aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/reedsolomon/decohnefehler.tex
diff options
context:
space:
mode:
authormichael-OST <75078383+michael-OST@users.noreply.github.com>2021-06-24 18:47:13 +0200
committermichael-OST <75078383+michael-OST@users.noreply.github.com>2021-06-24 18:47:13 +0200
commitfa0d3a4ead1df4b8587035b8b62b42375f970ba9 (patch)
treed2575681d3ad1aff5fa8ea4b6665ef13b0bbc9f2 /buch/papers/reedsolomon/decohnefehler.tex
parentMerge branch 'AndreasFMueller:master' into master (diff)
downloadSeminarMatrizen-fa0d3a4ead1df4b8587035b8b62b42375f970ba9.tar.gz
SeminarMatrizen-fa0d3a4ead1df4b8587035b8b62b42375f970ba9.zip
all files updated and corrected
Diffstat (limited to 'buch/papers/reedsolomon/decohnefehler.tex')
-rw-r--r--buch/papers/reedsolomon/decohnefehler.tex115
1 files changed, 103 insertions, 12 deletions
diff --git a/buch/papers/reedsolomon/decohnefehler.tex b/buch/papers/reedsolomon/decohnefehler.tex
index 3b709f3..0470db0 100644
--- a/buch/papers/reedsolomon/decohnefehler.tex
+++ b/buch/papers/reedsolomon/decohnefehler.tex
@@ -5,7 +5,7 @@
%
\section{Decodierung: Ansatz ohne Fehler
\label{reedsolomon:section:decohnefehler}}
-\rhead{fehlerlose rekonstruktion}
+\rhead{Decodierung ohne Fehler}
In diesem Abschnitt betrachten wie die Überlegung, wie wir auf der Empfängerseite die Nachricht aus dem empfangenen Übertragungsvektor erhalten. Nach einer einfachen Überlegung müssen wir den Übertragungsvektor decodieren, was auf den ersten Blick nicht allzu kompliziert sein sollte, solange wir davon ausgehen können, dass es während der Übertragung keine Fehler gegeben hat. Wir betrachten deshalb den Übertragungskanal als fehlerfrei.
@@ -33,7 +33,7 @@ Definiert ist sie als
\[
F(\omega) = \int_{-\infty}^{\infty} f(t) \mathrm{e}^{-j\omega t} dt \qquad \Rightarrow \qquad \mathfrak{F}^{-1}(F(\omega)) = f(t) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) \mathrm{e}^{j \omega t} d\omega.
\]
-Damit beschäftigen wir uns im Abschnitt \ref{reedsolomon:subsection:algdec} weiter, konkret suchen wir momentan aber eine Inverse für unsere primitive Einheitswurzel $a$.
+Damit beschäftigen wir uns im Abschnitt \ref{reedsolomon:subsection:sfaktor} weiter, konkret suchen wir momentan aber eine Inverse für unsere primitive Einheitswurzel $a$.
\[
8^1 \qquad \rightarrow \qquad 8^{-1}
\]
@@ -45,7 +45,7 @@ Mit einem solchen Problem haben wir uns bereits in Abschnitt \ref{buch:section:e
\subsection{Inverse der primitiven Einheitswurzel
\label{reedsolomon:subsection:invEinh}}
-Die Funktionsweise des euklidischen Algorithmus ist im Kapitel \ref{buch:section:euklid} ausführlich beschrieben.
+Die Funktionsweise des euklidischen Algorithmus ist im Abschnitt \ref{buch:section:euklid} ausführlich beschrieben.
Für unsere Anwendung wählen wir die Parameter $a = 8$ und $b = 11$ ($\mathbb{F}_{11}$).
Daraus erhalten wir
@@ -76,21 +76,112 @@ Daraus erhalten wir
\end{tabular}
\end{center}
-als Inverse der primitiven Einheitswurzel. Die inverse Transformationsmatrix $A^{-1}$ bilden wir indem wir jetzt die inverse primitive Einheitswurzel anstelle der primitiven Einheitswurzel in die Matrix einsetzen.
