diff options
author | LordMcFungus <mceagle117@gmail.com> | 2021-03-22 18:05:11 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-03-22 18:05:11 +0100 |
commit | 76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7 (patch) | |
tree | 11b2d41955ee4bfa0ae5873307c143f6b4d55d26 /vorlesungen/slides/4/division.tex | |
parent | more chapter structure (diff) | |
parent | add title image (diff) | |
download | SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.tar.gz SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.zip |
Merge pull request #1 from AndreasFMueller/master
update
Diffstat (limited to 'vorlesungen/slides/4/division.tex')
-rw-r--r-- | vorlesungen/slides/4/division.tex | 65 |
1 files changed, 65 insertions, 0 deletions
diff --git a/vorlesungen/slides/4/division.tex b/vorlesungen/slides/4/division.tex new file mode 100644 index 0000000..846738f --- /dev/null +++ b/vorlesungen/slides/4/division.tex @@ -0,0 +1,65 @@ +% +% division.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Division in $\mathbb{F}_p$} +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Inverse {\bf berechnen}} +Gegeben $a\in\mathbb{F}_p$, finde $b=a^{-1}\in\mathbb{F}_p$ +\begin{align*} +\uncover<2->{&& a{\color{blue}b} &\equiv 1 \mod p} +\\ +\uncover<3->{&\Leftrightarrow& a{\color{blue}b}&=1 + {\color{blue}n}p} +\\ +\uncover<4->{&&a{\color{blue}b}-{\color{blue}n}p&=1} +\end{align*} +\uncover<5->{Wegen +$\operatorname{ggT}(a,p)=1$ gibt es +$s$ und $t$ mit +\[ +{\color{red}s}a+{\color{red}t}p=1 +\Rightarrow +{\color{blue}b}={\color{red}s},\; +{\color{blue}n}=-{\color{red}t} +\]} +\uncover<6->{% +$\Rightarrow$ Die Inverse kann mit dem euklidischen Algorithmus +berechnet werden} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<7->{% +\begin{block}{Beispiel in $\mathbb{F}_{1291}$} +Finde $47^{-1}\in\mathbb{F}_{1291}$ +%\vspace{-10pt} +\begin{center} +\begin{tabular}{|>{$}r<{$}|>{$}r<{$}>{$}r<{$}|>{$}r<{$}|>{$}r<{$}>{$}r<{$}|} +\hline +k& a_k& b_k&q_k& c_k& d_k\\ +\hline + & & & & 1& 0\\ +0& 47&1291&\uncover<8->{ 0}& 0& 1\\ +1&\uncover<9->{ 1291& 47}&\uncover<11->{ 27}&\uncover<10->{ 1& 0}\\ +2&\uncover<12->{ 47& 22}&\uncover<14->{ 2}&\uncover<13->{ -27& 1}\\ +3&\uncover<15->{ 22& 3}&\uncover<17->{ 7}&\uncover<16->{ 55& -2}\\ +4&\uncover<18->{ 3& 1}&\uncover<20->{ 3}&\uncover<19->{{\color{red}-412}&{\color{red}15}}\\ +5&\uncover<21->{ 1& 0}& &\uncover<22->{ 1291& -47}\\ +\hline +\end{tabular} +\end{center} +\uncover<23->{% +\[ +{\color{red}-412}\cdot 47 +{\color{red}15}\cdot 1291 = 1 +\uncover<24->{\;\Rightarrow\; +47^{-1}={\color{red}879}} +\]} +\end{block}} +\end{column} +\end{columns} +\end{frame} |