aboutsummaryrefslogtreecommitdiffstats
path: root/buch
diff options
context:
space:
mode:
authorLukaszogg <82384106+Lukaszogg@users.noreply.github.com>2021-07-20 17:19:47 +0200
committerLukaszogg <82384106+Lukaszogg@users.noreply.github.com>2021-07-20 17:19:47 +0200
commit07e868a4275c0cecd4d743e9bd0c1e4f2b7c7be1 (patch)
treeb46f2c324e2cf6895e50ee388e87c6ba1c030f25 /buch
parentMerge pull request #40 from paschost/patch-1 (diff)
downloadSeminarMatrizen-07e868a4275c0cecd4d743e9bd0c1e4f2b7c7be1.tar.gz
SeminarMatrizen-07e868a4275c0cecd4d743e9bd0c1e4f2b7c7be1.zip
Korrektur und Anpassungen
Diffstat (limited to '')
-rw-r--r--buch/papers/erdbeben/teil0.tex47
-rw-r--r--buch/papers/erdbeben/teil1.tex78
2 files changed, 75 insertions, 50 deletions
diff --git a/buch/papers/erdbeben/teil0.tex b/buch/papers/erdbeben/teil0.tex
index 8ac5d6d..844245c 100644
--- a/buch/papers/erdbeben/teil0.tex
+++ b/buch/papers/erdbeben/teil0.tex
@@ -6,16 +6,29 @@
\section{Teil 0\label{erdbeben:section:teil0}}
\rhead{Erdbeben}
\section{Erdbebenmessung}
-\subsection{Was ist ein Erdbeben}
-Fabio
+subsection{Was ist ein Erdbeben?}
+Für das Verständnis möchten wir zuerst erklären, was ein Erdbeben genau ist.
+Das soll uns helfen, eine Verknüpfung zwischen dem Naturphänomen und der mathematischen Problemstellung herzustellen.
+
+Unter einem Erdbeben verstehen wir eine Erschütterung des Erdkörpers.
+Dabei reiben zwei tektonische Platten aneinander, welche sich durch die Gesteinsverzahnung gegenseitig blockieren.
+Aufgrund dieser Haftreibung entstehen Spannungen, die sich immer mehr bis zum Tipping Point aufbauen.
+Irgendwann ist der Punkt erreicht, in dem die Scherfestigkeit der Gesteine überwunden wird.
+Wenn dies passiert, entlädt sich die aufgebaute Spannung und setzt enorme Energien frei, die wir als Erdbeben wahrnehmen.
+
+Ein Erdbeben breitet sich vom Erdbebenherd in allen Richtungen gleich aus.
+Vergleichbar ist, wenn man einen Stein in einen Teich wirft und die Wellen beobachten kann, die sich ausbreiten.
+
\subsection{Funktion eines Seismograph}
Um ein Erdbeben kenntlich zu machen, werden in der Regel Seismographen mit vielen Sensoren verwendet.
-Ein Seismograph besteht im Grunde aus einer federgelagerten Masse. Wirkt eine Bodenerregung auf das Gerät ein, bleibt die gekoppelte Masse stehen aber das Gehäuse schwingt mit.
+Ein Seismograph besteht im Grunde aus einer federgelagerten Masse. Wirkt eine Bodenerregung auf das Gerät ein, schwing das Gehäuse und dadurch auch die gekoppelte Masse.
+Stoppt das Erdbeben, schwingt das Gehäuse nicht mehr.
+Die Masse schwing jedoch in seiner Eigendynamik weiter.
Relativbewegung des Bodens kann damit als Auslenkung im Zeitverlauf gemessen werden.
In modernen Seismographen wird die Bodenbewegung in alle Richtungen gemessen, sowohl Horizontal als auch Vertikal.
-Wir konstruieren uns eine einfachere Version eines Seismographen mit eine Gehäuse, an dem zwei Federn und eine Masse befestigt ist.
+Wir konstruieren uns eine einfachere Version eines Seismographen mit eine Gehäuse, an dem zwei Federn und eine Masse befestigt sind.
Ein Sensor unter der Masse misst die Position, bzw. die Auslenkung der Feder und der Masse.
-Dies bedeutet unser Seismograph kann nur in eine Dimension Messwerte aufnehmen.