+als Inverse der primitiven Einheitswurzel. Die inverse Transformationsmatrix $A^{-1}$ bilden wir, indem wir jetzt die inverse primitive Einheitswurzel anstelle der primitiven Einheitswurzel in die Matrix einsetzen:
+\[
+\begin{pmatrix}
+ 8^0 & 8^0 & 8^0 & 8^0 & \dots & 8^0 \\
+ 8^0 & 8^{-1} & 8^{-2} & 8^{-3} & \dots & 8^{-9} \\
+ 8^0 & 8^{-2} & 8^{-4} & 8^{-6} & \dots & 8^{-18} \\
+ 8^0 & 8^{-3} & 8^{-6} & 8^{-9} & \dots & 8^{-27} \\
+ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
+ 8^0 & 8^{-9} & 8^{-18} & 8^{-27} & \dots & 8^{-81} \\
+\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+\begin{pmatrix}
+ 7^0 & 7^0 & 7^0 & 7^0 & \dots & 7^0 \\
+ 7^0 & 7^{1} & 7^{2} & 7^{3} & \dots & 7^{9} \\
+ 7^0 & 7^{2} & 7^{4} & 7^{6} & \dots & 7^{18} \\
+ 7^0 & 7^{3} & 7^{6} & 7^{9} & \dots & 7^{27} \\
+ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
+ 7^0 & 7^{9} & 7^{18} & 7^{27} & \dots & 7^{81} \\
+\end{pmatrix}
+\]
-\subsection{Allgemeine Decodierung
- \label{reedsolomon:subsection:algdec}}
+\subsection{Der Faktor $s$
+ \label{reedsolomon:subsection:sfaktor}}
+Die diskrete Fouriertransformation benötigt für die Inverse einen Vorfaktor von $\frac{1}{2\pi}$.
+Primitiv nehmen wir an, dass wir für die Inverse Transformationsmatrix ebenfalls einen benötigen.
+Nur stellt sich jetzt die Frage, wie wir diesen Vorfaktor in unserem Fall ermitteln können.
+Dafür betrachten wir eine Regel aus der Linearen Algebra, nämlich dass
-Wir haben jetzt fast alles für eine erfolgreiche Rücktransformation beisammen. Wir haben aber noch nicht alle Aspekte der inversen diskreten Fouriertransformation befolgt, so fehlt uns noch einen Vorfaktor
\[
-m = \textcolor{red}{s} \cdot A^{-1} \cdot v
+A \cdot A^{-1} = E
+\]
+entsprechen muss.
+Ist dies nicht der Fall, so benötigt $A^{-1}$ eben genau diesen Korrekturfaktor und ändert die Gleichung so zu
+\begin{equation}
+ A \cdot s \cdot A^{-1} = E.
+ \label{reedsolomon:equation:sfaktor}
+\end{equation}
+%\[
+%A \cdot s \cdot A^{-1} = E.
+%\]
+Somit sollte es für uns ein leichtes Spiel sein, $s$ für unser Beispiel zu ermitteln:
+\[
+\begin{pmatrix}
+ 8^0 & 8^0 & 8^0 & \dots & 8^0 \\
+ 8^0 & 8^1 & 8^2 & \dots & 8^9 \\
+ 8^0 & 8^2 & 8^4 & \dots & 8^{18} \\
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
+ 8^0 & 8^9 & 8^{18} & \dots & 8^{81} \\
+\end{pmatrix}
+\cdot
+\begin{pmatrix}
+ 7^0 & 7^0 & 7^0 & \dots & 7^0 \\
+ 7^0 & 7^{1} & 7^{2} & \dots & 7^{9} \\
+ 7^0 & 7^{2} & 7^{4} & \dots & 7^{18} \\
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
+ 7^0 & 7^{9} & 7^{18} & \dots & 7^{81} \\
+\end{pmatrix}
+=
+\begin{pmatrix}
+ 10 & 0 & 0 & \dots & 0 \\
+ 0 & 10 & 0 & \dots & 0 \\
+ 0 & 0 & 10 & \dots & 0 \\
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
+ 0 & 0 & 0 & \dots & 10 \\
+\end{pmatrix}
\]
-den wir noch bestimmen müssen.
