diff options
author | Lukaszogg <82384106+Lukaszogg@users.noreply.github.com> | 2021-07-08 20:10:11 +0200 |
---|---|---|
committer | Lukaszogg <82384106+Lukaszogg@users.noreply.github.com> | 2021-07-08 20:10:11 +0200 |
commit | 14033ca595b5c933caea3b214d2246529e6845b8 (patch) | |
tree | 0d6d2b2eb34e5ef5df3c517be5c1c9d803fa066c /vorlesungen/punktgruppen/script.tex | |
parent | Update teil1.tex (diff) | |
parent | Only include buch.ind if it exists. (diff) | |
download | SeminarMatrizen-14033ca595b5c933caea3b214d2246529e6845b8.tar.gz SeminarMatrizen-14033ca595b5c933caea3b214d2246529e6845b8.zip |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'vorlesungen/punktgruppen/script.tex')
-rw-r--r-- | vorlesungen/punktgruppen/script.tex | 214 |
1 files changed, 214 insertions, 0 deletions
diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex new file mode 100644 index 0000000..bc50e21 --- /dev/null +++ b/vorlesungen/punktgruppen/script.tex @@ -0,0 +1,214 @@ +\documentclass[a4paper]{article} + +\usepackage{amsmath} +\usepackage{amssymb} + +\usepackage[cm]{manuscript} +\usepackage{xcolor} + +\newcommand{\scene}[1]{\par\noindent[ #1 ]\par} +\newenvironment{totranslate}{\color{blue!70!black}}{} + +\begin{document} +\section{Das sind wir} +\scene{Camera} + +\section{Ablauf} +Zuerst werden wir Symmetrien in 2 Dimensionen anschauen, dann \"uberlegen wir +kurz was es heisst f\"ur eine Symmetrie ``algebraisch'' zu sein. Von da aus +kommt die dritte Dimension hinzu, die man besser mit Matrizen verstehen kann. +Mit der aufgebauten Theorie werden wir versuchen Kristalle zu klassifizieren. +Und zum Schluss kommen wir zu Anwendungen, welche f\"ur Ingenieure von +Interesse sind. + +\section{intro} +\scene{Spontan} + +\section{2D Geometrie} +\scene{Intro} +Wir fangen mit den 2 dimensionalen Symmetrien an, da man sie sich am +einfachsten vorstellen kann. Eine Symmetrie eines Objektes beschreibt eine +Aktion, welche nachdem sie auf das Objekt wirkt, das Objekt wieder gleich +aussehen l\"asst. + +\scene{Viereck} +Die einfachste Aktion, ist das Viereck zu nehmen, und wieder hinzulegen. +Eine andere Aktion k\"onnte sein, das Objekt um eine Achse zu spiegeln, +oder eine Rotation um 90 Grad. + +\scene{Zyklische Gruppe} +Fokussieren wir uns auf die einfachste Klassen von Symmetrien: diejenigen die +von einer reinen Drehung generiert werden. Wir sammeln diese in einer Gruppe +\(G\), und notieren das sie von eine Rotation \(r\) generiert worden sind, mit +diesen spitzen Klammern. + +Nehmen wir als Beispiel dieses Pentagon. Wenn wir \(r\) 5-mal anwenden, ist es +dasselbe als wenn wir nichts gemacht h\"atten. Wenn wir es noch ein 6. mal +drehen, entspricht dies dasselbe wie \(r\) nur 1 mal zu nutzen. + +\scene{Notation} +So, die Gruppe setzt sich zusammen aus dem neutralen Element, und den Potenzen +1 bis 4 von \(r\). Oder im allgemein Gruppen mit dieser Struktur, in welcher die +Aktion \(n-1\) mal angewendet werden kann, heissen ``Zyklische Gruppe''. + +\scene{Diedergruppe} +Nehmen wir nun auch noch die Spiegeloperation \(\sigma\) dazu. Weil wir jetzt 2 +Operationen haben, m\"ussen wir auch im Generator schreiben wie sie +zusammenh\"angen. Schauen wir dann uns genauer diesen Ausdr\"uck an. Zweimal +Spielegeln ist \"aquivalent zum neutralen Element, sowie 4 mal um 90 Grad +drehen und 2 Drehspiegelungen, welche man auch Inversion nennt. + +\scene{Notation} +Daraus k\"onnen wir wieder die ganze Gruppe erzeugen, die im allgemeinen den +Symmetrien eines \(n\)-gons entsprechen. + +\scene{Kreisgruppe} +Bis jetzt hatten wir nur diskrete Symmetrien, was nicht