diff options
author | Nao Pross <np@0hm.ch> | 2021-08-06 13:38:46 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2021-08-06 13:38:46 +0200 |
commit | 8f906697fbe2f35756537e95e034ae8f88f8f026 (patch) | |
tree | 14b6294672a1d5a4bcd1e9f51256efc243190ed8 /buch/papers | |
parent | Fix last two sentences (diff) | |
download | SeminarMatrizen-8f906697fbe2f35756537e95e034ae8f88f8f026.tar.gz SeminarMatrizen-8f906697fbe2f35756537e95e034ae8f88f8f026.zip |
Corrections from feedback
Diffstat (limited to 'buch/papers')
-rw-r--r-- | buch/papers/punktgruppen/crystals.tex | 2 | ||||
-rw-r--r-- | buch/papers/punktgruppen/intro.tex | 4 | ||||
-rw-r--r-- | buch/papers/punktgruppen/piezo.tex | 2 | ||||
-rw-r--r-- | buch/papers/punktgruppen/symmetry.tex | 27 |
4 files changed, 18 insertions, 17 deletions
diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 45761f8..4b93927 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -145,7 +145,7 @@ Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:kristallklas \begin{itemize} \item In Kristallen ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\) zu finden. Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nach Satz \ref{thm:punktgruppen:crystal-restriction} nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher in der Kristallographie nicht relevant. - \item Dank Abschintt \ref{sec:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. + \item Dank Abschnitt \ref{sec:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. Ist im Subskript eine Zahl \(n\) zu finden, steht dies für eine \(n\)-fache Symmetrie. Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen, da \(360^\circ/5 = 72^\circ\) was nach Satz \ref{thm:punktgruppen:crystal-restriction} keine mögliche Rotationssymmetrie eines Kristalles ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index 0a0cc86..e3f0226 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -1,7 +1,7 @@ \section{Einleitung} Es gibt viele Möglichkeiten sich in Kristallen zu verlieren. -Auch wenn man nur die mathematischen Betrachtungsweisen berücksichtigt, hat man noch viel zu viele Optionen sich mit Kristallen zu beschäftigen. +Auch wenn man nur die mathematischen Betrachtungsweisen berücksichtigt, hat man noch viel zu viele Optionen, sich mit Kristallen zu beschäftigen. In diesem Kapitel wird daher der Fokus ``nur'' auf die Symmetrie gelegt. Zu Beginn werden wir zeigen, was eine Symmetrie ausmacht und dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. Die vorgestellten Symmetrien sind äusserst gut geeignet, um die Grundeigenschaften eines Kristalles zu beschreiben. @@ -10,7 +10,7 @@ Diese erlauben alle möglichen Kristalle nach ihren Symmetrien in erstaunlich we Kategorien sind nicht nur für einen besseren Überblick nützlich, sondern kann man aus ihnen auch auf physikalische Eigenschaften schliessen. Als spannendes Beispiel: Die Piezoelektrizität. Piezoelektrizität beschreibt einen Effekt, ohne welchen diverse Altagsgegenständen nicht besonders nützlich wären. -Wie zum Beispiel sorgt er in den allermeisten Feuerzeugen für die Zündung. +Zum Beispiel sorgt er in den allermeisten Feuerzeugen für die Zündung. Hiermit ist hoffentlich ein Funken Interesse geweckt um sich mit dem scheinbar trivialen Thema der Symmetrie auseinander zu setzten. %% vim:linebreak breakindent showbreak=.. spell spelllang=de: diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index 334e4e7..1cf9b98 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -73,5 +73,5 @@ Drückt der Nutzende auf den Zündknopf, spannt sich eine Feder bis zu einer kon Drückt der Nutzende stärker zu, entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, welcher auf das Piezoelement aufschlägt. Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so kurze aber hohe elektrische Spannung. Die Spannung reicht aus, um eine Funkenstrecke zu überwinden und so eine entflammbares Gas zu entzünden. -Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass der eine eine Punktsymmetrie aufweist, empfiehlt es sich, sich am anderen zu versuchen. +Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass der eine eine Punktsymmetrie aufweist, empfiehlt es sich, sich mit dem anderen zu versuchen. diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 51620a4..4a8d911 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -20,11 +20,11 @@ Wie wir jedoch später sehen werden, ist das Konzept der Symmetrie eigentlich vi \subsection{Geometrische Symmetrien} In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind. -Zum Beispiel hat das Quadrat eine Gerade, an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. +Zum Beispiel hat das Quadrat eine Gerade, an der es gespiegelt werden kann, ohne sein Aussehen zu verändern. Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt. -Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. +Das letzte Beispiel auf der rechts ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Ein Objekt kann mehr als nur eine Symmetrie aufweisen. -Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. +Zum Beispiel kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] @@ -45,7 +45,7 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine \begin{definition}[Zyklische Untergruppe, Erzeuger] Sei \(g\) ein Element einer Symmetriegruppe \(G\). Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische Untergruppe von \(G\), wobei \(g\) Erzeuger der Untergruppe genannt wird. - Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}\) wird mit spitzen Klammern bezeichnet. + Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \{ g^k : k \in \mathbb{Z} \}\) wird mit spitzen Klammern bezeichnet. \end{definition} \begin{beispiel} Um die Syntax zu verstehen, betrachten wir eine durch \(a\) erzeugte Gruppe \(G = \langle a \rangle\). @@ -57,11 +57,11 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine Diese Definition reicht aus, um die gesamte Symmetriegruppe \[ C_n = \langle r \rangle - = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\} + = \{\mathds{1}, r, r^2, \ldots, r^{n-1}\} \] der Drehungen eines \(n\)-Gons zu erzeugen. Das liegt daran, dass wir durch die mehrfache Verwendung von \(r\) jeden Winkel erzeugen k\"onnen, der die Rotationssymmetrie bewahrt. - In ähnlicher Weise, aber weniger interessant enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). + In ähnlicher Weise, aber weniger interessant, enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). \end{beispiel} Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystem @@ -70,7 +70,7 @@ komplexere Strukturen aufbauen. %@Naoki Are you ok with my grammar fixes I'm not 101% shore how to use the word Erzeugendensystem? \begin{definition}[Erzeugendensystem] Jede diskrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. - Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein. + Wir lassen \(g_1, g_2, g_3, \ldots\) erzeugenden Elemente einer Symmetriegruppe sein. Da es mehrere Erzeuger gibt, müssen auch die sogenannten Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls in den Klammern angegeben. Die erzeugenden Elementen bauen zusammen mit den Definitionsgleichungen ein Erzeugendensystem. @@ -84,10 +84,10 @@ komplexere Strukturen aufbauen. Daraus ergibt sich die so genannte Diedergruppe \begin{align*} D_n &= \langle r, \sigma : r^n = \sigma^2 = (\sigma r)^2 = \mathds{1} \rangle \\ - &= \left\{ + &= \{ \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1} - \right\}. - \end{align*} \qedhere + \}. \qedhere + \end{align*} \end{beispiel} Die Symmetrieoperationen, die wir bis jetzt besprochen haben, haben immer mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird. @@ -115,11 +115,12 @@ Um es formaler zu beschreiben, werden wir einige Begriffe einführen. \end{beispiel} \begin{definition}[Darstellung einer Gruppe] - Die Darstellung einer Gruppe ist ein Homomorphismus, der eine Symmetriegruppe auf eine Menge von Matrizen abbildet. + Die Darstellung einer Gruppe ist ein Homomorphismus \[ - \Phi: G \to \operatorname{GL}_n(\mathbb{R}). + \Phi: G \to \operatorname{GL}_n(\mathbb{R}), \] - Äquivalent kann man sagen, dass ein Element aus der Symmetriegruppe auf einen Vektorraum \(V\) wirkt, indem man definiert \(\Phi : G \times V \to V\). + der eine Symmetriegruppe auf eine Menge von Matrizen abbildet. + Äquivalent kann man sagen, dass ein Element aus der Symmetriegruppe auf einen Vektorraum \(V\) wirkt, indem man \(\Phi : G \times V \to V\) definiert. \end{definition} \begin{beispiel} Die Elemente \(r^k \in C_n\), wobei \(0 < k < n\), stellen abstrakt eine Drehung von \(2\pi k/n\) um den Ursprung dar. |