aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-08-08 12:46:06 +0200
committerGitHub <noreply@github.com>2021-08-08 12:46:06 +0200
commit77782bc2d67f44291e5b729930815b6c65b994bc (patch)
treec83b2c1322bb48c6d3a7f573942bc213dea706ba /buch/papers
parentadd image to reedsolomon (diff)
parentfehlendes bild (diff)
downloadSeminarMatrizen-77782bc2d67f44291e5b729930815b6c65b994bc.tar.gz
SeminarMatrizen-77782bc2d67f44291e5b729930815b6c65b994bc.zip
Merge pull request #77 from Kuehnee/master
Munkres-MarcKuehne-request-20210808
Diffstat (limited to 'buch/papers')
-rw-r--r--buch/papers/munkres/figures/Ungarische_Methode_Beispiel.pngbin1179631 -> 485941 bytes
-rw-r--r--buch/papers/munkres/main.tex2
-rw-r--r--buch/papers/munkres/teil1.tex8
-rw-r--r--buch/papers/munkres/teil3.tex52
4 files changed, 19 insertions, 43 deletions
diff --git a/buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png b/buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png
index fb4d061..242db77 100644
--- a/buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png
+++ b/buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png
Binary files differ
diff --git a/buch/papers/munkres/main.tex b/buch/papers/munkres/main.tex
index e5282dc..201e70b 100644
--- a/buch/papers/munkres/main.tex
+++ b/buch/papers/munkres/main.tex
@@ -13,8 +13,6 @@
\input{papers/munkres/teil1.tex}
\input{papers/munkres/teil2.tex}
\input{papers/munkres/teil3.tex}
-\input{papers/munkres/teil4.tex}
-\input{papers/munkres/teil5.tex}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/munkres/teil1.tex b/buch/papers/munkres/teil1.tex
index 3bec61d..a0cc739 100644
--- a/buch/papers/munkres/teil1.tex
+++ b/buch/papers/munkres/teil1.tex
@@ -45,13 +45,13 @@ a_{21}&a_{22}&\dots &a_{2n}\\
a_{n1}&a_{n2}&\dots &a_{nn}
\end{pmatrix}
\]
-
-$A$ $\mathbb{\in}$ $\mathbb{R}^{n,n}$ kann der Faktor Kosten mit in die Rechnung eingebracht werden.
+
+$A$ $\mathbb{\in}$ $\mathbb{R}^{n,n}$
+
+kann der Faktor Kosten mit in die Rechnung eingebracht werden.
In der Zelle dieser Matrix sind $a_{i,j}$ Zahlen dargestellt, welche den Weg in z.B. Kilometer beschreiben.
Sie entstehen, wenn man z.B. einem Kran $i$ den Einsatzort $j$ zuordnet.
-Die oben ersichtliche Matrix $A$ besitzt Matrix-Elemente. Die Elemente einer Matrix vom Typ $(n,n)$ mit Namen $A$ sind $a_{ij}$ wobei $i$ = 1,..., $n$ ist und $j$ = 1,...,$n$. $a_{ij}$ ist der Eintrag in der $i$-ten Zeile und $j$-ten Spalte der Matrix . Zum Beispiel ist a21 das Element der 2. Zeile und 1. Spalte. $i$ wird auch der Zeilenindex, $j$ der Spaltenindex genannt.
-
\subsection{Alternative Darstellungen des Zuordnungsproblems
\label{munkres:subsection:bonorum}}
\subsubsection{Netzwerk}
diff --git a/buch/papers/munkres/teil3.tex b/buch/papers/munkres/teil3.tex
index 964444c..692bfdf 100644
--- a/buch/papers/munkres/teil3.tex
+++ b/buch/papers/munkres/teil3.tex
@@ -41,53 +41,28 @@ Es gibt Fälle, in welchen das Ausgangsproblem keine quadratische Form besitzt.
\subsection{Beispiel eines händischen Verfahrens
\label{munkres:subsection:malorum}}
-Die ungarische Methode kann in einem einfachen händischen Beispiel erläutert werden. Es gibt eine Ausgangsmatrix. Diese Matrix wird in mehreren Schritten immer weiter reduziert. Anschließend erfolgen mehrere Zuordnungen. Hierbei ist zu beachten, dass jede Zeile und jede Spalte immer genau eine eindeutige Zuordnung ergibt. Die optimale Lösung ist erreicht, wenn genau $n$ Zuordnungen gefunden sind. Das Vorgehen wird in den nachfolgenden Schritten 1-16 beschrieben und auch in der Abbildung 21.5 dargestellt.
+Die ungarische Methode kann in einem einfachen händischen Beispiel erläutert werden. Es gibt eine Ausgangsmatrix. Diese Matrix wird in mehreren Schritten immer weiter reduziert. Anschließend erfolgen mehrere Zuordnungen. Hierbei ist zu beachten, dass jede Zeile und jede Spalte immer genau eine eindeutige Zuordnung ergibt. Es gibt Situationen, in denen man nichts mehr tun muss, um eine optimale Zuordnung zu finden. Eine optimale Zuordnung ohne zusätzliche Kosten ist eine Auswahl genau eines Feldes in jeder Zeile und Spalte, welches 0 enthält. Das Ziel des Algorithmus ist also, die Matrix so zu ändern, dass genügend Nullen in der Matrix vorkommen. Es ist zudem wichtig, dass man nach jeder Modifikation der Matrix testet, ob man bereits eine Zuordnung machen kann, also genügend Nullen hat.
+Das Vorgehen wird in den nachfolgenden Schritten 1-6 beschrieben und auch in der Abbildung 21.5 dargestellt.
\begin{enumerate}
-\item Pro Zeile eruiert man die kleinste Zahl. Diese kleinste Zahl wird bei
-allen anderen Ziffern in der jeweiligen Zeile subtrahiert. Mit dieser Subtraktion zieht man die unvermeidbaren Kosten ab, die man hat, um eine Baustelle zu erreichen.
+\item Man beginnt mit der Zeilen-Reduktion. Pro Zeile eruiert man die kleinste Zahl. Diese kleinste Zahl, jeweils in rot markiert, wird bei allen anderen Ziffern in der jeweiligen Zeile subtrahiert. Mit dieser Subtraktion zieht man die unvermeidbaren Kosten ab, die man hat, um eine Baustelle zu erreichen. Man erkennt, dass die Nullen mit zwei Linien abdeckbar sind. Das heisst es gibt 2 Spalten bei denen noch keine Zuordnungen möglich sind.
-\item Auch in diesem Schritt werden die unvermeidbaren Weg-Kosten abgezogen. Man zieht die kleinste Zahl in jeder Spalte von allen Zahlen in der Spalte ab.
+\item Auch im zweiten Schritt werden mittels der Spalten-Reduktion die unvermeidbaren Weg-Kosten abgezogen. Man zieht die kleinste Zahl, wiederum in rot markiert, in jeder Spalte von allen Zahlen in der Spalte ab.
+Die Nullen können somit mit 3 Linien abgedeckt werden. Im Idealfall hat die Matrix in jeder Zeile und Spalte bereits genügend viele Nullen, so dass man bereits eine Zuordnung ohne Mehrkosten machen kann. Dies ist jedoch noch nicht der Fall. Es sollen weitere Nullen in die Matrix hineingebracht werden.
-\item Bei den nachfolgenden Schritten bleiben dann nur noch die Kosten übrig, die man hat, wenn man eine andere Zuordnung wählt. Hierbei sollen möglichst viele Nullen markiert werden, welche freistehend sind.
-(Freistehend bedeutet, sowohl in der jeweiligen Zeile und Spalte nur
-eine markierte Null zu haben)
+\item Es bleiben jetzt einige Felder übrig, für die noch keine Zuordnung möglich ist. Die kleinste Ziffer wird dabei aus den noch nicht mit blau markierten Zahlen ausgewählt werden. Im Beispiel ist es die Zahl 1. Das Feld mit dem kleinsten Eintrag beinhaltet die Kosten, die unvermeidlich sind, wenn man für diese Felder auch noch eine Zuordnung machen will. Um neue Nullen zu bekommen, lagert man jetzt die Kosten auf die anderen Zeilen und Spalten um. Dies tut man, indem man in allen nicht abgedeckten Feldern die minimalen Kosten subtrahiert und in den blau markierten Kreuzungspunkten dazu addiert.
-\item Weiter werden die jeweiligen Zeilen eruiert, bei welchen keine markierte Null vorhanden sind. Diese kennzeichnet man mit einer blauen Fläche.
+\item in Schritt 4 sollen jetzt möglichst viele Nullen markiert werden, welche freistehend sind.
+Freistehend bedeutet, dass sowohl in der jeweiligen Zeile und Spalte keine andere markierte Null vorhanden ist.