+Dies bedeutet, unser Seismograph kann nur in eine Dimension Messwerte aufnehmen.
\begin{figure}
\begin{center}
@@ -30,7 +43,7 @@ Wir wollen jedoch die Beschleunigung $a(t)$ des Boden bzw. die Kraft $f(t)$ welc
Anhand dieser Beschleunigung bzw. der Krafteinwirkung durch die Bodenbewegung wird später das Bauwerk bemessen.
Dies bedeutet, die für uns interessante Grösse $f(t)$ wird nicht durch einen Sensor erfasst.
Jedoch können wir durch zweifaches ableiten der Positionsmessung $s(t)$ die Beschleunigung der Masse berechnen.
-Das heisst: Die Messung ist zweifach Integriert die Kraft $f(t)$ + der Eigendynamik der Masse.
+Das heisst: Die Messung ist zweifach Integriert die Kraft $f(t)$ inklusive der Eigendynamik der Masse.
Um die Bewegung der Masse zu berechnen, müssen wir Gleichungen für unser System finden.
\subsection{Systemgleichung}
@@ -40,21 +53,21 @@ Diese lautet:
m\ddot s + 2k \dot s + Ds = f
\end{equation}
mit den Konstanten $m$ = Masse, $k$ = Dämpfungskonstante und $D$ = Federkonstante.
-Um diese nun in die Systemmatrix umzuwandeln, wird die Differentialgleichung zweiter Ordnung substituiert:
-\[ {x_1}=s \qquad
-{x_2}=\dot s, \qquad\]
-Somit entstehen die Gleichungenür die Position $s(t)$ der Masse :
-\[ \dot {x_1} = {x_2}\]
+Da die DGL linear ist, kann sie in die kompaktere und einfachere Matrix-Form umgewandelt werden. Dazu wird die Differentialgleichung zweiter Ordnung substituiert:
+\[ {s_1}=s \qquad
+{s_2}=\dot s, \qquad\]
+Somit entstehen die Gleichungen für die Position $s(t)$ der Masse :
+\[ \dot {s_1} = {s_2}\]
und
-\[ \dot x_2 = -\frac{D}{m} {x_1} -\frac{2k}{m} {x_2} + \frac{f} {m} \] für die Geschwindigkeit $v(t)$ der Masse.
+\[ \dot s_2 = -\frac{D}{m} {s_1} -\frac{2k}{m} {s_2} + \frac{f} {m} \] für die Beschleunigung $a(t)$ der Masse.
Diese können wir nun in der Form
-\[ {x_3}=-\frac{D}{m} {s_1} -\frac{2k}{m} {s_2} + \frac{f} {m} \]
+\[ {s_3}=-\frac{D}{m} {s_1} -\frac{2k}{m} {s_2} + \frac{f} {m} \]
auch als Matrix-Vektor-Gleichung darstellen.
Dafür wird die Gleichung in die Zustände aufgeteilt.
Die für uns relevanten Zustände sind die Position der Masse, die Geschwindigkeit der Masse und die äussere Beschleunigung des ganzen System.
Dabei muss unterschieden werden, um welche Beschleunigung es sich handelt.
-Das System beinhaltet sowohl eine Beschleunigung der Masse (innere Beschleunigung), als auch eine Beschleunigung der ganzen Apparatur (äussere Beschleunigung).
+Das System beinhaltet sowohl eine Beschleunigung der Masse, innere Beschleunigung, als auch eine Beschleunigung der ganzen Apparatur, äussere Beschleunigung.
In unserem Fall wird die äusseren Beschleunigung gesucht, da diese der Erdbebenanregung gleich kommt.
\begin{equation}
\frac{d}{dt} \left(\begin{array}{c} {s_1} \\ {s_2} \end{array}\right) = \left(
@@ -70,11 +83,13 @@ Durch Rücksubstituion ergibt sich:
\begin{array}{ccc}
0 & 1& 0 \\
- \frac{D}{m} &-\frac{2k}{m} & \frac{1} {m}\\
+0 & 0 & 0\\
\end{array}\right) \left(\begin{array}{c} s(t)\\ v(t)\\ f(t) \end{array}\right).
\end{equation}
Wir wissen nicht wie sich die Kraft verhält.
-Deshalb treffen wir die Annahme, das sich die Kraft über die Beobachtungszeit nicht verändert.
-Diese unzutreffende Annahme wird später durch einen grossen Systemfehler kompensiert.
+Deshalb treffen wir die Annahme, das sich die Kraft über die Beobachtungszeit nicht verändert.
+Diese Annahme ist nicht zulässig, jedoch ist dies das beste, was wir Annehmen können.
+Diese unzutreffende Annahme wird späteren Berechnungen berücksichtigen werden
Da die Kraft unbekannt ist, wird die letzte Zeile mit Nullen gefüllt, denn genau diese Werte wollen wir.
diff --git a/buch/papers/erdbeben/teil1.tex b/buch/papers/erdbeben/teil1.tex
index 52872f6..e07800f 100644
--- a/buch/papers/erdbeben/teil1.tex
+++ b/buch/papers/erdbeben/teil1.tex
@@ -15,7 +15,7 @@
\section{Kalman-Filter}
Da wir die äussere Kraft nicht direkt messen können, benötigen wir ein Werkzeug, welches aus der gemessenen Position, die Krafteinwirkung auf unsere System schätzt.
-Dies ist eine Typische Anwendung für den linearen Kalman-Filter.
+Dies ist eine typische Anwendung für das Kalman-Filter.
Unser Ziel ist es, anhand der Messung die eigentlich interessante Grösse $f$ zu bestimmen.
Dabei wird durch eine deterministische Vorhersage, in dem der Zustand * Eigendynamik des Systems gerechnet.
Die Idee dahinter ist, dass das Kalman-Filter die nicht-deterministische Grösse $f$ anhand der Messung und der Vorhersage zu bestimmen.
@@ -27,7 +27,9 @@ Für ein nicht-lineares System werden Extended Kalman-Filter benötigt, bei dene
Einfachheitshalber beschränken wir uns auf den linearen Fall, da dadurch die wesentlichen Punkte bereits aufgezeigt werden.
\subsection{Geschichte}
-Das Kalman-Filter wurde 1960 von Rudolf Emil Kalman entdeckt und direkt von der NASA für die Appollo Mission benutzt. Der Filter kommt mit wenig Rechenleistung aus und war somit dafür geeignet die Rakete bei der Navigation zu unterstützen. Das Filter schätzt den Zustand eines Systems anhand von Messungen und kann den nächsten Zustand errechnen. Eine typische Anwendungen des Kalman-Filters ist Glättung von verrauschten Daten und die Schätzung von Parametern. Dies kommt heutzutage in jedem Satellit, Navigationssystem, Smartphones und Videospielen vor.
+Das Kalman-Filter wurde 1960 von Rudolf Emil Kalman entdeckt und direkt von der NASA für die Appollo Mission benutzt.
+Das Filter kommt mit wenig Rechenleistung aus und war somit dafür geeignet die Rakete bei der Navigation zu unterstützen.
+Das Filter schätzt den Zustand eines Systems anhand von Messungen und kann den nächsten Zustand errechnen. Eine typische Anwendungen des Kalman-Filters ist Glättung von verrauschten Daten und die Schätzung von Parametern. Dies kommt heutzutage in jedem Satellit, Navigationssystem, Smartphones und Videospielen vor.
\subsection{Wahrscheinlichkeit}
Das Kalman-Filter schätzt den wahrscheinlichsten Wert zwischen Normalverteilungen.
@@ -80,7 +82,7 @@ Sie ist also gewichtet und die best mögliche Schätzung.
\end{figure}
-Was in 2 Dimensionen erklärt wurde, funktioniert auch in mehreren Dimensionen.
+Was in zwei Dimensionen erklärt wurde, funktioniert auch in mehreren Dimensionen.
Dieses Prinzip mach sich das Kalman Filter zu nutze, und wird von uns für die Erdbeben Berechnung genutzt.
\section{Filter-Matrizen}
@@ -105,7 +107,7 @@ Kovarianz: Cov(x, y) und Varianz: Var(x) = Cov(x, x)
In unserem Fall ist der Anfangszustand gut bekannt.
Wir gehen davon aus, dass das System in Ruhe und in Abwesenheit eines Erdbeben startet, somit kann die Matrix mit Nullen bestückt werden.