-Glücklicherweise lässt der sich analog wie bei der inversen diskreten Fouriertransformation bestimmen und beträgt
+Aus der letzten Matrix folgt, dass wir
\[
-s = \frac{1}{10}.
+s = \dfrac{1}{10}
\]
-Da $\frac{1}{10} = 10^{-1}$ entspricht können wir $s$ ebenfalls mit dem euklidischen Algorithmus bestimmen und stellen fest, dass $10^{-1} = 10$ in $\mathbb{F}_{11}$ ergibt. Somit lässt sich der Nachrichtenvektor einfach bestimmen mit
+als unseren Vorfaktor setzen müssen um die Gleichung \ref{reedsolomon:equation:sfaktor} zu erfüllen. Da wir in $\mathbb{F}_{11}$ nur mit ganzen Zahlen arbeiten schreiben wir $\frac{1}{10}$ in $10^{-1}$ um und bestimmen diese Inverse erneut mit dem euklidischen Algorithmus und erhalten für $10^{-1} = 10$ als unseren Vorfaktor in $\mathbb{F}_{11}$.
+%
+%erfüllt wird. Wir schreiben den Bruch um in $\frac{1}{10} = 10^{-1}$ und wenden darauf erneut den euklidischen Algorithmus an und erhalten somit den Vorfaktor $10^{-1} = 10 = s$ in $\mathbb{F}_{11}$.
+%
+%Um $s$ eindeutig zu bestimmen müssen wir $\frac{1}{10}$ nur noch in den Bereich von $\mathbb{F}_{11}$ verschieben. Wie sich herausstellt können wir das recht einfach bewerkstelligen, da $\frac{1}{10} = 10^{-1}$ entspricht. Daraus können wir $s$ mit dem euklidischen Algorithmus bestimmen und stellen fest, dass $10^{-1} = 10$ in $\mathbb{F}_{11}$ ergibt.
+%
+%Da $s$ jetzt ein Bruch ist brauchen wir ihn nur noch in $\mathbb{F}_{11}$ zu schieben. Praktischerweise können wir $\frac{1}{10} = 10^{-1}$ darstellen
+%
+%Da $\frac{1}{10} = 10^{-1}$ entspricht können wir $s$ ebenfalls mit dem euklidischen Algorithmus bestimmen und stellen fest, dass $10^{-1} = 10$ in $\mathbb{F}_{11}$ ergibt.
+%
+%Daher nehmen wir an, dass wir für die Inverse Transformationsmatrix ebenfalls ein solcher Vorfaktor benötigen. Dieser Faktor hat seinen Ursprung in der Gleichung
+%\[
+%A \cdot A^{-1} = E.
+%\]
+%Sollte diese Gleichung nicht aufgehen, so muss die Inverse mit
+\subsection{Allgemeine Decodierung
+ \label{reedsolomon:subsection:algdec}}
+
+Wir haben jetzt alles für eine erfolgreiche Rücktransformation vom empfangenen Nachrichtenvektor beisammen. Die allgemeine Gleichung für die Rücktransformation lautet
+\[
+m = s \cdot A^{-1} \cdot v.
+\]
+Setzen wir nun die Werte ein in
+%
+%Wir haben aber noch nicht alle Aspekte der inversen diskreten Fouriertransformation befolgt, so fehlt uns noch einen Vorfaktor
+%\[
+%m = \textcolor{red}{s} \cdot A^{-1} \cdot v
+%\]
+%den wir noch bestimmen müssen.
+%Glücklicherweise lässt der sich analog wie bei der inversen diskreten Fouriertransformation bestimmen und beträgt
+%\[
+%s = \frac{1}{10}.
+%\]
+%Da $\frac{1}{10} = 10^{-1}$ entspricht können wir $s$ ebenfalls mit dem euklidischen Algorithmus bestimmen und stellen fest, dass $10^{-1} = 10$ in $\mathbb{F}_{11}$ ergibt. Somit lässt sich der Nachrichtenvektor einfach bestimmen mit
\[
m = 10 \cdot A^{-1} \cdot v \qquad \Rightarrow \qquad m = 10 \cdot \begin{pmatrix}
7^0& 7^0& 7^0& 7^0& 7^0& 7^0& 7^0& 7^0& 7^0& 7^0\\