe auf einmal erklährt wird
-\subsubsection{Symetriegruppe}
-\texttt{TODO: review this paragraph, explain what is \(\mathds{1}\).}
+In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind.
+Zum Beispiel hat das Quadrat eine Gerade, an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern.
+Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt.
+Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen.
Ein Objekt kann mehr als nur eine Symmetrie aufweisen.
-Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example}
-nicht nur um $\sigma$ sondern auch Diagonal gespiegelt werden oder um $90^\circ$ gedreht werden.
-Fässt man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe.
+Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch Diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden.
+Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe.
\begin{definition}[Symmetriegruppe]
- Sei \(g\) eine Operation, die ein mathematisches Objekt unverändert lässt.
- Bei einer anderen Operation \(h\) definieren wir die Komposition \(h\circ g\)
- als die Anwendung der Operationen nacheinander. Alle Operationen bilden unter
- Komposition eine Gruppe, die Symmetriegruppe genannt wird.
-\end{definition} % ich lese diese Definition ein wenig holprig, vieleicht können wir sie zusammen anschauen
+ \(g\) und \(h\) sein umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen.
+ Die Komposition \(h\circ g\) definieren wir als die Anwendung der Operationen nacheinander.
+ Alle möglichen Operationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird.
+\end{definition}
+
+Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen.
+Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen.
+\(\mathds{1}\) ist auch äquivalent dazu, eine Operation anzuwenden und sie dann rückgängig zu machen (ihre Inverse anzuwenden).
+ Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, es wird aber auch oft als Multiplikation geschrieben.
+Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird.
+Die Verwendung einer multiplikativen Schreibweise ermöglicht es, einige Ausdrücke kompakter zu schreiben, z.B.
+durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine wiederholte Komposition.
-% Nach meinem Geschmack könne es hier auch eine einleitung wie mein Beispiel geben dammit man den Text flüssiger lesen kann
\begin{definition}[Zyklische Untergruppe, Erzeuger]
- Sei \(g\) ein Element einer Symmetriegruppe \(G\). Alle möglichen
- Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische
- Untergruppe von \(G\), und \(g\) wird ihr Erzeuger genannt. Die erzeugte
- Untergruppe \(\langle g \rangle\) wird mit spitzen Klammern um den Erzeuger
- bezeichnet.
+ \(g\) sei ein Element einer Symmetriegruppe \(G\).
+ Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische Untergruppe von \(G\), wobei \(g\) Erzeuger der Untergruppe genannt wird.
+ Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}\) wird mit spitzen Klammern bezeichnet.
\end{definition}
+\begin{beispiel}
+ Um die Syntax zu verstehen, betrachten wir eine durch \(a\) erzeugte Gruppe \(G = \langle a \rangle\).
+ Das bedeutet, dass \(G\) die Elemente \(a, aa, aaa, \ldots\) sowie \(a^{-1}, a^{-1}a^{-1}, \ldots\) und ein neutrales Element \(\mathds{1} = aa^{-1}\) enthält.
+\end{beispiel}
+\begin{beispiel}
+ Als anschaulicheres Beispiel, können wir eine Zyklische Untergruppe des \(n\)-Gon formalisieren.
+ Wir bezeichnen mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\) um einen Punkt.
+ Diese Definition reicht aus, um die gesamte Symmetriegruppe
+ \[
+ C_n = \langle r \rangle
+ = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\}
+ \]
+ der Drehungen eines \(n\)-Gons zu erzeugen.
+ Das liegt daran, dass wir durch die mehrfache Verwendung von \(r\) jeden Winkel erzeugen k\"onnen, der die Rotationssymmetrie bewahrt.
+ In ähnlicher Weise, aber weniger interessant enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\).
+\end{beispiel}
-Mit dem oben Gesagten können wir das \(n\)-Gon Beispiel formalisieren.
-Bezeichnen wir mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\)
-um einen Punkt. Diese Definition reicht aus, um die gesamte Symmetriegruppe
-\[
- C_n = \langle r \rangle
- = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\}
-\]
-der Drehungen eines \(n\)-Gons zu definieren. Das liegt daran,
-dass wir durch die mehrfache Verwendung von \(r\) jeden Winkel erzeugen, der
-die Rotationssymmetrie bewahrt. Hier die Potenzen von \(r\) sind als
-wiederholte Komposition gemeint, dass heisst \(r^n = r\circ r \circ \cdots
-r\circ r\). Wenn wir diese Idee nun erweitern, können wir mit einem
-Erzeugendensystemen komplexere Strukturen aufbauen.
+Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystemen
+komplexere Strukturen aufbauen.
\begin{definition}[Erzeugendensysteme]
- % please fix this unreadable mess
- Jede Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden.
- Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer
- Symmetriegruppe sein. Da es mehrere Erzeuger gibt, müssen auch die
- sogenannte Definitionsgleichungen gegeben werden, die die
- Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls
- in den Klammern angegeben. Die erzeugende Elementen zusammen mit der
- Definitionsgleichungen bauen ein Erzeugendensysteme.
+ Jede disktrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden.
+ Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein.
+ Da es mehrere Erzeuger gibt, müssen auch die sogenannte Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren.
+ Die Gleichungen sind ebenfalls in den Klammern angegeben.
+ Die erzeugende Elementen zusammen mit der Definitionsgleichungen bauen ein Erzeugendensysteme.
\end{definition}
+\begin{beispiel}
+ Wir werden nun alle Symmetrien eines \(n\)-Gons beschreiben, was bedeutet, dass wir die Operationen \(r\) und \(\sigma\) kombinieren.
+ Die Definitionsgleichungen sind \(r^n = \mathds{1}\), \(\sigma^2 = \mathds{1}\) und \((\sigma r)^2 = \mathds{1}\).
+ Die ersten beiden sind ziemlich offensichtlich.
+ Die letzte wird oft auch als Inversion bezeichnet, weil die Anwendung von \(\sigma r\) dasselbe ist wie das Ziehen einer Linie von einem Punkt, die durch den Ursprung geht, und das Verschieben des Punktes auf die andere Seite des Nullpunkts.
+ Wenn man dies zweimal macht, geht man zurück zum Anfangspunkt.
+ Daraus ergibt sich die so genannte Diedergruppe
+ \begin{align*}
+ D_n &= \langle r, \sigma : r^n = \sigma^2 = (\sigma r)^2 = \mathds{1} \rangle \\
+ &= \left\{
+ \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1}
+ \right\}.
+ \end{align*}
+\end{beispiel}
-\texttt{TODO: should put examples for generators?} \\
-
-Die Reflexionssymmetriegruppe ist nicht so interessant, da sie nur
-\(\left\{\mathds{1}, \sigma\right\}\) enthält. Kombiniert man sie jedoch mit
-der Rotation, erhält man die so genannte Diedergruppe
-\[
- D_n = \langle r, \sigma : r^{n-1} = \sigma^2 = (\sigma r)^2 = \mathds{1} \rangle
- = \left\{
- \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1}
- \right\}.
-\]
-
-Die Symmetrieoperationen, die wir bis jetzt besprochen haben, haben immer
-mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird. Im
-Fall der Rotation war es der Drehpunkt, bei der Spiegelung die Punkte der
-Spiegelachse. Dies ist jedoch keine Voraussetzung für eine Symmetrie, da es
-Symmetrien gibt, die jeden Punkt zu einem anderen Punkt verschieben können.
-Diesen Spezialfall, bei dem mindestens ein Punkt unverändert bleibt, nennt man
-Punktsymmetrie.
+Die Symmetrieoperationen, die wir bis jetzt besprochen haben, haben immer mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird.
+Im Fall der Rotation war es der Drehpunkt, bei der Spiegelung die Punkte der Spiegelachse.
+Dies ist jedoch keine Voraussetzung für eine Symmetrie, da es Symmetrien gibt, die jeden Punkt zu einem anderen Punkt verschieben können.
+ Diesen Spezialfall, bei dem immer mindestens ein Punkt unverändert bleibt, nennt man Punktsymmetrie.
\begin{definition}[Punktgruppe]
- Wenn jede Operation in einer Symmetriegruppe die Eigenschaft hat, mindestens
- einen Punkt unverändert zu lassen, sagt man, dass die Symmetriegruppe eine
- Punktgruppe ist.
+ Wenn es einen Punkt gibt, der von jeder Gruppenoperation unverändert gelassen wird, ist die Symmetriegruppe eine Punktgruppe.
\end{definition}
\subsection{Algebraische Symmetrien}
-Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich
-möglich ist, Gleichungen zu schreiben. Die naheliegende Frage ist dann, könnte
-es sein, dass wir bereits etwas haben, das dasselbe tut? Natürlich, ja.
+Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich möglich ist, Gleichungen zu schreiben.
+Die anschliesende Frage ist dann, ob wir bereits mathematische Objekte haben, mit denen wir Gleichungen schreiben, die sich auf die gleiche Weise verhalten.
+Die Antwort lautet natürlich ja.
Um es formaler zu beschreiben, werden wir einige Begriffe einführen.
\begin{definition}[Gruppenhomomorphismus]
- Seien \(G\) und \(H\) Gruppe mit unterschiedlicher Operation \(\diamond\)
- bzw. \(\star\). Ein Homomorphismus\footnote{ Für eine ausführlichere
- Diskussion siehe \S\ref{buch:grundlagen:subsection:gruppen} im Buch.} ist
- eine Funktion \(f: G \to H\), so dass für jedes \(a, b \in G\) gilt
- \(f(a\diamond b) = f(a) \star f(b)\). Man sagt, dass der Homomorphismus
- \(f\) \(G\) in \(H\) transformiert.
+ \(G\) und \(H\) seien Gruppen mit unterschiedlichen Operationen \(\diamond\) bzw.
+ \(\star\).
+ Ein Homomorphismus\footnote{ Für eine ausführlichere Diskussion siehe \S\ref{buch:grundlagen:subsection:gruppen} im Buch.} ist eine Funktion \(f: G \to H\), so dass für jedes \(a, b \in G\) gilt \(f(a\diamond b) = f(a) \star f(b)\).
+ Man sagt, dass der Homomorphismus \(f\) \(G\) in \(H\) transformiert.
\end{definition}
\begin{beispiel}
- Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen
- Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht perfekt dem
- komplexen Einheitskreis. Der Homomorphismus \(\phi: C_\infty \to \mathbb{C}\)
- ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben.
+ Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht perfekt dem komplexen Einheitskreis.
+ Der Homomorphismus \(\phi: C_\infty \to \mathbb{C}\) ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben.
\end{beispiel}
\begin{definition}[Darstellung einer Gruppe]
- Die Darstellung einer Gruppe ist ein Homomorphismus, der eine Symmetriegruppe
- auf eine Menge von Matrizen abbildet.
- \[
- \Phi: G \to \operatorname{GL}_n(\mathbb{R}).
- \]
- Äquivalent kann man sagen, dass ein Element aus der Symmetriegruppe auf einen
- Vektorraum \(V\) wirkt, indem man definiert \(\Phi : G \times V \to V\).
+ Die Darstellung einer Gruppe ist ein Homomorphismus, der eine Symmetriegruppe auf eine Menge von Matrizen abbildet.
+ \[
+ \Phi: G \to \operatorname{GL}_n(\mathbb{R}).
+ \]
+ Äquivalent kann man sagen, dass ein Element aus der Symmetriegruppe auf einen Vektorraum \(V\) wirkt, indem man definiert \(\Phi : G \times V \to V\).
\end{definition}
\begin{beispiel}
- Die Elemente \(r^k \in C_n\), wobei \(0 < k < n\), stellen abstrakt eine
- Drehung von \(2\pi k/n\) um den Ursprung dar. Die mit der Matrix
- \[
- \Phi(r^k) = \begin{pmatrix}
- \cos(2\pi k/n) & -\sin(2\pi k/n) \\
- \sin(2\pi k/n) & \cos(2\pi k/n)
- \end{pmatrix}
- \]
- definierte Funktion von \(C_n\) nach \(O(2)\) ist eine Darstellung von
- \(C_n\). In diesem Fall ist die erste Gruppenoperation die Komposition und
- die zweite die Matrixmultiplikation. Man kann überprüfen, dass \(\Phi(r^2
- \circ r) = \Phi(r^2)\Phi(r)\).
+ Die Elemente \(r^k \in C_n\), wobei \(0 < k < n\), stellen abstrakt eine Drehung von \(2\pi k/n\) um den Ursprung dar.
+ Die mit der Matrix
+ \[
+ \Phi(r^k) = \begin{pmatrix}
+ \cos(2\pi k/n) & -\sin(2\pi k/n) \\
+ \sin(2\pi k/n) & \cos(2\pi k/n)
+ \end{pmatrix}
+ \]
+ definierte Funktion von \(C_n\) nach \(O(2)\) ist eine Darstellung von \(C_n\).
+ In diesem Fall ist die erste Gruppenoperation die Komposition und die zweite die Matrixmultiplikation.
+ Man kann überprüfen, dass \(\Phi(r^2 \circ r) = \Phi(r^2)\Phi(r)\).
\end{beispiel}
-
-\texttt{TODO: rewrite section on translational symmetry.}
-%% TODO: title / fix continuity
-% Um das Konzept zu illustrieren, werden wir den umgekehrten Fall diskutieren:
-% eine Symmetrie, die keine Punktsymmetrie ist, die aber in der Physik sehr
-% nützlich ist, nämlich die Translationssymmetrie. Von einem mathematischen
-% Objekt \(U\) wird gesagt, dass es eine Translationssymmetrie \(Q(x) = x + a\)
-% hat, wenn es die Gleichung
-% \[
-% U(x) = U(Q(x)) = U(x + a),
-% \]
-% für ein gewisses \(a\), erfüllt. Zum Beispiel besagt das erste Newtonsche
-% Gesetz, dass ein Objekt, auf das keine Kraft einwirkt, eine
-% zeitranslationsinvariante Geschwindigkeit hat, d.h. wenn \(\vec{F} = \vec{0}\)
-% dann \(\vec{v}(t) = \vec{v}(t + \tau)\).
-
-% \subsection{Sch\"onflies notation}
-
-% vim:ts=2 sw=2 spell spelllang=de: