aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides/3/division.tex
diff options
context:
space:
mode:
authorLordMcFungus <mceagle117@gmail.com>2021-03-22 18:05:11 +0100
committerGitHub <noreply@github.com>2021-03-22 18:05:11 +0100
commit76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7 (patch)
tree11b2d41955ee4bfa0ae5873307c143f6b4d55d26 /vorlesungen/slides/3/division.tex
parentmore chapter structure (diff)
parentadd title image (diff)
downloadSeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.tar.gz
SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.zip
Merge pull request #1 from AndreasFMueller/master
update
Diffstat (limited to 'vorlesungen/slides/3/division.tex')
-rw-r--r--vorlesungen/slides/3/division.tex32
1 files changed, 32 insertions, 0 deletions
diff --git a/vorlesungen/slides/3/division.tex b/vorlesungen/slides/3/division.tex
new file mode 100644
index 0000000..94df27b
--- /dev/null
+++ b/vorlesungen/slides/3/division.tex
@@ -0,0 +1,32 @@
+%
+% division.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\frametitle{Polynomdivision}
+\begin{block}{Aufgabe}
+Finde Quotient und Rest für
+$a= X^4- X^3-7X^2+ X+6\in\mathbb{Z}[X]$
+und
+$b= X^2+X+1\in\mathbb{Z}[X]$
+\end{block}
+\uncover<2->{%
+\begin{block}{Lösung}
+\[
+\arraycolsep=1.4pt
+\begin{array}{rcrcrcrcrcrcrcrcrcrcr}
+\llap{$($}X^4&-& X^3&-&7X^2&+& X&+&6\rlap{$)$}&\;\mathstrut:\mathstrut&(X^2&+&X&+&1)&=&\uncover<3->{X^2}&\uncover<7->{-&2X}&\uncover<11->{-&6}=q\\
+\uncover<4->{\llap{$-($}X^4&+& X^3&+& X^2\rlap{$)$}}& & & & & & & & & & & & & & & & \\
+ &\uncover<5->{-&2X^3&-&8X^2}&\uncover<6->{+& X}& & & & & & & & & & & & & & \\
+ &\uncover<8->{\llap{$-($}-&2X^3&-&2X^2&-&2X\rlap{$)$}}& & & & & & & & & & & & & & \\
+ & & &\uncover<9->{-&6X^2&+&3X}&\uncover<10->{+&6}& & & & & & & & & & & & \\
+ & & &\uncover<12->{\llap{$-($}-&6X^2&-&6X&-&6\rlap{$)$}}& & & & & & & & & & & & \\
+ & & & & & &\uncover<13->{9X&+&12\rlap{$\mathstrut=r$}}& & & & & & & & & & & &
+\end{array}
+\]
+\uncover<14->{
+Funktioniert weil $b$ normiert ist!
+}
+\end{block}}
+\end{frame}