diff options
author | LordMcFungus <mceagle117@gmail.com> | 2021-03-22 18:05:11 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-03-22 18:05:11 +0100 |
commit | 76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7 (patch) | |
tree | 11b2d41955ee4bfa0ae5873307c143f6b4d55d26 /vorlesungen/slides/5/hyperbolisch.tex | |
parent | more chapter structure (diff) | |
parent | add title image (diff) | |
download | SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.tar.gz SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.zip |
Merge pull request #1 from AndreasFMueller/master
update
Diffstat (limited to 'vorlesungen/slides/5/hyperbolisch.tex')
-rw-r--r-- | vorlesungen/slides/5/hyperbolisch.tex | 105 |
1 files changed, 105 insertions, 0 deletions
diff --git a/vorlesungen/slides/5/hyperbolisch.tex b/vorlesungen/slides/5/hyperbolisch.tex new file mode 100644 index 0000000..905082a --- /dev/null +++ b/vorlesungen/slides/5/hyperbolisch.tex @@ -0,0 +1,105 @@ +% +% hyperbolisch.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Hyperbolische Funktionen} +\vspace{-15pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Differentialgleichung} +\vspace{-10pt} +\begin{align*} +\ddot{y} &= y +\;\Rightarrow\; +\frac{d}{dt} +\begin{pmatrix}y\\y_1\end{pmatrix} += +\begin{pmatrix}0&1\\1&0\end{pmatrix} +\begin{pmatrix}y\\y_1\end{pmatrix} +\\ +y(0)&=a,\qquad y'(0)=b +\end{align*} +\end{block} +\vspace{-10pt} +\uncover<2->{% +\begin{block}{Lösung} +\vspace{-13pt} +\begin{align*} +\lambda^2-1&=0 +\uncover<3->{ +\qquad\Rightarrow\qquad \lambda=\pm 1 +} +\\ +\uncover<4->{ +y(t)&=Ae^t+Be^{-t}} +\uncover<5->{ +\Rightarrow +\left\{ +\arraycolsep=1.4pt +\begin{array}{rcrcr} +A&+&B&=&a\\ +A&-&B&=&b +\end{array} +\right.} +\\ +&\uncover<6->{ +=\frac{a+b}2e^t + \frac{a-b}2e^{-t}} +\\ +&\uncover<7->{= +a{\color{darkgreen}\frac{e^t+e^{-t}}2} + b{\color{red}\frac{e^t-e^{-t}}2}} +\end{align*} +\end{block}} +\end{column} +\begin{column}{0.49\textwidth} +\uncover<8->{% +\begin{block}{Potenzreihe} +\vspace{-12pt} +\begin{align*} +K&=\begin{pmatrix}0&1\\1&0\end{pmatrix} +\uncover<10->{\quad\Rightarrow\quad K^2=I} +\\ +\uncover<9->{ +e^{Kt} +&= +I+K+\frac1{2!}K^2 + \frac{1}{3!}K^3 + \frac{1}{4!}K^4+\dots +} +\\ +\uncover<11->{ +&= +\biggl( 1+\frac{t^2}{2!} + \frac{t^4}{4!}+\dots \biggr)I +} +\\ +\uncover<11->{ +&\qquad ++\biggl(t+\frac{t^3}{3!}+\frac{t^5}{5!}+\dots\biggr)K +} +\\ +\uncover<12->{ +&= +I{\,\color{darkgreen}\cosh t} + K{\,\color{red}\sinh t} +} +\\ +\uncover<13->{ +\begin{pmatrix}y(t)\\y_1(t)\end{pmatrix} +&= +e^{Kt}\begin{pmatrix}a\\b\end{pmatrix} +} +\uncover<14->{ += +\begin{pmatrix} +a{\,\color{darkgreen}\cosh t} + b{\,\color{red}\sinh t}\\ +a{\,\color{red}\sinh t} + b{\,\color{darkgreen}\cosh t} +\end{pmatrix} +} +\end{align*} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup |