diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-03-01 09:56:51 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-03-01 09:56:51 +0100 |
commit | 37f6831ca6c7be6ecec6ce75b1d688a8fcfbb05c (patch) | |
tree | 7d52401cc56b0bf51b39a70e88a97ca0bf1a2b04 /vorlesungen/slides/3 | |
parent | phases, new slides (diff) | |
download | SeminarMatrizen-37f6831ca6c7be6ecec6ce75b1d688a8fcfbb05c.tar.gz SeminarMatrizen-37f6831ca6c7be6ecec6ce75b1d688a8fcfbb05c.zip |
add new files
Diffstat (limited to 'vorlesungen/slides/3')
-rw-r--r-- | vorlesungen/slides/3/Makefile.inc | 1 | ||||
-rw-r--r-- | vorlesungen/slides/3/chapter.tex | 1 | ||||
-rw-r--r-- | vorlesungen/slides/3/fibonacci.tex | 71 |
3 files changed, 73 insertions, 0 deletions
diff --git a/vorlesungen/slides/3/Makefile.inc b/vorlesungen/slides/3/Makefile.inc index ca6da41..7f52cb1 100644 --- a/vorlesungen/slides/3/Makefile.inc +++ b/vorlesungen/slides/3/Makefile.inc @@ -17,6 +17,7 @@ chapter3 = \ ../slides/3/einsetzen.tex \ ../slides/3/maximalergrad.tex \ ../slides/3/minimalbeispiel.tex \ + ../slides/3/fibonacci.tex \ ../slides/3/minimalpolynom.tex \ ../slides/3/drehmatrix.tex \ ../slides/3/drehfaktorisierung.tex \ diff --git a/vorlesungen/slides/3/chapter.tex b/vorlesungen/slides/3/chapter.tex index 2663bec..0f049e7 100644 --- a/vorlesungen/slides/3/chapter.tex +++ b/vorlesungen/slides/3/chapter.tex @@ -15,6 +15,7 @@ \folie{3/einsetzen.tex} \folie{3/maximalergrad.tex} \folie{3/minimalbeispiel.tex} +\folie{3/fibonacci.tex} \folie{3/minimalpolynom.tex} \folie{3/drehmatrix.tex} \folie{3/drehfaktorisierung.tex} diff --git a/vorlesungen/slides/3/fibonacci.tex b/vorlesungen/slides/3/fibonacci.tex new file mode 100644 index 0000000..e26175e --- /dev/null +++ b/vorlesungen/slides/3/fibonacci.tex @@ -0,0 +1,71 @@ +% +% fibonacci.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% + +\begin{frame}[t] +\frametitle{Fibonacci} +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\begin{block}{Fibonacci-Rekursion} +$x_i$ Fibonacci-Zahlen\uncover<2->{, d.~h.~$x_{n+1\mathstrut}=x_{n\mathstrut}+x_{n-1\mathstrut}$} +\[ +\uncover<3->{ +v_n += +\begin{pmatrix} +x_{n+1}\\ +x_n +\end{pmatrix}} +\uncover<4->{ +\quad\Rightarrow\quad +v_n = +\underbrace{ +\begin{pmatrix} +1&1\\ +1&0 +\end{pmatrix} +}_{\displaystyle=\Phi} +v_{n-1}} +\uncover<5->{ +\quad\Rightarrow\quad +v_n += +\Phi^n +v_0}\uncover<6->{, +\; +v_0 = \begin{pmatrix} 1\\0\end{pmatrix}} +\] +\end{block} +\vspace{-5pt} +\uncover<7->{% +\begin{block}{Rekursionsformel für $\Phi$} +\vspace{-12pt} +\begin{align*} +v_{n}&=v_{n-1}+v_{n-2} +&&\uncover<8->{\Rightarrow& +\Phi^n v_0 &= \Phi^{n-1} v_0 + \Phi^{n-2}v_0} +&&\uncover<9->{\Rightarrow& +\Phi^{n-2}(\Phi^2-\Phi-I)v_0&=0} +\\ +\end{align*} +\vspace{-22pt}% + +\uncover<10->{$\Phi$ ist $\chi_\Phi(X)=m_\Phi(X) = X^2-X-1$, irreduzibel} +\end{block}} + +\uncover<11->{% +\begin{block}{Faktorisierung} +\vspace{-12pt} +\[ +(X-\Phi)(X-(I-\Phi)) +\uncover<12->{= +X^2-X +\Phi(I-\Phi)} +\uncover<13->{= +X^2-X -\underbrace{\Phi^2-\Phi}_{\displaystyle=I} +} +\] +\end{block}} + +\end{frame} |