zwingend der Fall sein +muss. Ein Ring kann man kontinuierlich drehen, und sieht dabei immer gleich +aus. + +Diese Symmetrie ist auch als Kreisgruppe bekannt, die man sch\"on mit dem +komplexen Einheitskreis definieren kann. + +\section{Algebra} +\scene{Produkt mit \(i\)} +\"Uberlegen wir uns eine spezielle algebraische Operation: Multiplikation mit +der imagin\"aren Einheit. \(1\) mal \(i\) ist gleich \(i\). Wieder mal \(i\) +ist \(-1\), dann \(-i\) und schliesslich kommen wir z\"uruck auf \(1\). Diese +fassen wir in eine Gruppe \(G\) zusammen. Oder sch\"oner geschrieben:. Sieht das +bekannt aus? + +\scene{Morphismen} +Das Gefühl, dass es sich um dasselbe handelt, kann wie folgt formalisiert +werden. Sei \(\phi\) eine Funktion von \(C_4\) zu \(G\) und ordnen wir zu +jeder Symmetrieoperation ein Element aus \(G\). Wenn man die Zuordnung richtig +definiert, dann sieht man die folgende Eigenschaft: Eine Operation nach eine +andere zu nutzen, und dann die Funktion des Resultats zu nehmen, ist gleich wie +die Funktion der einzelnen Operazionen zu nehmen und die Resultate zu +multiplizieren. Dieses Ergebnis ist so bemerkenswert, dass es in der Mathematik +einen Namen bekommen hat: Homorphismus, von griechisch "homos" dasselbe und +"morphe" Form. Manchmal auch so geschrieben. Ausserdem, wenn \(\phi\) eins zu +eins ist, heisst es \emph{Iso}morphismus: "iso" gleiche Form. Was man +typischerweise mit diesem Symbol schreibt. + +\scene{Animation} +Sie haben wahrscheinlich schon gesehen, worauf das hinausläuft. Dass die +zyklische Gruppe \(C_4\) und \(G\) isomorph sind ist nicht nur Fachjargon der +mathematik, sondern sie haben wirklich die selbe Struktur. + +\scene{Modulo} +Das Beispiel mit der komplexen Einheit, war wahrscheinlich nicht so +\"uberraschend. Aber was merkw\"urdig ist, ist das Beziehungen zwischen +Symmetrien und Algebra auch in Bereichen gefunden werden, welche auf den ersten +Blick, nicht geomerisch erscheinen. Ein R\"atsel für die Neugierigen: die Summe +in der Modulo-Arithmetik. Als Hinweis: Um die Geometrie zu finden denken Sie +an einer Uhr. + +\section{3D Geometrie} +2 Dimensionen sind einfacher zu zeichnen, aber leider leben wir im 3 +dimensionalen Raum. + +\scene{Zyklische Gruppe} +Wenn wir unser bekanntes Viereck mit seiner zyklischer Symmetrie in 3 +Dimensionen betrachten, k\"onnen wir seine Drehachse sehen. + +\scene{Diedergruppe} +Um auch noch die andere Symmetrie des Rechteckes zu sehen, ben\"otigen wir eine +Spiegelachse \(\sigma\), die hier eine Spiegelebene ist. + +\scene{Transition} +Um die Punktsymmetrien zu klassifizieren orientiert man sich an einer Achse, um +welche sich die meisten Symmetrien drehen. Das geht aber nicht immer, wie beim +Tetraeder. + +\scene{Tetraedergruppe} +Diese Geometrie hat 4 gleichwertige Symmetrieachsen, die eben eine +Symmetriegruppe aufbauen, welche kreativer weise Tetraedergruppe genannt wird. +Vielleicht fallen Ihnnen weitere Polygone ein mit dieser Eigenschaft, bevor wir +zum n\"achsten Thema weitergehen. + +\section{Matrizen} +\scene{Titelseite} +Nun gehen wir kurz auf den Thema unseres Seminars ein: Matrizen. Das man mit +Matrizen Dinge darstellen kann, ist keine Neuigkeit mehr, nach einem +Semester MatheSeminar. Also überrascht es wohl auch keinen, das man alle +punktsymmetrischen Operationen auch mit Matrizen Formulieren kann. + +\scene{Matrizen} + +Sei dann \(G\) unsere Symmetrie Gruppe, die unsere abstrakte Drehungen und +Spiegelungen enth\"ahlt. Die Matrix Darstellung dieser Gruppe, ist eine +Funktion gross \(\Phi\), von \(G\) zur orthogonalen Gruppe \(O(3)\), die zu +jeder Symmetrie Operation klein \(g\) eine Matrix gross \(\Phi_g\) zuordnet. + +Zur Erinnerung, die Orthogonale Gruppe ist definiert als die Matrizen, deren +transponierte auch die inverse ist. Da diese Volumen und Distanzen erhalten, +natuerlich nur bis zu einer Vorzeichenumkehrung, macht es Sinn, dass diese +Punksymmetrien genau beschreiben. + +Nehmen wir die folgende Operationen als Beispiele. Die Matrix der trivialen +Operation, dass heisst nichts zu machen, ist die Einheitsmatrix. Eine +Spiegelung ist dasselbe aber mit einem Minus, und Drehungen sind uns schon +dank Herrn M\"uller bekannt. + +\section{Kristalle} +\scene{Spontan} + +\section{Piezo} +\scene{Spontan} + +\section{Licht} +Als Finale, haben wir ein schwieriges Problem aus der Physik. Das Ziel dieser +Folie ist nicht jedes Zeichen zu versehen, sondern zu zeigen wie man von hier +weiter gehen kann. Wir mochten sehen wie sich Licht in einem Kristall verhaltet. +Genauer, wir m\"ochten die Amplitude einer +elektromagnetischer Welle in einem Kristall beschreiben. + +Das Beispiel richtet sich mehr an Elektrotechnik Studenten, aber die Theorie +ist die gleiche bei mechanischen Wellen in Materialien mit einer +Spannungstensor wie dem, den wir letzte Woche gesehen haben. +% Ganz grob gesagt, ersetzt man E durch Xi und epsilon durch das Sigma. + +Um eine Welle zu beschreiben, verwenden wir die Helmholtz-Gleichung, die einige +von uns bereits in anderen Kursen gel\"ost haben. Schwierig wird aber dieses +Problem, wenn der Term vor der Zeitableitung ein Tensor ist (f\"ur uns eine Matrix). + +Zur Vereinfachung werden wir eine ebene Welle verwenden. Setzt man dieses E in +die Helmholtz-Gleichung ein, erhält man folgendes zurück: ein Eigenwertproblem. + +Physikalisch bedeutet dies, dass die Welle in diesem Material ihre Amplitude in +Abhängigkeit von der Ausbreitungsrichtung ändert. Und die Eigenwerte sagen +aus, wie stark die Amplitude der Welle in jeder Richtung skaliert wird. + +Ich sagte, in jede Richtung skaliert, aber welche Richtungen genau? +Physikalisch hängt das von der kristallinen Struktur des Materials ab, aber +mathematisch können wir sagen: in Richtung der Eigenvektoren! Aber diesen +Eigenraum zu finden, in dem die Eigenvektoren wohnen, ist beliebig schwierig. + +Hier kommt unsere Gruppentheorie zu Hilfe. Wir können die Symmetrien unseres +Kristalls zur Hilfe nehmen. Zu jeder dieser Symmetrien lässt sich bekanntlich eine +einfache Matrix finden, deren Eigenraum ebenfalls relativ leicht zu finden ist. +Zum Beispiel ist der Eigenraum der Rotation \(r\), die Rotationsachse, für die +Reflexion \(\sigma\) eine Ebene, und so weiter. + +Nun ist die Frage, ob man diese Eingenraume der Symmetrienoperationen +kombinieren kann um den Eigenraum des physikalisches Problems zu finden. + +Aber leider ist meine Zeit abgelaufen in der Recherche, also müssen Sie mir 2 +Dingen einfach glauben, erstens dass es einen Weg gibt, und zweitens dass eher +nicht so schlimm ist, wenn man die Notation einmal gelernt hat. + +Nachdem wir an, wir haben den Eigenraum U gefunden, dann können wir einen +(Eigen)Vektor E daraus nehmen und in ihm direkt lambda ablesen. Das sagt uns, +wie die Amplitude der Welle, in diese Richtung gedämpft wurde. + +Diese Methode ist nicht spezifisch für dieses Problem, im Gegenteil, ich habe +gesehen, dass sie in vielen Bereichen eingesetzt wird, wie z.B.: +Kristallographie, Festkörperphysik, Molekülschwingungen in der Quantenchemie +und numerische Simulationen von Membranen. + +\section{Outro} +\scene{Camera} + +\end{document} +% vim:et ts=2 sw=2: |