diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-03-12 17:27:08 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-03-12 17:27:08 +0100 |
commit | 972eba4c4cb38eb330bd053500e627085a3f4328 (patch) | |
tree | af8833cc0c292addd679a7557c3f903fb3fb5ebc /vorlesungen/slides/2 | |
parent | new slides (diff) | |
download | SeminarMatrizen-972eba4c4cb38eb330bd053500e627085a3f4328.tar.gz SeminarMatrizen-972eba4c4cb38eb330bd053500e627085a3f4328.zip |
add new slides
Diffstat (limited to 'vorlesungen/slides/2')
-rw-r--r-- | vorlesungen/slides/2/funktionenalgebra.tex | 6 | ||||
-rw-r--r-- | vorlesungen/slides/2/skalarprodukt.tex | 27 |
2 files changed, 18 insertions, 15 deletions
diff --git a/vorlesungen/slides/2/funktionenalgebra.tex b/vorlesungen/slides/2/funktionenalgebra.tex index e3339c3..9116be4 100644 --- a/vorlesungen/slides/2/funktionenalgebra.tex +++ b/vorlesungen/slides/2/funktionenalgebra.tex @@ -31,12 +31,12 @@ f(x)\cdot g(x) \begin{align*} \|f\cdot g\|_\infty &= -\sup_{x\in[0,1]} f(x)g(x) +\sup_{x\in[0,1]} |f(x)g(x)| \\ \uncover<4->{ &\le -\sup_{x\in[0,1]}f(x) -\sup_{y\in[0,1]}g(y) +\sup_{x\in[0,1]}|f(x)| +\sup_{y\in[0,1]}|g(y)| } \\ \uncover<5->{ diff --git a/vorlesungen/slides/2/skalarprodukt.tex b/vorlesungen/slides/2/skalarprodukt.tex index 2a9784f..99d8a73 100644 --- a/vorlesungen/slides/2/skalarprodukt.tex +++ b/vorlesungen/slides/2/skalarprodukt.tex @@ -13,7 +13,7 @@ \begin{block}{Positiv definite, symmetrische Bilinearform} $\langle \;\,,\;\rangle\colon V\times V\to \mathbb{R}$ \begin{itemize} -\item +\item<2-> Bilinear: \begin{align*} \langle \alpha u+\beta v,w\rangle @@ -28,18 +28,19 @@ Bilinear: + \beta\langle u,w\rangle \end{align*} -\item +\item<3-> Symmetrisch: $\langle u,v\rangle = \langle v,u\rangle$ -\item +\item<4-> $\langle x,x\rangle >0 \quad\forall x\ne 0$ \end{itemize} \end{block} \end{column} \begin{column}{0.48\textwidth} +\uncover<5->{% \begin{block}{Positive definite, hermitesche Sesquilinearform} $\langle \;\,,\;\rangle\colon V\times V\to \mathbb{C}$ \begin{itemize} -\item +\item<6-> Sesquilinear: \begin{align*} \langle \alpha u+\beta v,w\rangle @@ -54,40 +55,42 @@ Sesquilinear: + \beta\langle u,w\rangle \end{align*} -\item +\item<7-> Hermitesch: $\langle u,v\rangle = \overline{\langle v,u\rangle}$ -\item +\item<8-> $\langle x,x\rangle >0 \quad\forall x\ne 0$ \end{itemize} -\end{block} +\end{block}} \end{column} \end{columns} \begin{columns}[t,onlytextwidth] \begin{column}{0.28\textwidth} +\uncover<9->{% \begin{block}{$2$-Norm} $\|v\|_2^2 = \langle v,v\rangle$ \\ $\|v\|_2 = \sqrt{\langle v,v\rangle}$ -\end{block} +\end{block}} \end{column} \begin{column}{0.78\textwidth} +\uncover<10->{% \begin{itemize} -\item $\|v\|_2 = \sqrt{\langle v,v\rangle} > 0\quad\forall v\ne 0$ -\item $\| \lambda v \|_2 +\item<11-> $\|v\|_2 = \sqrt{\langle v,v\rangle} > 0\quad\forall v\ne 0$ +\item<12-> $\| \lambda v \|_2 = \sqrt{\langle \lambda v,\lambda v\rangle\mathstrut} = \sqrt{\overline{\lambda}\lambda\langle v,v\rangle} = |\lambda|\cdot \|v\|_2$ -\item +\item<13-> \raisebox{-8pt}{ $\begin{aligned} \|u+v\|_2^2 &= \|u\|_2^2 + 2{\color{red}\operatorname{Re}\langle u,v\rangle} + \|v\|_2^2 \\ (\|u\|_2+\|v\|_2)^2 &= \|u\|_2^2 + 2{\color{red}\|u\|_2\|v\|_2} + \|v\|_2^2 \end{aligned}$} -\end{itemize} +\end{itemize}} \end{column} \end{columns} \end{frame} |