-Als Initialwert für die für die Kovarianzmatrix ergibt sich
+Als Initialwert für die Kovarianzmatrix ergibt sich
\[
{P_0 }=
@@ -127,7 +129,7 @@ Das Kalman-Filter benötigt für die Vorhersage des nächsten Zustandes eine Bes
Die Dynamikmatrix bildet den Kern des Filters. Diese wurde weiter oben bereits beschrieben.
Dabei wollen wird die äussere Kraft des Systems ermitteln.
Da nichts über die äussere Kraft bekannt ist, müssen wir annehmen das deren Ableitung 0 ist.
-Die System Vektor-Gleichung lautet daher:
+Die System-Matrix lautet daher:
\[
A = \left(
\begin{array}{ccc}
@@ -139,10 +141,12 @@ A = \left(
Dabei soll der Kalman-Filter in diskreten Zeitschritten $\Delta t$ arbeiten.
Die Übergangs-Matrix erhalten wir aus der Systemdynamikmatrix mittels Exponentialfunktion:
\[\Phi = \exp(A\Delta t). \]
+Die Matrix $\Phi$ beschreibt die Übergänge zwischen zeitlich aufeinanderfolgenden Zuständen $x_{k-1}$ und $x_{k}$
\subsubsection*{Prozessrauschkovarianzmatrix $Q$}
Die Prozessrauschmatrix teilt dem Filter mit, wie sich der Prozess verändert.
-Kalman-Filter berücksichtigen Unsicherheiten wie Messfehler und -rauschen.
+Kalman-Filter berücksichtigen sowohl Unsicherheiten wie Messfehler und -rauschen.
+In der Matrix $Q$ geht es jedoch im die Unsicherheit die der Prozess mit sich bringt.
Bei unserem Modell könnte das beispielsweise ein Windstoss an die Masse sein.
Für uns wäre dies:
\[
@@ -158,22 +162,23 @@ Die Standabweichungen müssten statistisch ermittelt werden, da der Fehler nicht
Das Bedeutet wiederum dass $Q$ die Unsicherheit des Prozesses beschreibt und nicht die der Messung.
\subsubsection*{Messmatrix $H$}
-Die Messmatrix gibt an, welche Parameter gemessen werden
+Die Messmatrix gibt an, welche Parameter gemessen werden.
+$H$ ist die Gleichung die für die Vorhersage der Messung.
In unserem Falle ist es die Position der Massen.
\[ H = (1, 0, 0) \]
\subsubsection*{Messrauschkovarianz $R$}
-Die Messrauschkovarianzmatrix beinhaltet, wie der Name es schon sagt, das Rauschen der Positionsmessung.
+Die Messrauschkovarianzmatrix beinhaltet, wie der Name schon sagt, das Rauschen der Messung.
In unserem Fall wird nur die Position der Masse gemessen. Da wir keine anderen Sensoren haben ist $R$ lediglich:
\[ R= ({\sigma_{sensor}}^2).
\]
Diese Messrauchen wird meistens vom Sensorhersteller angegeben.
-Für unsere Theoretische Apparatur wird hier ein kleiner Fehler eingesetzt da heutige Sensoren sehr genau messen können.
+Für unsere theoretische Apparatur wird hier ein kleiner Fehler eingesetzt da heutige Sensoren sehr genau messen können.
\subsection{Fiter-Agorithmus}
Nachdem alle Parameter aufgestellt sind, wird das Filter initialisiert.
-Zuerst wird der nächste Zustand der Feder vorhergesagt, danach wird die Messung präzisiert und laufend zu aktualisieren.
+Zuerst wird der nächste Zustand der Masse vorhergesagt, danach wird die Messung präzisiert und laufend aktualisiert.
Das Filter berechnet aufgrund der aktuellen Schätzung eine Vorhersage.
Diese wird, sobald verfügbar, mit der Messung verglichen.
Aus dieser Differenz und den Unsicherheiten des Prozesses ($Q$) und der Messung ($R$) wird der wahrscheinlichste, neue Zustand geschätzt.
@@ -182,14 +187,14 @@ Aus dieser Differenz und den Unsicherheiten des Prozesses ($Q$) und der Messung
Im Filterschritt Vorhersage wird der nächste Zustand anhand des Anfangszustand und der Systemmatrix berechnet.