-\item In der vorherigen, mit blauer Fläche markierten Zeile die 0 eruieren und dann die dazugehörige Spalte ebenfalls
-blau markieren.
+\item Alle markierten Nullen werden jetzt in eine 1 umgewandelt. Die restlichen Ziffern in der Matrix, exklusiv die einsen, sollen jetzt ignoriert und durch eine Null ersetzt werden.
-\item Im der selben Spalte die markierte Null eruieren und die dazugehörige
-Zeile ebenfalls blau kennzeichnen.
-
-\item Alle Zeilen mit einem gelben Balken durchstreichen, welche KEINE blauen Markierungen haben.
-
-\item Alle Spalten durchstreichen, welche eine Blaue Markierung besitzt!
-
-\item In den übrigen Zahlen soll nun die kleinste Ziffer ausgewählt werden, welche nicht schon durchgestrichen sind.
-(Im Beispiel ist es die Zahl 1 in rot markiert. (Bei diesem Schritt ist es egal, welche 1 man wählt)
-
-\item Die eruierte kleinste Ziffer, wird von den nicht durchgestrichenen Ziffern
-subtrahiert. Danach muss die Matrix wieder komplettiert werden. (inkl. Unterstreichen der Nullen)
-
-\item Jeweilige Zahlen eruieren, welche vorgängig doppelt mit einer gelben Fläche durchgestrichen wurden.
-
-\item Kleinste eruierte Ziffer aus Schritt 9, soll nun auf die zwei in rot markierten Ziffern aus Schritt 11 dazu addiert werden.
-
-\item In diesem Schritt sollen wiederum von neuem möglichst viele Nullen markiert werden,
-welche freistehend sind. Es werden nur die markierten Nullen betrachtet.
-
-\item Alle markierten Nullen werden jetzt in eine 1 umgewandelt.
-
-\item Die restlichen Ziffern in der Matrix, exklusiv die einsen, sollen jetzt ignoriert und durch eine Null ersetzt werden.
-
-\item Zu guter Letzt werden überall wo eine 1 steht, die Zahlen aus der Ausgangsmatrix eingefügt. Nach Einsetzen der Zahlen können die in rot markierten Zahlen aufsummiert werden. Es ergibt der minimalste Transportweg. Im erwähnten Beispiel sind es total 13 Kilometer.
+\item Zu guter Letzt werden überall wo eine 1 steht, die Zahlen aus der Ausgangsmatrix eingefügt. Nach Einsetzen der Zahlen können die in rot markierten Zahlen aufsummiert werden. Man erhält den minimalsten Transportweg von total 13 Kilometer.
\end{enumerate}
\begin{figure}
\centering
-\includegraphics[width=14cm]{papers/munkres/figures/Ungarische_Methode_Beispiel.png}
+\includegraphics[width=8cm]{papers/munkres/figures/Ungarische_Methode_Beispiel.png}
\caption{Händisches Beispiel des Munkres Algorithmus, minimalster Transportweg.}
\label{munkres:Vr2}
\end{figure}
@@ -95,6 +70,7 @@ welche freistehend sind. Es werden nur die markierten Nullen betrachtet.
\subsection{Zuordnung der Kräne
\label{munkres:subsection:malorum}}
+Als Resultat des Munkres-Algorithmus kann man jetzt die folgende Zuordnung aus der Matrix ablesen:
\begin{itemize}
\item Der Kran von Baustelle A1 soll zur Baustelle B2.
\item Der Kran von Baustelle A2 soll zur Baustelle B3.
@@ -107,4 +83,6 @@ welche freistehend sind. Es werden nur die markierten Nullen betrachtet.
\includegraphics[width=3cm]{papers/munkres/figures/Ungarische_Methode_Beispiel_Zuw.png}
\caption{Händisches Beispiel des Munkres Algorithmus, Zuweisung der Kräne }
\label{munkres:Vr2}
-\end{figure} Wie in Abbildung 21.6 ersichtlich, kann somit dank der Ungarischen Methode sowohl der minimalste Transportweg als auch die optimalste Zuweisung der Kräne auf die neuen Standorte ermittelt werden. \ No newline at end of file
+\end{figure}
+
+In Abbildung 21.6 ist nebst dem minimalsten Transportweg auch ersichtlich, wie die optimalste Zuweisung der Kräne auf die neuen Standorte erfolgen soll. \ No newline at end of file