diff options
author | JODBaer <JODBaer@github.com> | 2021-04-22 16:01:46 +0200 |
---|---|---|
committer | JODBaer <JODBaer@github.com> | 2021-04-22 16:01:46 +0200 |
commit | 38d0c69842308be5f096375ff070c5233b395c4c (patch) | |
tree | af3de114649bb9ab45fc506012a8b13501fd49cd /buch/papers | |
parent | Merge branch 'Steiner' into Baer (diff) | |
download | SeminarMatrizen-38d0c69842308be5f096375ff070c5233b395c4c.tar.gz SeminarMatrizen-38d0c69842308be5f096375ff070c5233b395c4c.zip |
kleine korrekturen
Diffstat (limited to '')
-rw-r--r-- | buch/papers/reedsolomon/RS presentation/RS.tex | 45 |
1 files changed, 26 insertions, 19 deletions
diff --git a/buch/papers/reedsolomon/RS presentation/RS.tex b/buch/papers/reedsolomon/RS presentation/RS.tex index eecd66b..618121c 100644 --- a/buch/papers/reedsolomon/RS presentation/RS.tex +++ b/buch/papers/reedsolomon/RS presentation/RS.tex @@ -19,14 +19,18 @@ \begin{frame}[plain] \maketitle \end{frame} - \section{Einführung} +%------------------------------------------------------------------------------- +\section{Einführung} \begin{frame} \frametitle{Einführung} \begin{itemize} \item Reed-Solomon-Code beschäftigt sich mit der Übertragung von Daten und deren Fehler Erkennung. + \item Wird verwendet in: + \only<2>{CD, QR-Codes, Voyager-Sonde, etc.} \end{itemize} \end{frame} +%------------------------------------------------------------------------------- \section{Polynom Ansatz} \begin{frame} Beispiel 2, 1, 5 Versenden und auf 2 Fehler absichern. @@ -50,7 +54,7 @@ \includegraphics[scale = 1.2]{images/polynom2.pdf} \textcolor{green}{7} Zahlen versenden, um \textcolor{blue}{3} Zahlen gegen \textcolor{red}{2} Fehlern abzusichern.} \end{frame} - +%------------------------------------------------------------------------------- \begin{frame} \frametitle{Parameter} \begin{center} @@ -59,20 +63,24 @@ "Nutzlast" & Fehler & Versenden \\ \hline 3 & 2 & 7 Werte eines Polynoms vom Grad 2 \\ - 4 & 2 & 8 Werte eines Polynoms vom Grad 3 \\ - 3 & 2 & 7 Werte eines Polynoms vom Grad 2 \\ + 4 & 2 & 8 Werte eines Polynoms vom Grad 3 \\ +\only<2->{3}& +\only<2->{2}& +\only<2->{7 Werte eines Polynoms vom Grad 2} \\ &&\\ - k & t & k+2t Werte eines Polynoms vom Grad k-1 \\ +\only<3->{k} & +\only<3->{t} & +\only<3->{k+2t Werte eines Polynoms vom Grad k-1} \\ \hline &&\\ &&\\ - &Ausserdem können bis zu 2t Fehler erkannt werden!\\ + \multicolumn{3}{l} { + \only<4>{Ausserdem können bis zu 2t Fehler erkannt werden!} + } \end{tabular} - \end{center} - - - + \end{center} \end{frame} +%------------------------------------------------------------------------------- \section{Diskrete Fourier Transformation} \begin{frame} \frametitle{Idee} @@ -81,7 +89,7 @@ \item Danach Empfangen und Rücktransformieren. \end{itemize} \end{frame} - +%------------------------------------------------------------------------------- \begin{frame} \begin{figure} \only<1>{ @@ -107,8 +115,7 @@ } \end{figure} \end{frame} - - +%------------------------------------------------------------------------------- \begin{frame} \frametitle{Diskrete Fourier Transformation} Die Diskrete Fourier Transformation ist so gegeben: @@ -117,8 +124,8 @@ \hat{c}_{k} = \frac{1}{N} \sum_{n=0}^{N-1} {f}_n \cdot e^{-\frac{2\pi j}{N} \cdot kn} - \]. - + \] + Ersetzten als: \[ w = e^{-\frac{2\pi j}{N} k} \] @@ -128,14 +135,14 @@ \] \end{frame} - +%------------------------------------------------------------------------------- \begin{frame} \frametitle{Diskrete Fourier Transformation} \[ \begin{pmatrix} \hat{c}_1 \\\hat{c}_2 \\\hat{c}_3 \\ \vdots \\\hat{c}_n \end{pmatrix} - = + = \frac{1}{N} \begin{pmatrix} w^0 & w^0 & w^0 & \dots &w^0 \\ w^0 & w^1 &w^2 & \dots &w^N \\ @@ -152,7 +159,7 @@ \end{pmatrix} \] \end{frame} - +%------------------------------------------------------------------------------- \section{Probleme und Fragen} \begin{frame} \frametitle{Probleme und Fragen} @@ -163,7 +170,7 @@ Indem in einem Endlichen Körper gerechnet wird. } \end{frame} - +%------------------------------------------------------------------------------- \begin{frame} \frametitle{Reed-Solomon in Endlichen Körpern} |