Dies funktioniert mit dem Rechenschritt:
\[
-{x_{k|k-1}}=\Phi \cdot {x_{k-1|k-1}}= \exp(A\Delta t)\cdot{x_{k|k-1}}.
+{x_{k-1}}=\Phi \cdot {x_{k-1}}= \exp(A\Delta t)\cdot{x_{k-1}}.
\]
Die Kovarianz $P_{pred}$ wird ebenfalls neu berechnet. Da wir ein mehrdimensionales System haben, kommt noch die Prozessunsicherheit $Q$ dazu, so dass die Unsicherheit des Anfangsfehlers $P$ laufend verändert.
Dies funktioniert durch multiplizieren der Systemmatrix mit dem aktualisierten Anfangsfehler.
Dazu wird noch die Prozessunsicherheit addiert, somit entsteht die Gleichung
-\[ {P_{k|k-1}} = {\Phi_k} {P_{k-1|k-1}} {\Phi_k} ^T + {Q_{k-1}} .\]
-Es vergeht genau $dt$ Zeit, und dieser Vorgang wird wiederholt.
+\[ {P_{k-1}} = {\Phi_k} {P_{k-1}} {\Phi_k} ^T + {Q_{k-1}} .\]
+Es vergeht genau $t$ Zeit, und dieser Vorgang wird wiederholt.
Dabei wird in den späteren Schritten überprüft, wie genau die letzte Anpassung von $P$ zur Messung stimmt.
Ist der Unterschied klein, wird die Kovarianz $P$ kleiner, ist der Unterschied gross, wird auch die Kovarianz grösser.
Das Filter passt sich selber an und korrigiert sich bei grosser Abweichung.
@@ -199,10 +204,10 @@ Der Sensor wurde noch nicht benutz, doch genau der liefert Werte für das Filter
Die aktuellen Messwerte $z$ werden die Innovation $w$ mit dem Zustandsvektor $x$ und der Messmatrix $H$ zusammengerechnet.
Hier bei wird lediglich die Messung mit dem Fehler behaftet, und die Messmatrix $H$ mit der Vorhersage multipliziert
-\[{w_{k}}={z_{k}}-{H_{k}}\cdot{x_{k|k-1}}.\]
+\[{w_{k}}={z_{k}}-{H}\cdot{x_{k-1}}.\]
Die Innovation ist der Teil der Messung, die nicht durch die Systemdynamik erklärt werden kann.
-Die Hilfsgröße Innovation beschreibt, wie genau die Vorhersage den aktuellen Messwert mittels der Systemmatrix $\phi$ beschreiben kann.
+Die Hilfsgröße Innovation beschreibt, wie genau die Vorhersage den aktuellen Messwert mittels der Systemmatrix $\Phi$ beschreiben kann.
Für eine schlechte Vorhersage wird die dazugehörige Innovation gross, für eine genaue Vorhersage dagegen klein sein.
Entsprechende Korrekturen müssen dann gross bzw. nur gering ausfallen.
Innovation = Messung - Vorhersage. Dies ist intuitiv logisch, eine Innovation von 0 bedeutet, dass die Messung nichts Neues hervorbrachte.
@@ -210,34 +215,34 @@ Innovation = Messung - Vorhersage. Dies ist intuitiv logisch, eine Innovation vo
Im nächsten Schritt wir analysiert, mit welcher Kovarianz weiter gerechnet wird.
Hierbei wird die Unsicherheit $P$, die Messmatrix $H$ und die Messunsicherheit $R$ miteinander verrechnet.
\[
-{S_{k}}={H_{k}}{P_{k|k-1}}{H_{k}}^T+{R_{k}}
+{S_{k}}={H}{P_{k-1}}{H}^T+{R_{k}}
\]
\subsubsection*{Aktualisieren}
-Im nächsten Schritt kommt nun die Wahrscheinlichkeit nach Gauss dazu.
+Im nächsten Schritt kommt nun die Wahrscheinlichkeit dazu.
\[
-{K_{k}}= {{P_{k|k-1}} \cdot {H_{k}^T}}\cdot {S_{k}}^{-1}
+{K_{k}}= {{P_{k-1}} \cdot {H_{k}^T}}\cdot {S_{k}}^{-1}
\]
Dieser Vorgang wird Kalman-Gain genannt.
