diff options
author | Reto <reto.fritsche@ost.ch> | 2021-04-24 14:11:30 +0200 |
---|---|---|
committer | Reto <reto.fritsche@ost.ch> | 2021-04-24 14:11:30 +0200 |
commit | d1a34332748bad563209adafbf3a32f3b6ed8f87 (patch) | |
tree | f4a6e7c4b71500aa588cf626d19439729a38824a /vorlesungen/slides/10/so2.tex | |
parent | added simple code example of mceliece cryptosystem (diff) | |
parent | add title slides for presentations (diff) | |
download | SeminarMatrizen-d1a34332748bad563209adafbf3a32f3b6ed8f87.tar.gz SeminarMatrizen-d1a34332748bad563209adafbf3a32f3b6ed8f87.zip |
Merge remote-tracking branch 'upstream/master' into mceliece
Diffstat (limited to 'vorlesungen/slides/10/so2.tex')
-rw-r--r-- | vorlesungen/slides/10/so2.tex | 141 |
1 files changed, 141 insertions, 0 deletions
diff --git a/vorlesungen/slides/10/so2.tex b/vorlesungen/slides/10/so2.tex new file mode 100644 index 0000000..dcbcdc8 --- /dev/null +++ b/vorlesungen/slides/10/so2.tex @@ -0,0 +1,141 @@ +% +% so2.tex -- Illustration of so(2) -> SO(2) +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% Erstellt durch Roy Seitz +% +% !TeX spellcheck = de_CH +\bgroup + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{Von der Lie-Gruppe zur -Algebra} + \vspace{-20pt} + \begin{columns}[t,onlytextwidth] + \begin{column}{0.48\textwidth} + \uncover<1->{ + \begin{block}{Lie-Gruppe} + Darstellung von \gSO2: + \begin{align*} + \mathbb R + &\to + \gSO2 + \\ + t + &\mapsto + \begin{pmatrix} + \cos t & -\sin t \\ + \sin t & \phantom-\cos t + \end{pmatrix} + \end{align*} + \end{block} + } + \uncover<2->{ + \begin{block}{Ableitung am neutralen Element} + \begin{align*} + \frac{d}{d t} + & + \left. + \begin{pmatrix} + \cos t & -\sin t \\ + \sin t & \phantom-\cos t + \end{pmatrix} + \right|_{ t = 0} + \\ + = + & + \begin{pmatrix} -\sin0 & -\cos0 \\ \phantom-\cos0 & -\sin0 \end{pmatrix} + = + \begin{pmatrix} 0 & -1 \\ 1 & \phantom-0 \end{pmatrix} + \end{align*} + \end{block} + } + \end{column} + \begin{column}{0.48\textwidth} + \uncover<3->{ + \begin{block}{Lie-Algebra} + Darstellung von \aso2: + \begin{align*} + \mathbb R + &\to + \aso2 + \\ + t + &\mapsto + \begin{pmatrix} + 0 & -t \\ + t & \phantom-0 + \end{pmatrix} + \end{align*} + \end{block} + } + \end{column} + \end{columns} +\end{frame} + + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{Von der Lie-Algebra zur -Gruppe} + \vspace{-20pt} + \begin{columns}[t,onlytextwidth] + \begin{column}{0.48\textwidth} + \uncover<1->{ + \begin{block}{Differentialgleichung} + Gegeben: + \[ + J + = + \dot\gamma(0) = \begin{pmatrix} 0 & -1 \\ 1 & \phantom-0 \end{pmatrix} + \] + Gesucht: + \[ \dot \gamma (t) = J \gamma(t) \qquad \gamma \in \gSO2 \] + \[ \Rightarrow \gamma(t) = \exp(Jt) \gamma(0) = \exp(Jt) \] + \end{block} + } + \end{column} + \begin{column}{0.48\textwidth} + \uncover<2->{ + \begin{block}{Lie-Algebra} + Potenzen von $J$: + \begin{align*} + J^2 &= -I & + J^3 &= -J & + J^4 &= I & + \ldots + \end{align*} + \end{block} + } + \end{column} + \end{columns} +\uncover<3->{ + Folglich: + \begin{align*} + \exp(Jt) + &= I + Jt + + J^2\frac{t^2}{2!} + + J^3\frac{t^3}{3!} + + J^4\frac{t^4}{4!} + + J^5\frac{t^5}{5!} + + \ldots \\ + &= \begin{pmatrix} + \vspace*{3pt} + 1 - \frac{t^2}{2} + \frac{t^4}{4!} - \ldots + & + -t + \frac{t^3}{3!} - \frac{t^5}{5!} + \ldots + \\ + t - \frac{t^3}{3!} + \frac{t^5}{5!} - \ldots + & + 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \ldots + \end{pmatrix} + = + \begin{pmatrix} + \cos t & -\sin t \\ + \sin t & \phantom-\cos t + \end{pmatrix} + \end{align*} + } +\end{frame} +\egroup |