Er sagt aus, welcher Kurve mehr Vertraut werden soll, dem Messwert oder der Systemdynamik.
-Das Kalman-Gain wird geringer wen der Messwert dem vorhergesagten Systemzustand entspricht.
-Sind die Messwerte komplett anders als die Vorhersage, wo werden die Elemente in der Matrix $K$ grösser.
-Anhand der Informationen aus dem Kalman-Gain $K$ wird das System geupdated.
+Das Kalman-Gain wird geringer, wenn der Messwert dem vorhergesagten Systemzustand entspricht.
+Sind die Messwerte komplett anders als die Vorhersage, werden die Elemente in der Matrix $K$ grösser.
+Anhand der Informationen aus dem Kalman-Gain $K$ wird das System aktualisiert.
\[
-{x_{k|k}}={x_{k|k-1}}+({K_{k}}\cdot {w_{k}})
+{x_{k|k}}={x_{k-1}}+({K_{k}}\cdot {w_{k}})
\]
Dazu kommt eine neue Kovarianz für den nächste Vorhersageschritt:
\[
-{P_{k|k}}=(I-({K_{k}} \cdot {H_{k}})) \cdot {P_{k|k-1}}
+{P_{k}}=(I-({K_{k}} \cdot {H})) \cdot {P_{k-1}}
\]
-Der ganze Ablauf wird nun zum Algorithmus und beginnt wieder mit der Vorhersage
+Der ganze Algorithmus und beginnt wieder mit der Vorhersage
\[
-{x_{k|k-1}}=\Phi \cdot {x_{k-1|k-1}}= \exp(A\Delta t)\cdot{x_{k|k-1}}.
+{x_{k-1}}=\Phi \cdot {x_{k-1}}= \exp(A\Delta t)\cdot{x_{k-1}}.
\]
@@ -246,20 +251,25 @@ Zusammenfassend kann das Kalman-Filter in offizieller Typus dargestellt werden.
Dabei beginnt das Filter mit dem Anfangszustand für $k=0$
1. Nächster Zustand vorhersagen
-\[{x_{k|k-1}}=\Phi \cdot {x_{k-1|k-1}}= \exp(A\Delta t)\cdot{x_{k|k-1}}.\]
+\[{x_{k-1}}={\Phi} \cdot {x_{k-1}}= \exp(A\Delta t)\cdot{x_{k-1}}.\]
2. Nächste Fehlerkovarianz vorhersagen
-\[{P_{k|k-1}}={\Phi _{k}} {P_{k-1|k-1}} {\Phi _{k}}^T + {Q_{k-1}}.\]
+\[{P_{k-1}}={\Phi} {P_{k-1}} {\Phi _{k}}^T + {Q_{k-1}}.\]
-3. Das Kalman Filter anwenden
-\[{K_{k}}= {P_{k|k-1}} \cdot {H_{k}^T}\cdot {S_{k}^{-1}}\]
+3. Zustand wird gemessen
+\[{w_{k}}={z_{k}}-{H}\cdot{x_{k-1}}.\]
-4. Schätzung aktualisieren
-\[{x_{k|k}}={x_{k|k-1}}+({K_{k}}\cdot {w_{k}}) \]
+4. Innovation (= Messung - Vorhersage)
+\[ {S_{k}}={H}{P_{k-1}}{H}^T+{R_{k}}\]
-5. Fehlerkovarianz aktualisieren
-\[{P_{k|k}}=(I-({K_{k}}\cdot {H_{k}})) \cdot {P_{k|k-1}} \]
+5. Das Kalman Filter anwenden
+\[{K_{k}}= {P_{k-1}} \cdot {H^T}\cdot {S_{k}^{-1}}\]
+6. Schätzung aktualisieren
+\[{x_{k}}={x_{k-1}}+({K_{k}}\cdot {w_{k}}) \]
-6. Die Outputs von $k$ werden die Inputs für ${k-1}$ und werden wieder im Schritt 1 verwendet
+7. Fehlerkovarianz aktualisieren
+\[{P_{k}}=(I-({K_{k}}\cdot {H})) \cdot {P_{k-1}} \]
+
+8. Die Outputs von $k$ werden die Inputs für ${k-1}$ und werden wieder im Schritt 1 verwendet